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Figure 6: The same plot as Figure 3, but with recalibration by isotonic regression. The results are qualitatively the same
with and without recalibration.

A. Experiments Details and Additional Results
A.1. Additional Theoretic Results

A.1.1. RELATIONSHIP BETWEEN PAIC AND ECE

Given a forecaster H we can define expected calibration error (ECE) as

ECE(H) =

∫ 1

c=0

|Pr[H[X](Y) ≤ c]− c| dc

Proposition 3. ECE(H) = dW1(FH[X](Y),FU).

Intuitively, both dW1(FH[X](Y),FU) try to integrate the difference between the curve c 7→ Pr[H[X](Y) ≤ c] and the curve
c 7→ c. The difference is that they integrate the difference in different ways (similar to the difference between Riemann
and Lebesgue integral).

A.1.2. TRIVIAL CONSTRUCTION OF MPAIC FORECASTER

We construct a trivial forecaster that is always mPAIC. Let Φ be the standard Gaussian CDF, In particular for some c > 0,
choose

h̄[x, r](y) = Φ(y/c− Φ−1(r))

Then when c→∞, we have h̄[x, r](y) = Φ(Φ−1(r)) = r. In other words, for any ε, δ, h̄ is (ε, δ)-mPAIC for sufficiently
large c. However, this forecaster is certainly not useful in practice because it outputs a distribution with variance→∞.

A.2. Fairness Experiment Details

We use the UCI crime and communities dataset (Dua & Graff, 2017) and we predict the crime rate based on features
about the neighborhood (such as racial composition). The prediction model is a fully connected deep network, where the
additional input r is concatenated into each hidden layer (except the last one). Other than this difference, all other setups
are standard — with dropout and early stopping on validation data to prevent over-fitting. For details please refer to the
code included with this paper.

During evaluation of calibration error for interpretable groups, we only consider groups with at least 150 samples to avoid
excessive estimation error.

A.3. Additional Plots and Comparisons for Fairness Experiments

In Figure 6 we plot the same experimental results in Figure 3, where the only difference is we apply post-training re-
calibration (Kuleshov et al., 2018). There is no qualitative difference between Figure 3 and Figure ?? because (average)
calibration does not improve calibration for the worst group.

A.4. Experiment Details for Credit Approval

Dataset We will use the "Give Me Some Credit" dataset on Kaggle. Because it is a binary classification dataset (credit
delinquency vs. no delinquency), we first train a classifier to predict the Bernoulli probability, and use the probability (plus
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No Recalibration With Recalibration
α = 0.1 population density (+) pct immigrant 8yr (-)
(PAIC) pct drug officer (-) vac house boarded (-)
α = 1.0 pct black (+) pct immigrant (+)
(NLL) pct < 3 bedroom (+) pct dense house (+)

Table 1: Least calibrated group for each setup. A + sign indicates this feature is above the median and a - sign indicates
the feature is below the median. These are indeed groups where fairness can be a consideration (e.g. immigrants, race or
economic condition).

Figure 7: The experiment in Figure 5 without post training recalibration.

a small Gaussian noise) as the label. We synthesize a training set and a validation set, where the validation set is very
large to simulate a stream of non-repeating customers. We train the bank’s forecaster H on the training set, and apply it to
interacting with customers sampled from the validation set.

Customer Model The customer utility we use is

y ≥ y0 y < y0

’yes’ 0.2 1.0
’no’ -0.5 -0.5

We assume the customers knows their own credit worthiness y. Based on previous customers x, y and the actual utility from
playing the game, we learn a function ψ(x, y) → R by gradient descent to predict the customer’s utility. The prediction
function ψ is also a fully connected deep neural network. Each new customer (xnew, ynew) ∼ FXY will only apply if
ψ(xnew, ynew) ≥ 0.

Decision Rule The “Bayesian” decision rule in Eq.(6) can be written as

φH(x) =

{
’yes’ H[x](y0) ≤ 1/4
’no’ otherwise (7)

Recalibration Since post training recalibration (Kuleshov et al., 2018; Malik et al., 2019) is usually beneficial, we will
report both results with and without recalibration by isotonic regression. The results with recalibration is in Figure 5 and
the results without recalibration is in Figure 7.

A.5. Additional Plots for Credit Approval

In Figure 7 we plot the results without post training recalibration. They are qualitatively similar to Figure 5. Post training
recalibration has little effect on calibration of the worst sub-group, and therefore do not improve performance in this
experiment.

A.6. Additional Discussion

Stochastic vs. Deterministic Distributions Our results are most useful when Y | X is almost deterministic, i.e. the
uncertainty comes from model ignorance instead of the environment. When Y | X is highly stochastic, Definition 5 can
still be achieved, but with a significant sacrifice to sharpness. This is because h̄[x, r] must be a high variance distribution
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to satisfy h̄[x, r](Y) ≈ r for all likely values for Y | x. Even though individual calibration can still be (approximately)
achieved, the sharpness may be prohibitively poor in practice.

B. Proofs
B.1. Proofs for Section 3

Proposition 1. For any distribution F on X × Y such that FX assigns zero measure to individual points {x ∈ X} sample
D = {(x1, y1), · · · , (xn, yn)}i.i.d.∼ F. For any deterministic forecaster h and any function T (D, h)→ {yes,no} such that

Pr
D∼F

[T (D, h) = yes] = κ > 0 ,

there exists a distribution F′ such that (a) h is not (ε, δ)-PAIC w.r.t F′ for any ε < 1/4 and δ < 1, and (b)

Pr
D∼F′

[T (D, h) = yes] ≥ κ

Proof of Proposition 1. Given a distribution F and forecaster h such that PrD∼F[T (D, h) = yes] = κ > 0, we will
construct an alternative distribution F′ by choosing some function g : X → Y (defined later), and define a new distribution
X′,Y′ ∼ F′g by: X′ ∼ FX and Y′ | x is the delta distribution on g(x). Then by Definition 1, ∀x ∈ X

dW1(Fh[x](Y′),FU) ≥ 1/4 (8)

In words, the above expression is because for any distribution h[x] outputs, we can never rule out a possible ground truth
distribution (F′g) that is deterministic. Under a deterministic distribution FY′|x, it must be that Eq.(9) holds. (An alternative
construction can strengthen the theorem by choosing Y′ | x to be a distribution with sufficiently small non-zero variance.
It can become clear that Eq.(9) is not an artifact of our requirement that h must output a continuous CDF, but rather the the
variance of the ground truth distribution cannot be known).

What remains to show is that there must exist a g such that

Pr
D∼F′

g

[T (D, h) = yes] ≥ κ

We will do this with the probabilistic method. For convenience we will represent the value ‘yes’ by 1 and the value ‘no’
by 0. We can use the notation

Pr
D∼F

[T (D, h) = yes] := ED∼F[T (D, h)]

Because FX assigns zero measure to individual points, for any finite set of x1, · · · , xn
i.i.d.∼ FX, all the xi are distinct (i.e.

xi 6= xj ,∀i 6= j) almost surely. Suppose G is a random function on {g : X → Y} defined by G(x) ∼ FY|x, then random
variables D = {(x1, y1), · · · , (xn, yn)} defined by the following two sampling procedures are identically distributed (i.e.
in the sense that they belong to any measurable subset of (X × Y)n with the same probability)

x1, · · · , xn
i.i.d.∼ FX, yi ∼ FY|xi

x1, · · · , xn
i.i.d.∼ FX, g ∼ G, yi = g(xi)

In words, we could either 1. directly sample a dataset D from F, or 2. we could first sample a value g(x) ∼ FY|x for each
x, then sample x1, · · · , xn ∼ FX and directly evaluate y1 = g(x1), · · · , yn = g(xn).

Therefore any bounded random variable must have identical expectation under the probability law defined by the two
sampling procedures

κ = ED∼F[T (D, h)] = Eg∼GED∼F′
g
[T (D, h)]

But this must imply there exists g such that
ED∼F′

g
[T (D, h)] ≥ κ

because a random variable must be able to take a value that is at least its expectation
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For any other divergence we can get similar results by replacing Eq.(9). For example, for total variation distance we have

dTV(Fh[x](Y′),FU) = 1 (9)

Proposition 4. For any distribution F on X × Y such that FX assigns zero measure to individual points {x ∈ X} sample
D = {(x1, y1), · · · , (xn, yn)}i.i.d.∼ F. For any deterministic forecaster h and any function T (D, h)→ {yes,no} such that

Pr
D∼F

[T (D, h) = yes] = κ > 0 ,

then there exists a distribution F′, h is not (ε, δ)-adversarial group calibrated with respect to F′ for any ε < 1/8 and
δ < 1/2, and

Pr
D∼F′

[T (D, h) = yes] ≥ κ

Proof of Proposition 4. The proof is almost identical to the proof of Proposition 1. We construct a g : X → Y such that

Pr
D∼F′

[T (D, h) = yes] ≥ κ

We can pick the subgroup S1,S2 ⊂ X defined by

S1 = {x, h[x](g(x)) ≥ 1/2},S2 = {x, h[x](g(x)) < 1/2}

Because S1 ∪ S2 = X , so at least one of S1,S2 must have probability measure at least 1/2 under FX . Without loss of
generality assume it’s S1. Then for X̃ = X | S1 we have h[X̃](g(x)) ≥ 1/2 almost surely, Fh[X̃](g(x))(r) = 0,∀r ∈
[0, 1/2], which implies

dW1(Fh[X̃](g(x)),FU) ≥ 1/8

Therefore h cannot be (1/8, 1/2)-adversarial group calibrated.

B.2. Proofs for Section 4.2

Theorem 1. If h̄ is (ε, δ)-mPAIC, then for any ε′ > ε it is (ε′, δ(1 − ε)/(ε′ − ε))-PAIC with respect to the 1-Wasserstein
distance.

Proof of Theorem 1. Recall the convention that Y is the random variable that always has the conditional distribution FY|x,
and R is uniformly distributed in [0, 1]. Denote

err(x, y) := dW1

(
Fh̄[x,R](y),FU

)
, err(x) := dW1

(
Fh̄[x,R](Y),FU

)
Suppose h̄[x, ·](y) is a monotonically non-decreasing function for all x, y, then

err(x, y) = dW1

(
Fh̄[x,R](y),FU

)
=

∫ 1

r=0

|h̄(x, r)(y)− r|dr = E
[
|h̄(x,R)(y)−R|

]
So in general for arbitrary h̄ we have

err(x, y) = dW1

(
Fh̄[x,R](y),FU

)
≤
∫ 1

r=0

|h̄(x, r)(y)− r|dr = E
[
|h̄(x,R)(y)−R|

]
(10)

In addition by Jensen’s inequality we have err(x) ≤ E[err(x,Y)] so

err(x) ≤ E
[
|h̄(x,R)(Y)−R|

]
(11)

Suppose h̄ is not (ε′, δ′)-PAIC, by definition we have

Pr[err(X) ≥ ε′] > δ′
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Define the notation

Sb := {x ∈ X ,E
[
|h̄(x,R)(Y)−R|

]
≥ ε′}

by Eq.(11) we know that whenever err(x) ≥ ε′ we have x ∈ Sb, so we can conclude

Pr[X ∈ Sb] > δ′ (12)

Whenever x ∈ Sb, for any ε < ε′, we have

ε′ ≤ E[|h̄(x,R)(Y)−R|]
≤ εPr[|h̄(x,R)(Y)−R| < ε] + Pr[|h̄(x,R)(Y)−R| ≥ ε]
= ε(1− Pr[|h̄(x,R)(Y)−R| ≥ ε]) + Pr[|h̄(x,R)(Y)−R| ≥ ε]

where the second inequality is because |h̄(x,R)(Y)−R| is bounded in [0, 1]. By simple algebra we get

Pr[|h̄(x,R)(Y)−R| ≥ ε] ≥ ε′ − ε
1− ε

(13)

We can combine Eq.(12) and Eq.(13) to get

Pr[|h̄(X,R)(Y)−R| ≥ ε′]
= Pr[|h̄(X,R)(Y)−R| ≥ ε | X ∈ Sb] Pr[X ∈ Sb] + Pr[|h̄(X,R)(Y)−R| ≥ ε | X 6∈ Sb] Pr[X 6∈ Sb]

>
ε′ − ε
1− ε

δ′

Therefore, h̄ is not (ε, ε
′−ε

1−ε δ
′)-mPAIC. To summarize, we have concluded that whenever h̄ is not (ε′, δ′)-PAIC, for any

ε < ε′, it is not (ε, ε
′−ε

1−ε δ
′)-mPAIC. This is equivalent to the statement: suppose h̄ is (ε, δ)-mPAIC, then h̄ is (ε′, δ 1−ε

ε′−ε )-
PAIC.

Proposition 2. [Concentration] Let h̄ be any (ε, δ)-mPAIC forecaster, and (x1, y1), · · · , (xn, yn)
i.i.d.∼ FXY, r1, · · · , rn

i.i.d.∼
FU, then with probability 1− γ

1

n

n∑
i=1

I(|h̄[xi, ri](yi)− ri| ≥ ε) ≤ δ +

√
− log γ

2n

Proof of Proposition 2. Consider the sequence of Bernoulli random variables bi = I(
∣∣h̄(xi, ri)(yi)− ri

∣∣ ≥ ε). Suppose
E[bi] = δ, then by Hoeffding inequality

Pr

[
1

n

∑
i

bi ≥ δ + ε

]
≤ e−2ε2n

Plugging in e−2ε2T as γ we have ε =
√
− log γ

2n

B.3. Proofs for Section 5

Theorem 2. If a forecaster is (ε, δ)-PAIC with respect to distance metricWp, then ∀δ′ ∈ [0, 1], δ′ > δ, it is (ε+ δ/δ′, δ′)-
adversarial group calibrated with respect toWp.

Proof of Theorem 2. Given a forecaster H if for some x, y we have dWp(FH[x](y),FU) < ε then by definition of the
Wasserstein distance we have ∫ 1

r=0

|FH[x](y)(r)− r|p ≤ εp

If H is (ε, δ)-mPAIC with respect toWp. Consider a partition of X into two sets: Xg where ∀x ∈ Xg we have∫
r

∣∣FH[x](y)(r)− r
∣∣p dr ≤ εp
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andXb where the above property fails. We know Pr[Xb] ≤ δ. In general for any x ∈ X , because FH[x](y) is a monotonically
increasing function of c bounded in [0, 1], we have∫

r

∣∣FH[x](y)(r)− r
∣∣p dc ≤ ∫

r

rpdr =
1

p+ 1

Another useful identity we will use is

FH[X](Y)(r) = Pr[H[X][Y] ≤ r] = Ex∼FX
[E[I(H[x][Y] ≤ r)]] = Ex∼FX

[FH[x](Y)(r)] (14)

Combining the above results we have for any X̃ = X | S

dWp(FH[X̃](Y ),FU) =

(∫ 1

r=0

|FH[X̃](Y )(r)− r|
pdr

)1/p

=

(∫ 1

r=0

∣∣Ex∼X̃ [FH[x](Y)(r)− r]
∣∣p dr)1/p

(Eq.14)

≤ Ex∼X̃

[(∫ 1

r=0

|FH[x](Y)(r)− r|pdr
)1/p

]
(Jensen)

= Ex∼X̃

[(∫ 1

r=0

|FH[x](Y)(r)− r|pdr
)1/p

| x ∈ Xg

]
Pr[X̃ ∈ Xg]+

Ex∼X̃

[(∫ 1

r=0

|FH[x](Y)(r)− r|pdr
)1/p

| x ∈ Xb

]
Pr[X̃ ∈ Xb] (Conditional Expectation)

≤ εPr[X̃ ∈ Xg] + (p+ 1)−1/p Pr[X̃ ∈ Xb]

≤ εδ
′ − δ
δ′

+ (p+ 1)−1/p δ

δ′
(ε ≤ (p+ 1)−1/p)

If we don’t care about constants too much, we can further simplify above by

ε
δ′ − δ
δ′

+ (p+ 1)−1/p δ

δ′
≤ ε+ δ/δ′

B.4. Proofs for Section 6

Theorem 3. Suppose l : X × Y ×A → R is a monotonic non-negative loss, let φH and lH be defined as in Eq.(6)

1. If H is 0-average calibrated, then ∀k > 0

Pr[l(X,Y, φH(X)) ≥ klH(X)] ≤ 2/k

2. If H is (0, 0)-PAIC, then ∀x ∈ X , k > 0

Pr[l(x,Y, φH(x)) ≥ klH(x)] ≤ 1/k

Proof of Theorem 3. Choose any x ∈ X , h ∈ H and r ∈ (0, 1). For some action a assume l(x, ·, a) is monotonically
non-decreasing. We consider the situation where y < h[x]−1(1− r), or equivalently h[x](y) < 1− r, then

lh(x) =

∫
y′∈Y

l(x, y′, a)dh[x](y′) ≥
∫
y′≥y

l(x, y′, a)dh[x](y′) ≥ l(x, y, a)

∫
y′≥y

dh[x](y′) ≥ rl(x, y, a)

because the above is true for any a ∈ A, it must also be true for the action φh(x). On the other hand, assume l(x, ·, a) is
monotonically non-increasing, then by a similar argument we get whenever h[x](y) > r we have

lh(x) ≥ rl(x, y, a)
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Consider the set Sr,Mr,M̄r ⊂ X × Y ×H, defined by

Sr = {x, y, h | lh(x) ≤ rl(x, y, a)}, Mr = {x, y, h | h[x](y) ≤ r}, M̄r = {x, y, h | h[x](y) ≥ 1− r}

The above results would imply Sr ⊂Mr ∪ M̂r. But we know that

Pr[X,Y,H ∈ Sr] ≤ Pr[X,Y,H ∈Mr ∪ M̂r] ≤ 2r

taking k = 1/r gives us the desired statement.

If H is individually calibrated, then it is also adversarial group calibrated by Theorem 2. Define a function ζ : X ×H →
{0, 1} that represents whether l is monotonically non-decreasing or non-increasing in Y . Then

Pr[X,Y,H ∈ Sr]
≤ Pr[X,Y,H ∈Mr | ζ(X,H) = 0] Pr[ζ(X,H) = 0] + Pr[X,Y,H ∈Mr | ζ(X,H) = 1] Pr[ζ(X,H) = 1]

≤ r

B.5. Proofs for Appendix

Proposition 3. ECE(H) = dW1(FH[X](Y),FU).

Proof of Proposition 3. This proposition depends on the following Lemma.

Lemma 1. Let φ : [0, 1]→ [0, 1] be a monotonic differentiable function such that φ(0) = 0 and φ(1) = 1. Let ψ(x) = x,
then for any 1 ≤ s ≤ +∞ we have∫ 1

c=0

∣∣φ−1(c)− ψ(c)
∣∣s dc =

∫ 1

r=0

|φ(r)− ψ(r)|s dr

First observe that by the monotonicity of FH[X](Y) we have

Pr[H[X](Y) ≤ c] =

∫ 1

r=0

I(FH[X](Y) ≤ c)dr = FH[X](Y)
−1(c)

We get

ECE(H) =

∫ 1

c=0

|Pr[H[X](Y) ≤ c]− c| dc =

∫ 1

c=0

∣∣FH[X](Y)
−1(c)− c

∣∣ dc
=

∫ 1

r=0

∣∣FH[X](Y)(r)− r
∣∣ dr = dW1(FH[X](Y),FU)

Finally we prove Lemma 1.

Proof of Lemma 1. Let [a, b] be an interval where φ(x) − x does not change sign, and f(a) = a, f(b) = b. Without loss
of generality, assume it is positive. Then∫ b

x=a

|φ(x)− x|sdx−
∫ b

y=a

(f−1(y)− y)sdy =

∫ b

x=a

(φ(x)− x)sdx−
∫ b

x=a

(−x+ φ(x))sf ′(x)dx

=

∫ b

x=a

(φ(x)− x)s(f ′(x)− 1)dx =
(φ(x)− x)s+1

s+ 1
|ba = 0
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Let 0 = a1 < a2 < · · · < an = 1 be a set of points where f(ai) = ai, and f does not change sign between [ai, ai+1].
Then we have ∫ 1

x=0

|φ(x)− x|sdx−
∫ 1

y=0

|f−1(y)− y|sdy

=
∑
i

(∫ ai+1

x=ai

|φ(x)− x|sdx−
∫ ai+1

y=ai

|f−1(y)− y|sdy
)

= 0
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