Error-Bounded Correction of Noisy Labels — Supplementary Material —

Songzhu Zheng¹ Pengxiang Wu² Aman Goswami³ Mayank Goswami⁴ Dimitris Metaxas² Chao Chen⁵

1. Additional (Synthetic) Experiment for Validation of the Bound

In Section 2.3 of the submitted manuscript, we used the output of deep neural networks f as an approximation of η on the CIFAR10 dataset. We provided empirical estimates of the constants C and λ in the Tsybakov condition for η , as well as estimates of the probability $\Pr[\tilde{y} = h^*(x), f_{\tilde{y}}(x) < \Delta]$.

In this section, we provide additional experiments on a *synthetic data set* generated using a mixture-of-Gaussians distribution. In this ideal setting, we know η , τ_{01} , τ_{10} , $\tilde{\eta}$ exactly. We can a) use $\tilde{\eta}$ as the classifier and b) evaluate the constants in Tsybakov condition for η in order to evaluate the upper bound in Theorem 1.

Estimation of Tsybakov condition constants. We let $\Pr(\boldsymbol{x})$ be a mixture of Gaussian distribution in a 10 dimensional feature space, $\boldsymbol{x} \sim \frac{1}{2}\mathcal{N}(0, I_{10\times10}) + \frac{1}{2}\mathcal{N}(1, I_{10\times10})$. We sample from the two components with equal probability. If \boldsymbol{x} comes from component $\mathcal{N}(0, I_{10\times10})$, it is given label 0. Otherwise, if \boldsymbol{x} comes from component $\mathcal{N}(1, I_{10\times10})$, it is given label 1. The true conditional distribution is $\eta(\boldsymbol{x}) = \frac{\exp\{-\frac{1}{2}||\boldsymbol{x}-1||^2\}}{\exp\{-\frac{1}{2}||\boldsymbol{x}-1||^2\}}$.

Following the idea of our experiment on CIFAR10 in the manuscript (Section 2.4), we estimate $\Pr\left[|\eta(\boldsymbol{x}) - \frac{1}{2}| \le t\right]$ for values of t sampled between 0 and 0.9 using the empirical frequency $p_t = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{|\eta(\boldsymbol{x})-1/2| \le t\}}(\boldsymbol{x})$. Note that if the Tsybakov condition is tight, $\log(p_t)$ approximates $\log(Ct^{\lambda})$. The samples for $\log(t)$ and correspondingly, $\log(Ct^{\lambda}) \approx \log(p_t)$ are drawn as blue dots in Figure 1(a). The ordinary least square (OLS) linear regression results is drawn as a red line. We found the estimated values of C and λ to be 0.58 and 1.27 respectively. The estimation is high is confidence: the determinant coefficient R^2 equals 0.904, and we have a p-value which is less than 10^{-4} .

Estimation of the error bound, and its tightness. We also introduce label noise using predefined transition probability τ_{01} and τ_{10} . We can estimate C and λ as mentioned above, and know $\tau_{01}, \tau_{10}, \eta(x)$, and thus, $\tilde{\eta}(x)$. Therefore we can evaluate the error bound in Theorem 1. We plot the error bound as a function of ϵ in Figures 1(b) and (c) (drawn green curves).

Finally, we assume a perfect noisy classifier $f = \tilde{\eta}$. In other words, $\epsilon = 0$. We empirically show that when $f(\boldsymbol{x}) < \Delta$, the probability of \tilde{y} being correct (i.e., $\tilde{y} = h^*(\boldsymbol{x})$) is zero (blue lines in Figures 1(b) and (c)).

Validation of the label-correction algorithm. To the same synthetic dataset, we also apply our LRT-Correction algorithm and validate the bound in Corollary 1. Since we know $\tilde{\eta}(\boldsymbol{x})$, τ_{01} and τ_{10} , we calculate the correction error bound of Corollary 1 in closed form. We draw the bound w.r.t. the error ϵ in orange curves in Figure 2. Finally, we run our label correction algorithm using the perfect noisy classifier $f = \tilde{\eta}$ and validate that the corrected labels are very close to clean (the success rate is limited by the asymmetry level of the noise pattern). See blue lines in Figure 2.

¹Department of Applied Mathematics and Statistics, Stony Brook University, NY, USA ²Department of Computer Science, Rutgers University, NJ, USA ³Bain & Company, Bangalore, India. ⁴Department of Computer Science, City University of New York, NY, USA ⁵Department of Biomedical Informatics, Stony Brook University, NY, USA. Correspondence to: Songzhu Zheng <zheng.songzhu@stonybrook.edu>.

Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by the author(s).

Figure 1. Synthetic experiment using Mixture of Gaussian at noise level 20%. (a): Check of Tsybakov condition using linear regression, where y-axis is the proportion of data points at distance t from decision boundary. (b): Proportion of labels that are not correct (not consistent with Bayes optimal decision rule) and the proposed upper bound. (c): Same as (b) but labels are corrupted with aysmmetric noise. (d): t-SNE of the clean data. (e): t-SNE of the data with symmetric noise. (f): t-SNE of the data with asymmetric noise.

Figure 2. Performance of LRT algorithm given $\tilde{\eta}(\boldsymbol{x})$ v.s the proposed upper bound. (a): Symmetric noise ($\tau_{10} = \tau_{01} = 0.3$). (b): Asymmetric noise ($\tau_{10} = 0.2, \tau_{01} = 0.3$). (c): Asymmetric noise ($\tau_{10} = 0.1, \tau_{01} = 0.3$). (d): Asymmetric noise ($\tau_{10} = 0.3, \tau_{01} = 0$)

Figure 3. Label Correction Result Using LRT-Correct. (a): Clean data as it in Fig 1d. (b): Labels after correction for data in Fig 1e. (c): Labels after correction for data in Fig 1f.

2. Proof of Theorem 2

Define $m_{\boldsymbol{x}} := \underset{i}{\operatorname{arg max}} f_i(\boldsymbol{x}), u_{\boldsymbol{x}} := \underset{i}{\operatorname{arg max}} \eta_i(\boldsymbol{x}) \text{ and } s_{\boldsymbol{x}} := \underset{i \neq u_{\boldsymbol{x}}}{\operatorname{arg max}} \eta_i(\boldsymbol{x}).$ Let $[Nc] := \{1, 2, \cdots, N_c\}$. Finally, define $\epsilon_i(\boldsymbol{x}) := |f_i(\boldsymbol{x}) - \widetilde{\eta}_i(\boldsymbol{x})|$ and $\epsilon := \underset{\boldsymbol{x}, i}{\operatorname{max}} \epsilon_i(\boldsymbol{x}).$

For multi-class scenario, we know $\forall i \in [N_c]$, $\tilde{\eta}_i(\boldsymbol{x}) = \sum_{j \in [N_c]} \tau_{ji} \eta_j(\boldsymbol{x})$. We also restate the multi-class Tsybakov condition here:

Assumption 1 (Multi-class Tsybakov Condition). $\exists C, \lambda > 0$ and $t_0 \in (0, 1]$ such that for all $t \leq t_0$,

$$\Pr\left[\left|\eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) - \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})\right| \le t\right] \le Ct^{\lambda}$$

Theorem 2. Assume $\eta(\boldsymbol{x})$ fulfills multi-class Tsybakov condition for constant $C, \lambda > 0$ and $t_0 \in (0, 1]$. Assume that $\epsilon \leq t_0 \min_i \tau_{i,i}$. For $\Delta = \min \left[1, \min_{\boldsymbol{x}} [\tau_{\widetilde{y}, \widetilde{y}} \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \sum_{j \neq \widetilde{y}} \tau_{j, \widetilde{y}} \eta_j(\boldsymbol{x})] \right]$: $\Pr_{(\boldsymbol{x}, \boldsymbol{y}) \sim D} \left[\widetilde{\boldsymbol{y}} = h^*(\boldsymbol{x}), f_{\widetilde{y}}(\boldsymbol{x}) < \Delta \right] \leq C \left[O(\epsilon) \right]^{\lambda}$

Proof.

$$\Pr\left[\widetilde{y} = h^{*}(\boldsymbol{x}), f_{\widetilde{y}}(\boldsymbol{x}) < \Delta\right] = \Pr\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \ge \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{\widetilde{y}}(\boldsymbol{x}) < \Delta\right] \\
\leq \Pr\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \ge \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \widetilde{\eta_{\widetilde{y}}}(\boldsymbol{x}) < \Delta + \epsilon_{\widetilde{y}}\right] \\
= \Pr\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \ge \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \sum_{j \in [N_{c}]} \tau_{j,\widetilde{y}}\eta_{\widetilde{y}}(\boldsymbol{x}) < \Delta + \epsilon\right] \\
= \Pr\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \ge \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \eta_{\widetilde{y}}(\boldsymbol{x}) < \frac{\Delta - \sum_{j \neq \widetilde{y}} \tau_{j,\widetilde{y}}\eta_{j}(\boldsymbol{x}) + \epsilon}{\tau_{\widetilde{y},\widetilde{y}}}\right] \\
= \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \le \eta_{\widetilde{y}}(\boldsymbol{x}) < \frac{\Delta - \sum_{j \neq \widetilde{y}} \tau_{j,\widetilde{y}}\eta_{j}(\boldsymbol{x})}{\tau_{\widetilde{y},\widetilde{y}}} + \frac{\epsilon}{\tau_{\widetilde{y},\widetilde{y}}}\right]$$
(1)

Remember that $\Delta = \min \left[1, \min_{\boldsymbol{x}}[\tau_{\widetilde{y},\widetilde{y}}\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \sum_{j\neq\widetilde{y}}\tau_{j,\widetilde{y}}\eta_{j}(\boldsymbol{x})]\right] \leq \tau_{\widetilde{y},\widetilde{y}}\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \sum_{j\neq\widetilde{y}}\tau_{j,\widetilde{y}}\eta_{j}(\boldsymbol{x})$. Then if we substitute Δ in (1) with $\tau_{\widetilde{y},\widetilde{y}}\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \sum_{j\neq\widetilde{y}}\tau_{j,\widetilde{y}}\eta_{j}(\boldsymbol{x})$, continuing the derivation of (1), we will end up with:

$$\Pr\left[\widetilde{y} = h^{*}(\boldsymbol{x}), f_{\widetilde{y}}(\boldsymbol{x}) < \Delta\right]$$

$$\leq \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\widetilde{y}}(\boldsymbol{x}) < \frac{\Delta - \sum_{j \neq \widetilde{y}} \tau_{j,\widetilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\widetilde{y},\widetilde{y}}} + \frac{\epsilon}{\tau_{\widetilde{y},\widetilde{y}}}\right]$$

$$\leq \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\widetilde{y}}(\boldsymbol{x}) < \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \frac{\epsilon}{\tau_{\widetilde{y},\widetilde{y}}}\right] \leq C\left(\frac{\epsilon}{\tau_{\widetilde{y},\widetilde{y}}}\right)^{\lambda}$$

Notice that Tsybakov condition holds here because $\epsilon \leq t_0 \min_i \tau_{i,i}$, which implies that $\frac{\epsilon}{\tau_{\tilde{y},\tilde{y}}} \leq t_0$. This complete the proof for this case.

3. Proof of Theorem 3

Lemma 1. (Algorithm Multiclass-Theorem Guarantee). Assume $\eta(\mathbf{x})$ fulfills multi-class Tsybakov condition for constant C > 0, $\lambda > 0$ and $t_0 \in (0, 1]$. Assume that $\epsilon \le t_0 \min_i \tau_{ii}$. Let \tilde{y}_{new} denote the output of the LRT-Correction with \mathbf{x} , $\tilde{y}_{\mathbf{x}}$, f, and the given δ , then:

Proof. First look at cases where \tilde{y} is rejected.

$$\Pr\left[\widetilde{y}_{new} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text{ is rejected}\right]$$

$$= \Pr\left[\widetilde{y}_{new} \neq h^{*}(\boldsymbol{x}), \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} < \delta\right]$$

$$= \Pr\left[\widetilde{y}_{new} = m_{\boldsymbol{x}} \neq h^{*}(\boldsymbol{x}) = \widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} < \delta\right] + \Pr\left[\widetilde{y}_{new} = m_{\boldsymbol{x}} \neq h^{*}(\boldsymbol{x}) = u_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} < \delta\right]$$

$$\leq \Pr\left[h^{*}(\boldsymbol{x}) = \widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} < \delta\right] + \Pr\left[\widetilde{y}_{new} = m_{\boldsymbol{x}} \neq h^{*}(\boldsymbol{x}) = u_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} < \delta\right]$$

$$(2)$$

For the first term in (2), we have:

$$\Pr\left[h^{*}(\boldsymbol{x}) = \tilde{y}, \frac{f_{\tilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} < \delta\right] = \Pr\left[h^{*}(\boldsymbol{x}) = \tilde{y}, f_{\tilde{y}}(\boldsymbol{x}) < \delta f_{m_{\boldsymbol{x}}}(\boldsymbol{x})\right]$$

$$\leq \Pr\left[\eta_{\tilde{y}}(\boldsymbol{x}) \ge \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \tilde{\eta}_{\tilde{y}}(\boldsymbol{x}) - \epsilon < \delta f_{m_{\boldsymbol{x}}}(\boldsymbol{x})\right]$$

$$\leq \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \le \eta_{\tilde{y}}(\boldsymbol{x}) < \frac{\delta f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) - \sum\limits_{j \neq \tilde{y}} \tau_{j,\tilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\tilde{y},\tilde{y}}} + \frac{\epsilon}{\tau_{\tilde{y},\tilde{y}}}\right]$$
(3)

We substitute δ in (3) with $\frac{\tau_{\widetilde{y},\widetilde{y}}\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \sum\limits_{j\neq\widetilde{y}}\tau_{j,\widetilde{y}}\eta_{j}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})}$ and continue the calculation:

$$\Pr\left[h^{*}(\boldsymbol{x}) = \widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} < \delta\right]$$

$$\leq \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\widetilde{y}}(\boldsymbol{x}) < \frac{\delta f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) - \sum_{j \neq \widetilde{y}} \tau_{j,\widetilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\widetilde{y},\widetilde{y}}} + \frac{\epsilon}{\tau_{\widetilde{y},\widetilde{y}}}\right]$$

$$\leq \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\widetilde{y}}(\boldsymbol{x}) \leq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \frac{\epsilon}{\tau_{\widetilde{y},\widetilde{y}}}\right]$$

$$\leq C\left(\frac{\epsilon}{\tau_{\widetilde{y},\widetilde{y}}}\right)^{\lambda}$$
(4)

In (4), the Tsybakov condition holds here because $\epsilon \leq t_0 \min_i \tau_{ii}$, which implies $\frac{\epsilon}{\tau_{\tilde{y},\tilde{y}}} \leq t_0$. For the second term in (2), we have:

$$\Pr\left[\widetilde{y}_{new} = m_{\boldsymbol{x}} \neq h^*(\boldsymbol{x}) = u_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} < \delta\right] \le \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]$$
(5)

for which our algorithm currently doesn't have a good way to deal with and we will leave it as future research problem. Finally, summarize every piece and we finished the proof for cases where \tilde{y} is rejected:

$$\begin{aligned} &\Pr\left[\widetilde{y}_{new} \neq h^*(\boldsymbol{x}), \widetilde{y} \text{ is rejected}\right] \leq (2) \\ &\leq (4) + (5) \\ &\leq C\left[\frac{\epsilon}{\tau_{u_{\boldsymbol{x}}, u_{\boldsymbol{x}}}}\right]^{\lambda} + \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \\ &= C\left[O(\epsilon)\right]^{\lambda} + \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \end{aligned}$$

For cases where \widetilde{y} is accepted:

$$\Pr\left[\widetilde{y}_{new} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text{ is accepted}\right] = \Pr\left[\widetilde{y}_{new} \neq h^{*}(\boldsymbol{x}), \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \geq \delta\right]$$
$$= \Pr\left[\widetilde{y}_{new} = \widetilde{y} \neq h^{*}(\boldsymbol{x}) = m_{\boldsymbol{x}}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \geq \delta\right] + \Pr\left[\widetilde{y}_{new} = \widetilde{y} \neq h^{*}(\boldsymbol{x}), m_{\boldsymbol{x}} \neq h^{*}(\boldsymbol{x}), \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \geq \delta\right]$$
$$= \Pr\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq f_{\widetilde{y}}(\boldsymbol{x})/\delta\right] + \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]$$
(6)

For the first term in (6), we have:

$$\Pr\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \ge \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \le f_{\widetilde{y}}(\boldsymbol{x})/\delta\right] \le \Pr\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \ge \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \widetilde{\eta}_{m_{\boldsymbol{x}}}(\boldsymbol{x}) - \epsilon \le f_{\widetilde{y}}(\boldsymbol{x})/\delta\right]$$
$$= \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \le \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \le \frac{f_{\widetilde{y}}(\boldsymbol{x})/\delta - \sum\limits_{j \neq m_{\boldsymbol{x}}} \tau_{j,m_{\boldsymbol{x}}}\eta_{j}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}}\right]$$
(7)

Firstly, observe that if $\delta > 1$, then $\Pr\left[\widetilde{y}_{new} = \widetilde{y} \neq h^*(\boldsymbol{x}), \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \ge \delta\right] = 0$ due to the definition of $m_{\boldsymbol{x}}$. Then notice that $\delta = \max_{\boldsymbol{x}} \frac{f_{\widetilde{y}}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \sum_{j \neq m_{\boldsymbol{x}}} \tau_{j,m_{\boldsymbol{x}}}\eta_{j}(\boldsymbol{x})} \ge \frac{f_{\widetilde{y}}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \sum_{j \neq m_{\boldsymbol{x}}} \tau_{j,m_{\boldsymbol{x}}}\eta_{j}(\boldsymbol{x})}$. If we substitute δ in (7) with $\frac{f_{\tilde{y}}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \sum\limits_{j \neq m_{\boldsymbol{x}}} \tau_{j,m_{\boldsymbol{x}}}\eta_{j}(\boldsymbol{x})} \text{ and continuing the calculation, we will have:}$

$$\Pr\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq f_{\tilde{\boldsymbol{y}}}(\boldsymbol{x})/\delta\right]$$

$$\leq \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \frac{f_{\tilde{\boldsymbol{y}}}(\boldsymbol{x})/\delta - \sum_{j \neq m_{\boldsymbol{x}}} \tau_{j,m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}}\right]$$

$$\leq \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}}\right]$$

$$\leq C\left[\frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}}\right]^{\lambda}$$
(8)

For the second term in (6), our algorithm cannot deal with it properly. We will leave it as the future research problem. Now we summarize all pieces and we get:

$$\Pr\left[\widetilde{y}_{new} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text{ is accepted}\right] = (6)$$

$$\leq (8) + \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]$$

$$\leq C\left[\frac{\epsilon}{\tau_{u_{\boldsymbol{x}}, u_{\boldsymbol{x}}}}\right]^{\lambda} + \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]$$

which compete the proof for cases that are accepted.

We give following several facts based on our theorem:

1. For binary case, if we set $\delta = \frac{1 - |\tau_{10} - \tau_{01}|}{1 + |\tau_{10} - \tau_{01}|}$ and further assume $\epsilon \le t_0(1 - \tau_{10} - \tau_{01}) - \frac{|\tau_{10} - \tau_{01}|}{2}$, we have:

$$\Pr_{(\boldsymbol{x},y)\sim D} \left[\widetilde{y}_{new} \neq h^*(\boldsymbol{x}) \right] \le C \left[\left| \frac{\tau_{10} - \tau_{01}}{2(1 - \tau_{10} - \tau_{01})} \right| + \frac{\epsilon}{1 - \tau_{10} - \tau_{01}} \right]^{\lambda}$$

Proof. For binary case, we have:

$$\Pr_{(\boldsymbol{x},\boldsymbol{y})\sim D} [\widetilde{y}_{new} \neq h^*(\boldsymbol{x})] = \Pr_{(\boldsymbol{x},\boldsymbol{y})\sim D} [\widetilde{y}_{new} \neq h^*(\boldsymbol{x}), \widetilde{\boldsymbol{y}} \text{ is rejected}] + \Pr_{(\boldsymbol{x},\boldsymbol{y})\sim D} [\widetilde{y}_{new} \neq h^*(\boldsymbol{x}), \widetilde{\boldsymbol{y}} \text{ is accepted}]$$

$$= \Pr\left[\eta_{\widetilde{y}}(\boldsymbol{x}) > \frac{1}{2}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} < \delta\right] + \Pr\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \leq \frac{1}{2}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \geq \delta\right]$$

$$\leq \Pr\left[\eta_{\widetilde{y}}(\boldsymbol{x}) > \frac{1}{2}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{1 - f_{\widetilde{y}}(\boldsymbol{x})} < \delta\right] + \Pr\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \leq \frac{1}{2}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{1 - f_{\widetilde{y}}(\boldsymbol{x})} \geq \delta\right]$$

$$\leq \Pr\left[\eta_{\widetilde{y}}(\boldsymbol{x}) > \frac{1}{2}, \tilde{\eta}_{\widetilde{y}}(\boldsymbol{x}) < \frac{\delta}{1 + \delta} + \epsilon\right] + \Pr\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \leq \frac{1}{2}, \tilde{\eta}_{\widetilde{y}}(\boldsymbol{x}) \geq \frac{\delta}{1 + \delta} - \epsilon\right]$$

$$= \Pr\left[\frac{1}{2} < \eta_{\widetilde{y}}(\boldsymbol{x}) < \frac{\frac{\delta}{1 + \delta} - \tau_{1 - \widetilde{y}, \widetilde{y}}}{1 - \tau_{10} - \tau_{01}} + \frac{\epsilon}{1 - \tau_{10} - \tau_{01}}\right] + \Pr\left[\frac{\frac{\delta}{1 + \delta} - \tau_{1 - \widetilde{y}, \widetilde{y}}}{1 - \tau_{10} - \tau_{01}} \leq \eta_{\widetilde{y}}(\boldsymbol{x}) \leq \frac{1}{2}\right] (9)$$

Observe that $\delta = \frac{1-|\tau_{10}-\tau_{01}|}{1+|\tau_{10}-\tau_{01}|} \leq \frac{1-\tau_{\tilde{y},1-\tilde{y}}+\tau_{1-\tilde{y},\tilde{y}}}{1+\tau_{\tilde{y},1-\tilde{y}}-\tau_{1-\tilde{y},\tilde{y}}}$. We also have $\frac{\delta}{1+\delta} = \frac{1-|\tau_{10}-\tau_{01}|}{2} \leq \frac{1}{2}$. Now we substitute $\delta = \frac{1-\tau_{\tilde{y},1-\tilde{y}}+\tau_{1-\tilde{y},\tilde{y}}}{1+\tau_{\tilde{y},1-\tilde{y}}-\tau_{1-\tilde{y},\tilde{y}}}$ in the first term of (9) and substitute $\frac{\delta}{1+\delta}$ with $\frac{1}{2}$ in the second term of (9), by algebra we know

that :

$$\begin{aligned} \Pr_{(\boldsymbol{x},y)\sim D} \left[\widetilde{y}_{new} \neq h^{*}(\boldsymbol{x}) \right] &= \Pr_{(\boldsymbol{x},y)\sim D} \left[\widetilde{y}_{new} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text{ is rejected} \right] + \Pr_{(\boldsymbol{x},y)\sim D} \left[\widetilde{y}_{new} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text{ is accepted} \right] \\ &\leq \Pr\left[\frac{1}{2} < \eta_{\widetilde{y}}(\boldsymbol{x}) < \frac{1}{2} + \frac{\epsilon}{1 - \tau_{10} - \tau_{01}} \right] + \Pr\left[\frac{1/2 - \max(\tau_{10}, \tau_{01})}{1 - \tau_{10} - \tau_{01}} - \frac{\epsilon}{1 - \tau_{10} - \tau_{01}} \le \eta_{\widetilde{y}}(\boldsymbol{x}) \le \frac{1}{2} \right] \\ &\leq C\left[\left| \frac{\tau_{10} - \tau_{01}}{2(1 - \tau_{10} - \tau_{01})} \right| + \frac{\epsilon}{1 - \tau_{10} - \tau_{01}} \right]^{\lambda} \end{aligned}$$

Tsybakov assumption holds because $\frac{\epsilon}{1-\tau_{10}-\tau_{01}} + \frac{|\tau_{10}-\tau_{01}|}{2(1-\tau_{10}-\tau_{01})} \le \frac{t_0(1-\tau_{10}-\tau_{01}) - \frac{|\tau_{10}-\tau_{01}|}{2}}{1-\tau_{10}-\tau_{01}} + \frac{|\tau_{10}-\tau_{01}|}{2(1-\tau_{10}-\tau_{01})} \le t_0.$

- 2. For symmetric noise $\tau_{ij} = \tau_{ji} = \tau, \forall i, j \in [N_c]$ and further assume (besides the assumption we made in Lemma 1) $\epsilon \leq \frac{1}{2} \min_{\boldsymbol{x}} [\tilde{\eta}_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \tilde{\eta}_{s_{\boldsymbol{x}}}(\boldsymbol{x})]$, we have:
 - (a) Sensitivity Optimized Critical Value. Let $\delta = \min_{\boldsymbol{x}} \left[\frac{\tau_{\widetilde{y},\widetilde{y}}\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \sum_{j \neq \widetilde{y}} \tau_{j,\widetilde{y}}\eta_{j}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \right]$ then : $\Pr_{(\boldsymbol{x},\boldsymbol{y})\sim D} \left[\widetilde{y}_{new} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text{ is rejected} \right] \leq C \left[O(\epsilon) \right]^{\lambda}$

(b) Specificity Optimized Critical Value. Let $\delta = \max_{\boldsymbol{x}} \left[\frac{f_{\widetilde{y}}(\boldsymbol{x})}{(\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}} - \tau_{\widetilde{y},m_{\boldsymbol{x}}})\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \tau_{\widetilde{y},m_{\boldsymbol{x}}}} \right]$ then : $\Pr_{(\boldsymbol{x},\boldsymbol{y})\sim D} \left[\widetilde{y}_{new} \neq h^*(\boldsymbol{x}), \widetilde{y} \text{ is accepted} \right] \leq C \left[O(\epsilon) \right]^{\lambda}$

Proof. Observe that under symmetric noise scenario, $\forall i \in [N_c]$, $\eta_{u_x}(x) \ge \eta_i(x)$ will implies that $\tilde{\eta}_{u_x}(x) \ge \tilde{\eta}_i(x)$, i.e. $h^*(x) = \tilde{h}^*(x)$. To show this:

$$\begin{aligned} \eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{i}(\boldsymbol{x}) \\ \iff \left[1 - N_{c}\tau\right]\eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \left[1 - N_{c}\tau\right]\eta_{u_{i}}(\boldsymbol{x}) \\ \iff \left[1 - (N_{c} - 1)\tau\right]\eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) - \tau\eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \left[1 - (N_{c} - 1)\tau\right]\eta_{i}(\boldsymbol{x}) - \tau\eta_{i}(\boldsymbol{x}) \\ \iff \left[1 - (N_{c} - 1)\tau\right]\eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) + \tau\eta_{i}(\boldsymbol{x}) \geq \left[1 - (N_{c} - 1)\tau\right]\eta_{i}(\boldsymbol{x}) + \tau\eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \\ \iff \left[1 - (N_{c} - 1)\tau\right]\eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) + \tau\sum_{j\neq u_{\boldsymbol{x}}, j\neq i} \eta_{j}(\boldsymbol{x}) \geq \left[1 - (N_{c} - 1)\tau\right]\eta_{i}(\boldsymbol{x}) + \tau\eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) + \tau\sum_{j\neq u_{\boldsymbol{x}}, j\neq i} \eta_{j}(\boldsymbol{x}) \\ \iff \left[1 - (N_{c} - 1)\tau\right]\eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) + \tau\sum_{j\neq u_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x}) \geq \left[1 - (N_{c} - 1)\tau\right]\eta_{i}(\boldsymbol{x}) + \tau\sum_{j\neq i} \eta_{j}(\boldsymbol{x}) \\ \iff \left[1 - (N_{c} - 1)\tau\right]\eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) + \tau\sum_{j\neq u_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x}) \geq \left[1 - (N_{c} - 1)\tau\right]\eta_{i}(\boldsymbol{x}) + \tau\sum_{j\neq i} \eta_{j}(\boldsymbol{x}) \\ \iff \sum_{j\in[N_{c}]} \tau_{j,u_{\boldsymbol{x}}}\eta_{j}(\boldsymbol{x}) \geq \sum_{j\in[N_{c}]} \tau_{ji}\eta_{i}(\boldsymbol{x}) \\ \iff \widetilde{\eta}_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \widetilde{\eta}_{i}(\boldsymbol{x}) \end{aligned}$$

Since $\tilde{\eta}_{u_x}(x) \geq \tilde{\eta}_{s_x}(x) + 2\epsilon$, then $\tilde{\eta}_{u_x}(x) - \epsilon \geq \tilde{\eta}_i(x) + \epsilon$ and thus $f_{u_x} \geq f_i(x) \ \forall i \in [N_c]$, which implies $f_{m_x}(x) = f_{u_x}(x)$. As a result, second term in (2) and second term in (6) will be 0.

Theorem 3. Assume η and f satisfy the same conditions as Lemma 1. Also assume $\xi < \delta$ and further assume that $\epsilon \leq \min\left(\frac{t_0\delta^2\min\tau_{ii}-\xi^2-\xi}{\delta^2}, (t_0-\xi)\min_i\tau_{ii}\right)$. Let \tilde{y}_{new} be the output of the LRT-Correction with $(\boldsymbol{x}, \tilde{y})$, f, and the approximate $\hat{\delta}$. Then:

1. Sensitivity Optimized Critical Value. Let $\delta = \min_{\boldsymbol{x}} \left[\frac{\tau_{\widetilde{y}, \widetilde{y}} \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \sum\limits_{j \neq \widetilde{y}} \tau_{j, \widetilde{y}} \eta_{j}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \right]$ then : $\Pr_{(\boldsymbol{x}, \boldsymbol{y}) \sim D} [\widetilde{y}_{new} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text{ is rejected}] \leq C \left[O(\max(\epsilon, \xi)) \right]^{\lambda} + \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y} \right]$ 2. Specificity Optimized Critical Value. Let $\delta = \max_{\boldsymbol{x}} \frac{f_{\widetilde{y}}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \sum_{j \neq m_{\boldsymbol{x}}} \tau_{j,m_{\boldsymbol{x}}}\eta_{j}(\boldsymbol{x})}$ then :

$$\Pr_{(x,y)\sim D}\left[\widetilde{y}_{new} \neq h^*(\boldsymbol{x}), \widetilde{y} \text{ is accepted}\right] \leq C\left[O(\max(\epsilon,\xi))\right]^{\lambda} + \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]$$

Proof. The proof will be similar to the proof of Lemma 1, but we need to adjust the error introduced by picking $\hat{\delta}$. Recall that ξ and ϵ are both less than one.

If we pick $\hat{\delta}$ instead of δ , then for (3) in Lemma 1, we have:

$$\Pr\left[h^{*}(\boldsymbol{x}) = \tilde{y}, \frac{f_{\tilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} < \hat{\delta}\right] = \Pr\left[h^{*}(\boldsymbol{x}) = \tilde{y}, f_{\tilde{y}}(\boldsymbol{x}) < \hat{\delta}f_{m_{\boldsymbol{x}}}(\boldsymbol{x})\right]$$

$$\leq \Pr\left[\eta_{\tilde{y}}(\boldsymbol{x}) \ge \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \tilde{\eta}_{\tilde{y}}(\boldsymbol{x}) - \epsilon < \hat{\delta}f_{m_{\boldsymbol{x}}}(\boldsymbol{x})\right]$$

$$\leq \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \le \eta_{\tilde{y}}(\boldsymbol{x}) < \frac{\hat{\delta}f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) - \sum_{j \neq \tilde{y}} \tau_{j,\tilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\tilde{y},\tilde{y}}} + \frac{\epsilon}{\tau_{\tilde{y},\tilde{y}}}\right]$$

$$\leq \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \le \eta_{\tilde{y}}(\boldsymbol{x}) < \frac{(\delta + \xi)f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) - \sum_{j \neq \tilde{y}} \tau_{j,\tilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\tilde{y},\tilde{y}}} + \frac{\epsilon}{\tau_{\tilde{y},\tilde{y}}}\right]$$

$$\leq \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \le \eta_{\tilde{y}}(\boldsymbol{x}) < \frac{\delta f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) - \sum_{j \neq \tilde{y}} \tau_{j,\tilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\tilde{y},\tilde{y}}} + \frac{\epsilon + \xi}{\tau_{\tilde{y},\tilde{y}}}\right]$$

$$\leq C\left[\frac{\epsilon + \xi}{\tau_{\tilde{y},\tilde{y}}}\right]^{\lambda}$$
(10)

The same upper bound holds for (5) with the same reason. Then:

$$\begin{aligned} &\Pr\left[\widetilde{y}_{new} \neq h^*(\boldsymbol{x}), \widetilde{y} \text{ is rejected}\right] \leq (10) + \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \\ &= C\left[O(\max(\epsilon, \xi))\right]^{\lambda} + \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \end{aligned}$$

We next analyze (7) in Lemma 1:

$$\begin{aligned} &\Pr\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq f_{\widetilde{y}}(\boldsymbol{x})/\hat{\delta}\right] \leq \Pr\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \widetilde{\eta}_{m_{\boldsymbol{x}}}(\boldsymbol{x}) - \epsilon \leq f_{\widetilde{y}}(\boldsymbol{x})/\hat{\delta}\right] \\ &= \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \frac{f_{\widetilde{y}}(\boldsymbol{x})/\hat{\delta} - \sum\limits_{j \neq m_{\boldsymbol{x}}} \tau_{j,m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}}\right] \\ &\leq \Pr\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \frac{f_{\widetilde{y}}(\boldsymbol{x})/(\delta - \xi) - \sum\limits_{j \neq m_{\boldsymbol{x}}} \tau_{j,m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}}\right] \\ &= \Pr\left[0 < \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) - \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) < \frac{f_{\widetilde{y}}(\boldsymbol{x})/\delta - \sum\limits_{j \neq m_{\boldsymbol{x}}} \tau_{j,m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} - \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\xi f_{\widetilde{y}}(\boldsymbol{x})}{\delta(\delta - \xi)}}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}}\right] \end{aligned}$$

Observe that $\frac{\xi}{\delta(\delta-\xi)} = \frac{\delta}{(\delta-\xi)}\frac{\xi}{\delta^2} = [1+O(\xi)]\frac{\xi}{\delta^2}$, where second equality comes from Taylor expansion. Then we substitute the δ as what we did in Lemma 1 and continue the calculation:

$$\Pr\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq f_{\widetilde{y}}(\boldsymbol{x})/\hat{\delta}\right]$$

$$\leq \Pr\left[0 < \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) - \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) < \frac{f_{\widetilde{y}}(\boldsymbol{x})/\delta - \sum\limits_{j \neq m_{\boldsymbol{x}}} \tau_{j,m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} - \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) + \frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\xi f_{\widetilde{y}}(\boldsymbol{x})}{\delta(\delta - \xi)}}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}}\right]$$

$$\leq \Pr\left[0 \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) - \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\xi f_{\widetilde{y}}(\boldsymbol{x})}{\delta^{2}\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\xi O(\xi) f_{\widetilde{y}}(\boldsymbol{x})}{\delta^{2}\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}}\right]$$

$$\leq \Pr\left[0 \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) - \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\xi}{\delta^{2}\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\xi^{2}}{\delta^{2}\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}}\right]$$

$$\leq C\left[\frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\xi}{\delta^{2}\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} - \frac{\xi^{2}}{\delta^{2}\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}}\right]^{\lambda}$$
(11)

Here Tsybakove condition hold, because $\frac{\epsilon}{\tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\xi}{\delta^2 \tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\xi^2}{\delta^2 \tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} \leq \frac{t_0 \delta^2 \min_i \tau_{ii} - \xi^2 - \xi}{\delta^2 \tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} + \frac{\xi}{\delta^2 \tau_{m_{\boldsymbol{x}},m_{\boldsymbol{x}}}} \leq t_0.$ As a result:

$$\begin{aligned} &\Pr\left[\widetilde{y}_{new} \neq h^*(\boldsymbol{x}), \widetilde{y} \text{ is accepted}\right] \\ &\leq (11) + \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \\ &\leq C\left[O(\max(\epsilon, \xi))\right]^{\lambda} + \Pr\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \end{aligned}$$

which compete the proof for cases that are accepted.

Other terms will not be affected by the choice of δ . By now we completes the proof.