Error-Bounded Correction of Noisy Labels - Supplementary Material -

Songzhu Zheng ${ }^{1}$ Pengxiang Wu ${ }^{2}$ Aman Goswami ${ }^{3}$ Mayank Goswami ${ }^{4}$ Dimitris Metaxas ${ }^{2}$ Chao Chen ${ }^{5}$

1. Additional (Synthetic) Experiment for Validation of the Bound

In Section 2.3 of the submitted manuscript, we used the output of deep neural networks f as an approximation of η on the CIFAR10 dataset. We provided empirical estimates of the constants C and λ in the Tsybakov condition for η, as well as estimates of the probability $\operatorname{Pr}\left[\widetilde{y}=h^{*}(\boldsymbol{x}), f_{\widetilde{y}}(\boldsymbol{x})<\Delta\right]$.

In this section, we provide additional experiments on a synthetic data set generated using a mixture-of-Gaussians distribution. In this ideal setting, we know $\eta, \tau_{01}, \tau_{10}, \widetilde{\eta}$ exactly. We can a) use $\widetilde{\eta}$ as the classifier and b) evaluate the constants in Tsybakov condition for η in order to evaluate the upper bound in Theorem 1.

Estimation of Tsybakov condition constants. We let $\operatorname{Pr}(\boldsymbol{x})$ be a mixture of Gaussian distribution in a 10 dimensional feature space, $\boldsymbol{x} \sim \frac{1}{2} \mathcal{N}\left(0, I_{10 \times 10}\right)+\frac{1}{2} \mathcal{N}\left(1, I_{10 \times 10}\right)$. We sample from the two components with equal probability. If \boldsymbol{x} comes from component $\mathcal{N}\left(0, I_{10 \times 10}\right)$, it is given label 0 . Otherwise, if \boldsymbol{x} comes from component $\mathcal{N}\left(1, I_{10 \times 10}\right)$, it is given label 1. The true conditional distribution is $\eta(\boldsymbol{x})=\frac{\exp \left\{-\frac{1}{2}\|\boldsymbol{x}-1\|^{2}\right\}}{\exp \left\{-\frac{1}{2}\|\boldsymbol{x}\|^{2}\right\}+\exp \left\{-\frac{1}{2}\|\boldsymbol{x}-1\|^{2}\right\}}$.
Following the idea of our experiment on CIFAR10 in the manuscript (Section 2.4), we estimate $\operatorname{Pr}\left[\left|\eta(\boldsymbol{x})-\frac{1}{2}\right| \leq t\right]$ for values of t sampled between 0 and 0.9 using the empirical frequency $p_{t}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{|\eta(\boldsymbol{x})-1 / 2| \leq t\}}(\boldsymbol{x})$. Note that if the Tsybakov condition is tight, $\log \left(p_{t}\right)$ approximates $\log \left(C t^{\lambda}\right)$. The samples for $\log (t)$ and correspondingly, $\log \left(C t^{\lambda}\right) \approx$ $\log \left(p_{t}\right)$ are drawn as blue dots in Figure 1(a). The ordinary least square (OLS) linear regression results is drawn as a red line. We found the estimated values of C and λ to be 0.58 and 1.27 respectively. The estimation is high is confidence: the determinant coefficient R^{2} equals 0.904 , and we have a p-value which is less than 10^{-4}.
Estimation of the error bound, and its tightness. We also introduce label noise using predefined transition probability τ_{01} and τ_{10}. We can estimate C and λ as mentioned above, and know $\tau_{01}, \tau_{10}, \eta(x)$, and thus, $\widetilde{\eta}(\boldsymbol{x})$. Therefore we can evaluate the error bound in Theorem 1. We plot the error bound as a function of ϵ in Figures 1(b) and (c) (drawn green curves).

Finally, we assume a perfect noisy classifier $f=\widetilde{\eta}$. In other words, $\epsilon=0$. We empirically show that when $f(\boldsymbol{x})<\Delta$, the probability of \widetilde{y} being correct (i.e., $\widetilde{y}=h^{*}(\boldsymbol{x})$) is zero (blue lines in Figures 1(b) and (c)).

Validation of the label-correction algorithm. To the same synthetic dataset, we also apply our LRT-Correction algorithm and validate the bound in Corollary 1. Since we know $\widetilde{\eta}(\boldsymbol{x}), \tau_{01}$ and τ_{10}, we calculate the correction error bound of Corollary 1 in closed form. We draw the bound w.r.t. the error ϵ in orange curves in Figure 2. Finally, we run our label correction algorithm using the perfect noisy classifier $f=\widetilde{\eta}$ and validate that the corrected labels are very close to clean (the success rate is limited by the asymmetry level of the noise pattern). See blue lines in Figure 2.

[^0]

Figure 1. Synthetic experiment using Mixture of Gaussian at noise level 20\%. (a): Check of Tsybakov condition using linear regression, where y-axis is the proportion of data points at distance t from decision boundary. (b): Proportion of labels that are not correct (not consistent with Bayes optimal decision rule) and the proposed upper bound. (c): Same as (b) but labels are corrupted with aysmmetric noise. (d): t -SNE of the clean data. (e): t -SNE of the data with symmetric noise. (f): t -SNE of the data with asymmetric noise.

Figure 2. Performance of LRT algorithm given $\widetilde{\eta}(\boldsymbol{x})$ v.s the proposed upper bound. (a): Symmetric noise ($\tau_{10}=\tau_{01}=0.3$). (b): Asymmetric noise ($\tau_{10}=0.2, \tau_{01}=0.3$). (c): Asymmetric noise ($\tau_{10}=0.1, \tau_{01}=0.3$). (d): Asymmetric noise ($\tau_{10}=0.3, \tau_{01}=0$)

Figure 3. Label Correction Result Using LRT-Correct. (a): Clean data as it in Fig 1d. (b): Labels after correction for data in Fig 1e. (c): Labels after correction for data in Fig 1f.

2. Proof of Theorem 2

Define $m_{\boldsymbol{x}}:=\underset{i}{\arg \max } f_{i}(\boldsymbol{x}), u_{\boldsymbol{x}}:=\underset{i}{\arg \max } \eta_{i}(\boldsymbol{x})$ and $s_{\boldsymbol{x}}:=\underset{i \neq u_{\boldsymbol{x}}}{\arg \max } \eta_{i}(\boldsymbol{x})$. Let $[N c]:=\left\{1,2, \cdots, N_{c}\right\}$. Finally, define $\epsilon_{i}(\boldsymbol{x}):=\left|f_{i}(\boldsymbol{x})-\widetilde{\eta}_{i}(\boldsymbol{x})\right|$ and $\epsilon:=\max _{\boldsymbol{x}, i} \epsilon_{i}(\boldsymbol{x})$.
For multi-class scenario, we know $\forall i \in\left[N_{c}\right], \widetilde{\eta}_{i}(\boldsymbol{x})=\sum_{j \in\left[N_{c}\right]} \tau_{j i} \eta_{j}(\boldsymbol{x})$. We also restate the multi-class Tsybakov condition here:
Assumption 1 (Multi-class Tsybakov Condition). $\exists C, \lambda>0$ and $t_{0} \in(0,1]$ such that for all $t \leq t_{0}$,

$$
\operatorname{Pr}\left[\left|\eta_{u_{\boldsymbol{x}}}(x)-\eta_{s_{x}}(x)\right| \leq t\right] \leq C t^{\lambda}
$$

Theorem 2. Assume $\eta(\boldsymbol{x})$ fulfills multi-class Tsybakov condition for constant $C, \lambda>0$ and $t_{0} \in(0,1]$. Assume that $\epsilon \leq t_{0} \min _{i} \tau_{i, i}$. For $\Delta=\min \left[1, \min _{\boldsymbol{x}}\left[\tau_{\widetilde{y}, \widetilde{y}} \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\sum_{j \neq \tilde{y}} \tau_{j, \tilde{y}} \eta_{j}(\boldsymbol{x})\right]\right]$:

$$
\operatorname{Pr}_{(x, y) \sim D}\left[\widetilde{y}=h^{*}(\boldsymbol{x}), f_{\tilde{y}}(\boldsymbol{x})<\Delta\right] \leq C[O(\epsilon)]^{\lambda}
$$

Proof.

$$
\begin{align*}
& \operatorname{Pr}\left[\widetilde{y}=h^{*}(\boldsymbol{x}), f_{\widetilde{y}}(\boldsymbol{x})<\Delta\right]=\operatorname{Pr}\left[\eta_{\tilde{y}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{\tilde{y}}(\boldsymbol{x})<\Delta\right] \\
& \leq \operatorname{Pr}\left[\eta_{\tilde{y}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \widetilde{\widetilde{y}}_{\tilde{y}}(\boldsymbol{x})<\Delta+\epsilon_{\tilde{y}}\right] \\
& \leq \operatorname{Pr}\left[\eta_{\tilde{y}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \widetilde{\eta}_{\tilde{y}}(\boldsymbol{x})<\Delta+\epsilon\right] \\
& =\operatorname{Pr}\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \sum_{j \in\left[N_{c}\right]} \tau_{j, \tilde{y}} \eta_{\tilde{y}}(\boldsymbol{x})<\Delta+\epsilon\right] \\
& =\operatorname{Pr}\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \eta_{\tilde{y}}(\boldsymbol{x})<\frac{\Delta-\sum_{j \neq \widetilde{y}} \tau_{j, \tilde{y}} \eta_{j}(\boldsymbol{x})+\epsilon}{\tau_{\widetilde{y}, \tilde{y}}}\right] \\
& =\operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\tilde{y}}(\boldsymbol{x})<\frac{\Delta-\sum_{j \neq \tilde{y}} \tau_{j, \tilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\tilde{y}, \tilde{y}}}+\frac{\epsilon}{\tau_{\tilde{y}, \tilde{y}}}\right] \tag{1}
\end{align*}
$$

Remember that $\Delta=\min \left[1, \min _{\boldsymbol{x}}\left[\tau_{\tilde{y}, \tilde{y}} \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\sum_{j \neq \tilde{y}} \tau_{j, \tilde{y}} \eta_{j}(\boldsymbol{x})\right]\right] \leq \tau_{\tilde{y}, \tilde{y}} \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\sum_{j \neq \widetilde{y}} \tau_{j, \tilde{y}} \eta_{j}(\boldsymbol{x})$. Then if we substitute Δ in (1) with $\tau_{\tilde{y}, \tilde{y}} \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\sum_{j \neq \tilde{y}} \tau_{j, \tilde{y} \eta_{j}}(\boldsymbol{x})$, continuing the derivation of (1), we will end up with:

$$
\begin{aligned}
& \operatorname{Pr}\left[\widetilde{y}=h^{*}(\boldsymbol{x}), f_{\widetilde{y}}(\boldsymbol{x})<\Delta\right] \\
& \leq \operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\widetilde{y}}(\boldsymbol{x})<\frac{\Delta-\sum_{j \neq \widetilde{y}} \tau_{j, \widetilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\widetilde{y}, \widetilde{y}}}+\frac{\epsilon}{\tau_{\widetilde{y}, \widetilde{y}}}\right] \\
& \leq \operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\widetilde{y}}(\boldsymbol{x})<\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\frac{\epsilon}{\tau_{\widetilde{y}, \widetilde{y}}}\right] \leq C\left(\frac{\epsilon}{\tau_{\widetilde{y}}, \widetilde{y}}\right)^{\lambda}
\end{aligned}
$$

Notice that Tsybakov condition holds here because $\epsilon \leq t_{0} \min _{i} \tau_{i, i}$, which implies that $\frac{\epsilon}{\tau_{\tilde{y}, \tilde{y}}} \leq t_{0}$. This complete the proof for this case.

3. Proof of Theorem 3

Lemma 1. (Algorithm Multiclass-Theorem Guarantee). Assume $\eta(\boldsymbol{x})$ fulfills multi-class Tsybakov condition for constant $C>0, \lambda>0$ and $t_{0} \in(0,1]$. Assume that $\epsilon \leq t_{0} \min _{i} \tau_{i i}$. Let $\widetilde{y}_{n e w}$ denote the output of the LRT-Correction with \boldsymbol{x}, $\widetilde{y}_{\boldsymbol{x}}, f$, and the given δ, then:

1. Sensitivity Optimized Critical Value. Let $\delta=\min _{\boldsymbol{x}}\left[\frac{\tau_{\tilde{y}, \tilde{y}} \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\sum_{j \neq \tilde{y}} \tau_{j, \tilde{y}} \eta_{j}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})}\right]$ then :

$$
\operatorname{Pr}_{(x, y) \sim D}\left[\widetilde{y}_{n e w} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is rejected }\right] \leq C[O(\epsilon)]^{\lambda}+\underset{(\boldsymbol{x}, y) \sim D}{\operatorname{Pr}}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]
$$

2. Specificity Optimized Critical Value. Let $\delta=\max _{\boldsymbol{x}}\left[\frac{f_{\tilde{\tilde{y}}}(\boldsymbol{x})}{\sum_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}} \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\sum_{j \neq m_{\boldsymbol{x}}} \tau_{j, m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})}\right]$ then :

$$
\operatorname{Pr}_{(x, y) \sim D}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is accepted }\right] \leq C[O(\epsilon)]^{\lambda}+\underset{(\boldsymbol{x}, y) \sim D}{\operatorname{Pr}}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]
$$

Proof. First look at cases where \widetilde{y} is rejected.

$$
\begin{align*}
& \operatorname{Pr}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is rejected }\right] \\
& =\operatorname{Pr}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})}<\delta\right] \\
& =\operatorname{Pr}\left[\widetilde{y}_{n e w}=m_{\boldsymbol{x}} \neq h^{*}(\boldsymbol{x})=\widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})}<\delta\right]+\operatorname{Pr}\left[\widetilde{y}_{\text {new }}=m_{\boldsymbol{x}} \neq h^{*}(\boldsymbol{x})=u_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})}<\delta\right] \\
& \leq \operatorname{Pr}\left[h^{*}(\boldsymbol{x})=\widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})}<\delta\right]+\operatorname{Pr}\left[\widetilde{y}_{n e w}=m_{\boldsymbol{x}} \neq h^{*}(\boldsymbol{x})=u_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}(\boldsymbol{x})}}<\delta\right] \tag{2}
\end{align*}
$$

For the first term in (2), we have:

$$
\begin{align*}
& \operatorname{Pr}\left[h^{*}(\boldsymbol{x})=\widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})}<\delta\right]=\operatorname{Pr}\left[h^{*}(\boldsymbol{x})=\widetilde{y}, f_{\widetilde{y}}(\boldsymbol{x})<\delta f_{m_{\boldsymbol{x}}}(\boldsymbol{x})\right] \\
& \leq \operatorname{Pr}\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \widetilde{\eta}_{\widetilde{y}}(\boldsymbol{x})-\epsilon<\delta f_{m_{\boldsymbol{x}}}(\boldsymbol{x})\right] \\
& \leq \operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\widetilde{y}}(\boldsymbol{x})<\frac{\delta f_{m_{\boldsymbol{x}}}(\boldsymbol{x})-\sum_{j \neq \widetilde{y}} \tau_{j, \widetilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\widetilde{y}, \widetilde{y}}}+\frac{\epsilon}{\tau_{\widetilde{y}, \widetilde{y}}}\right] \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \operatorname{Pr}\left[h^{*}(\boldsymbol{x})=\widetilde{y}, \frac{f_{\tilde{y}}(\boldsymbol{x})}{\left.f_{m_{\tilde{x}}} \boldsymbol{x}\right)}<\delta\right] \\
& \leq \operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\widetilde{y}}(\boldsymbol{x})<\frac{\delta f_{m_{\tilde{x}}}(\boldsymbol{x})-\sum_{j \neq \tilde{y}} \tau_{j, \tilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\tilde{y}, \tilde{y}}}+\frac{\epsilon}{\tau_{\tilde{y}, \tilde{y}}}\right] \\
& \leq \operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\tilde{y}}(\boldsymbol{x}) \leq \eta_{s_{x}}(\boldsymbol{x})+\frac{\epsilon}{\tau_{\tilde{y}, \tilde{y}}}\right] \\
& \leq C\left(\frac{\epsilon}{\tau_{\tilde{y}, \tilde{y}}}\right)^{\lambda} \tag{4}
\end{align*}
$$

In (4), the Tsybakov condition holds here because $\epsilon \leq t_{0} \min _{i} \tau_{i i}$, which implies $\frac{\epsilon}{\tau_{\tilde{\gamma}, \tilde{y}}} \leq t_{0}$.
For the second term in (2), we have:

$$
\begin{equation*}
\operatorname{Pr}\left[\widetilde{y}_{\text {new }}=m_{\boldsymbol{x}} \neq h^{*}(\boldsymbol{x})=u_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})}<\delta\right] \leq \operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \tag{5}
\end{equation*}
$$

for which our algorithm currently doesn't have a good way to deal with and we will leave it as future research problem. Finally, summarize every piece and we finished the proof for cases where \widetilde{y} is rejected:

$$
\begin{aligned}
& \operatorname{Pr}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is rejected }\right] \leq(2) \\
& \leq(4)+(5) \\
& \leq C\left[\frac{\epsilon}{\tau_{u_{\boldsymbol{x}}, u_{\boldsymbol{x}}}}\right]^{\lambda}+\operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \\
& =C[O(\epsilon)]^{\lambda}+\operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]
\end{aligned}
$$

For cases where \widetilde{y} is accepted:

$$
\begin{align*}
& \operatorname{Pr}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is accepted }\right]=\operatorname{Pr}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \geq \delta\right] \\
& =\operatorname{Pr}\left[\widetilde{y}_{\text {new }}=\widetilde{y} \neq h^{*}(\boldsymbol{x})=m_{\boldsymbol{x}}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \geq \delta\right]+\operatorname{Pr}\left[\widetilde{y}_{\text {new }}=\widetilde{y} \neq h^{*}(\boldsymbol{x}), m_{\boldsymbol{x}} \neq h^{*}(\boldsymbol{x}), \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \geq \delta\right] \\
& =\operatorname{Pr}\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq f_{\widetilde{y}}(\boldsymbol{x}) / \delta\right]+\operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \tag{6}
\end{align*}
$$

For the first term in (6), we have:

$$
\begin{align*}
& \operatorname{Pr}\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq f_{\tilde{y}}(\boldsymbol{x}) / \delta\right] \leq \operatorname{Pr}\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \widetilde{\eta}_{m_{\boldsymbol{x}}}(\boldsymbol{x})-\epsilon \leq f_{\tilde{y}}(\boldsymbol{x}) / \delta\right] \\
& =\operatorname{Pr}\left[\eta_{s_{x}}(\boldsymbol{x}) \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \frac{f_{\tilde{y}}(\boldsymbol{x}) / \delta-\sum_{j \neq m_{x}} \tau_{j, m_{x}} \eta_{j}(\boldsymbol{x})}{\tau_{m_{x_{x}}, m_{x}}}+\frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{x}}}\right] \tag{7}
\end{align*}
$$

Firstly, observe that if $\delta>1$, then $\operatorname{Pr}\left[\widetilde{y}_{\text {new }}=\widetilde{y} \neq h^{*}(\boldsymbol{x}), \frac{f_{\tilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \geq \delta\right]=0$ due to the definition of $m_{\boldsymbol{x}}$.

$\frac{f_{\tilde{y}}(\boldsymbol{x})}{\left.\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}} \eta_{s_{\boldsymbol{x}}}} \boldsymbol{x}\right)+\sum_{j \neq m_{\boldsymbol{x}}} \tau_{j, m_{\boldsymbol{x}} \eta_{j}(\boldsymbol{x})}}$ and continuing the calculation, we will have:

$$
\begin{align*}
& \operatorname{Pr}\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq f_{\widetilde{y}}(\boldsymbol{x}) / \delta\right] \\
& \leq \operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \frac{f_{\widetilde{y}}(\boldsymbol{x}) / \delta-\sum_{j \neq m_{\boldsymbol{x}}} \tau_{j, m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}\right] \\
& \leq \operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}\right] \\
& \leq C\left[\frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}\right]^{\lambda} \tag{8}
\end{align*}
$$

For the second term in (6), our algorithm cannot deal with it properly. We will leave it as the future research problem.
Now we summarize all pieces and we get:

$$
\begin{aligned}
& \operatorname{Pr}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is accepted }\right]=(6) \\
& \leq(8)+\operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \\
& \leq C\left[\frac{\epsilon}{\tau_{u_{\boldsymbol{x}}, u_{\boldsymbol{x}}}}\right]^{\lambda}+\operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]
\end{aligned}
$$

which compete the proof for cases that are accepted.

We give following several facts based on our theorem:

1. For binary case, if we set $\delta=\frac{1-\left|\tau_{10}-\tau_{01}\right|}{1+\left|\tau_{10}-\tau_{01}\right|}$ and further assume $\epsilon \leq t_{0}\left(1-\tau_{10}-\tau_{01}\right)-\frac{\left|\tau_{10}-\tau_{01}\right|}{2}$, we have:

$$
\operatorname{Pr}_{(\boldsymbol{x}, y) \sim D}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x})\right] \leq C\left[\left|\frac{\tau_{10}-\tau_{01}}{2\left(1-\tau_{10}-\tau_{01}\right)}\right|+\frac{\epsilon}{1-\tau_{10}-\tau_{01}}\right]^{\lambda}
$$

Proof. For binary case, we have:

$$
\begin{align*}
& \quad \operatorname{Pr}\left[\widetilde{y}_{n e w} \neq h^{*}(\boldsymbol{x})\right]=\operatorname{Pr}_{(\boldsymbol{x}, y) \sim D}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is rejected }\right]+\operatorname{Pr}_{(\boldsymbol{x}, y) \sim D}\left[\widetilde{y}_{n e w} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is accepted }\right] \\
& =\operatorname{Pr}\left[\eta_{\widetilde{y}}(\boldsymbol{x})>\frac{1}{2}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})}<\delta\right]+\operatorname{Pr}\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \leq \frac{1}{2}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})} \geq \delta\right] \\
& \leq \operatorname{Pr}\left[\eta_{\widetilde{y}}(\boldsymbol{x})>\frac{1}{2}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{1-f_{\widetilde{y}}(\boldsymbol{x})}<\delta\right]+\operatorname{Pr}\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \leq \frac{1}{2}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{\left.1-f_{\widetilde{y}} \boldsymbol{x}\right)} \geq \delta\right] \\
& \leq \operatorname{Pr}\left[\eta_{\widetilde{y}}(\boldsymbol{x})>\frac{1}{2}, \widetilde{\eta}_{\widetilde{y}}(\boldsymbol{x})<\frac{\delta}{1+\delta}+\epsilon\right]+\operatorname{Pr}\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \leq \frac{1}{2}, \widetilde{\eta}_{\widetilde{y}}(\boldsymbol{x}) \geq \frac{\delta}{1+\delta}-\epsilon\right] \\
& =\operatorname{Pr}\left[\frac{1}{2}<\eta_{\widetilde{y}}(\boldsymbol{x})<\frac{\frac{\delta}{1+\delta}-\tau_{1-\widetilde{y}, \widetilde{y}}}{1-\tau_{10}-\tau_{01}}+\frac{\epsilon}{1-\tau_{10}-\tau_{01}}\right]+\operatorname{Pr}\left[\frac{\delta}{1+\delta}-\tau_{1-\widetilde{y}, \widetilde{y}}^{1-\tau_{10}-\tau_{01}}-\frac{\epsilon}{1-\tau_{10}-\tau_{01}} \leq \eta_{\widetilde{y}}(\boldsymbol{x}) \leq \frac{1}{2}\right] \tag{9}
\end{align*}
$$

Observe that $\delta=\frac{1-\left|\tau_{10}-\tau_{01}\right|}{1+\left|\tau_{10}-\tau_{01}\right|} \leq \frac{1-\tau_{\tilde{y}, 1-\tilde{y}}+\tau_{1-\tilde{y}, \tilde{y}}}{1+\tau_{\tilde{y}, 1-\tilde{y}}-\tau_{1-\tilde{y}, \tilde{y}}}$. We also have $\frac{\delta}{1+\delta}=\frac{1-\left|\tau_{10}-\tau_{01}\right|}{2} \leq \frac{1}{2}$. Now we substitute $\delta=\frac{1-\tau_{\tilde{y}, 1-\tilde{y}}+\tau_{1-\tilde{y}, \tilde{y}}}{1+\tau_{\tilde{y}}, 1-\tilde{y}-\tau_{1-\tilde{y}}, \tilde{y}}$ in the first term of (9) and substitute $\frac{\delta}{1+\delta}$ with $\frac{1}{2}$ in the second term of (9), by algebra we know
that :

$$
\begin{aligned}
& \operatorname{Pr}_{(\boldsymbol{x}, y) \sim D}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x})\right]=\operatorname{Pr}_{(\boldsymbol{x}, y) \sim D}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is rejected }\right]+\operatorname{Pr}_{(\boldsymbol{x}, y) \sim D}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is accepted }\right] \\
& \leq \operatorname{Pr}\left[\frac{1}{2}<\eta_{\widetilde{y}}(\boldsymbol{x})<\frac{1}{2}+\frac{\epsilon}{1-\tau_{10}-\tau_{01}}\right]+\operatorname{Pr}\left[\frac{1 / 2-\max \left(\tau_{10}, \tau_{01}\right)}{1-\tau_{10}-\tau_{01}}-\frac{\epsilon}{1-\tau_{10}-\tau_{01}} \leq \eta_{\widetilde{y}}(\boldsymbol{x}) \leq \frac{1}{2}\right] \\
& \leq C\left[\left|\frac{\tau_{10}-\tau_{01}}{2\left(1-\tau_{10}-\tau_{01}\right)}\right|+\frac{\epsilon}{1-\tau_{10}-\tau_{01}}\right]^{\lambda}
\end{aligned}
$$

Tsybakov assumption holds because $\frac{\epsilon}{1-\tau_{10}-\tau_{01}}+\frac{\left|\tau_{10}-\tau_{01}\right|}{2\left(1-\tau_{10}-\tau_{01}\right)} \leq \frac{t_{0}\left(1-\tau_{10}-\tau_{01}\right)-\frac{\left|\tau_{10}-\tau_{01}\right|}{2}}{1-\tau_{10}-\tau_{01}}+\frac{\left|\tau_{10}-\tau_{01}\right|}{2\left(1-\tau_{10}-\tau_{01}\right)} \leq t_{0}$.
2. For symmetric noise $\tau_{i j}=\tau_{j i}=\tau, \forall i, j \in\left[N_{c}\right]$ and further assume (besides the assumption we made in Lemma 1) $\epsilon \leq \frac{1}{2} \min _{\boldsymbol{x}}\left[\widetilde{\eta}_{u_{\boldsymbol{x}}}(\boldsymbol{x})-\widetilde{\eta}_{s_{\boldsymbol{x}}}(\boldsymbol{x})\right]$, we have:
(a) Sensitivity Optimized Critical Value. Let $\delta=\min _{\boldsymbol{x}}\left[\frac{\left.\tau_{\tilde{y}, \tilde{y}} \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\sum_{j \neq \tilde{y}} \tau_{j, \tilde{y} \eta_{j}(\boldsymbol{x})}^{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})}\right] \text { then : } \mathrm{t} \text {. }}{}\right]$

$$
\operatorname{Pr}_{(x, y) \sim D}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is rejected }\right] \leq C[O(\epsilon)]^{\lambda}
$$

(b) Specificity Optimized Critical Value. Let $\delta=\max _{\boldsymbol{x}}\left[\frac{f_{\tilde{y}}(\boldsymbol{x})}{\left(\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}-\tau_{\left.\tilde{y}, m_{\boldsymbol{x}}\right)} \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\tau_{\tilde{y}, m_{\boldsymbol{x}}}\right.}\right]$ then :

$$
\operatorname{Pr}_{(x, y) \sim D}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is accepted }\right] \leq C[O(\epsilon)]^{\lambda}
$$

Proof. Observe that under symmetric noise scenario, $\forall i \in\left[N_{c}\right], \eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{i}(\boldsymbol{x})$ will implies that $\widetilde{\eta}_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \widetilde{\eta}_{i}(\boldsymbol{x})$, i.e. $h^{*}(\boldsymbol{x})=\widetilde{h}^{*}(\boldsymbol{x})$. To show this:

$$
\begin{aligned}
& \eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{i}(\boldsymbol{x}) \\
& \Longleftrightarrow\left[1-N_{c} \tau\right] \eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \geq\left[1-N_{c} \tau\right] \eta_{u_{i}}(\boldsymbol{x}) \\
& \Longleftrightarrow\left[1-\left(N_{c}-1\right) \tau\right] \eta_{u_{\boldsymbol{x}}}(\boldsymbol{x})-\tau \eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \geq\left[1-\left(N_{c}-1\right) \tau\right] \eta_{i}(\boldsymbol{x})-\tau \eta_{i}(\boldsymbol{x}) \\
& \Longleftrightarrow\left[1-\left(N_{c}-1\right) \tau\right] \eta_{u_{\boldsymbol{x}}}(\boldsymbol{x})+\tau \eta_{i}(\boldsymbol{x}) \geq\left[1-\left(N_{c}-1\right) \tau\right] \eta_{i}(\boldsymbol{x})+\tau \eta_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \\
& \Longleftrightarrow\left[1-\left(N_{c}-1\right) \tau\right] \eta_{u_{\boldsymbol{x}}}(\boldsymbol{x})+\tau \eta_{i}(\boldsymbol{x})+\tau \sum_{j \neq u_{\boldsymbol{x}}, j \neq i} \eta_{j}(\boldsymbol{x}) \geq\left[1-\left(N_{c}-1\right) \tau\right] \eta_{i}(\boldsymbol{x})+\tau \eta_{u_{\boldsymbol{x}}}(\boldsymbol{x})+\tau \sum_{j \neq u_{\boldsymbol{x}}, j \neq i} \eta_{j}(\boldsymbol{x}) \\
& \Longleftrightarrow\left[1-\left(N_{c}-1\right) \tau\right] \eta_{u_{\boldsymbol{x}}}(\boldsymbol{x})+\tau \sum_{j \neq u_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x}) \geq\left[1-\left(N_{c}-1\right) \tau\right] \eta_{i}(\boldsymbol{x})+\tau \sum_{j \neq i} \eta_{j}(\boldsymbol{x}) \\
& \Longleftrightarrow \sum_{j \in[N c]} \tau_{j, u_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x}) \\
& \Longleftrightarrow \sum_{j \in\left[N_{c}\right]} \tau_{j i} \eta_{i}(\boldsymbol{x}) \\
& \Longleftrightarrow \widetilde{\eta}_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \widetilde{\eta}_{i}(\boldsymbol{x})
\end{aligned}
$$

Since $\widetilde{\eta}_{u_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \widetilde{\eta}_{s_{\boldsymbol{x}}}(\boldsymbol{x})+2 \epsilon$, then $\widetilde{\eta}_{u_{\boldsymbol{x}}}(\boldsymbol{x})-\epsilon \geq \widetilde{\eta}_{i}(\boldsymbol{x})+\epsilon$ and thus $f_{u_{\boldsymbol{x}}} \geq f_{i}(\boldsymbol{x}) \forall i \in\left[N_{c}\right]$, which implies $f_{m_{\boldsymbol{x}}}(\boldsymbol{x})=f_{u_{\boldsymbol{x}}}(\boldsymbol{x})$. As a result, second term in (2) and second term in (6) will be 0 .

Theorem 3. Assume η and f satisfy the same conditions as Lemma 1. Also assume $\xi<\delta$ and further assume that $\epsilon \leq \min \left(\frac{t_{0} \delta^{2} \min _{i} \tau_{i i}-\xi^{2}-\xi}{\delta^{2}},\left(t_{0}-\xi\right) \min _{i} \tau_{i i}\right)$. Let $\widetilde{y}_{n e w}$ be the output of the LRT-Correction with $(\boldsymbol{x}, \widetilde{y}), f$, and the approximate $\hat{\delta}$. Then:

$$
\operatorname{Pr}_{(x, y) \sim D}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is rejected }\right] \leq C[O(\max (\epsilon, \xi))]^{\lambda}+\operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]
$$

2. Specificity Optimized Critical Value. Let $\delta=\max _{\boldsymbol{x}} \frac{f_{\tilde{y}}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}} \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\sum_{j \neq m_{\boldsymbol{x}}} \tau_{j, m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})} \text { then : } \mathrm{t} \text { : }}$

$$
\operatorname{Pr}_{(x, y) \sim D}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is accepted }\right] \leq C[O(\max (\epsilon, \xi))]^{\lambda}+\operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]
$$

Proof. The proof will be similar to the proof of Lemma 1, but we need to adjust the error introduced by picking $\hat{\delta}$. Recall that ξ and ϵ are both less than one.

If we pick $\hat{\delta}$ instead of δ, then for (3) in Lemma 1, we have:

$$
\begin{align*}
& \operatorname{Pr}\left[h^{*}(\boldsymbol{x})=\widetilde{y}, \frac{f_{\widetilde{y}}(\boldsymbol{x})}{f_{m_{\boldsymbol{x}}}(\boldsymbol{x})}<\hat{\delta}\right]=\operatorname{Pr}\left[h^{*}(\boldsymbol{x})=\widetilde{y}, f_{\widetilde{y}}(\boldsymbol{x})<\hat{\delta} f_{m_{\boldsymbol{x}}}(\boldsymbol{x})\right] \\
& \leq \operatorname{Pr}\left[\eta_{\widetilde{y}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \widetilde{\eta}_{\widetilde{y}}(\boldsymbol{x})-\epsilon<\hat{\delta} f_{m_{\boldsymbol{x}}}(\boldsymbol{x})\right] \\
& \leq \operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\widetilde{y}}(\boldsymbol{x})<\frac{\hat{\delta} f_{m_{\boldsymbol{x}}}(\boldsymbol{x})-\sum_{j \neq \widetilde{y}} \tau_{j, \widetilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\widetilde{y}, \widetilde{y}}}+\frac{\epsilon}{\tau_{\widetilde{y}, \widetilde{y}}}\right] \\
& \leq \operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\widetilde{y}}(\boldsymbol{x})<\frac{(\delta+\xi) f_{m_{\boldsymbol{x}}}(\boldsymbol{x})-\sum_{j \neq \widetilde{y}} \tau_{j, \widetilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\widetilde{y}, \widetilde{y}}}+\frac{\epsilon}{\tau_{\widetilde{y}, \widetilde{y}}}\right] \\
& \leq \operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{\widetilde{y}}(\boldsymbol{x})<\frac{\delta f_{m_{\boldsymbol{x}}}(\boldsymbol{x})-\sum_{j \neq \widetilde{y}} \tau_{j, \widetilde{y}} \eta_{j}(\boldsymbol{x})}{\tau_{\widetilde{y}, \widetilde{y}}}+\frac{\epsilon+\xi}{\tau_{\widetilde{y}, \widetilde{y}}}\right] \\
& \leq C\left[\frac{\epsilon+\xi}{\tau_{\widetilde{y}, \widetilde{y}}}\right]^{\lambda} \tag{10}
\end{align*}
$$

The same upper bound holds for (5) with the same reason. Then:

$$
\begin{aligned}
& \operatorname{Pr}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is rejected }\right] \leq(10)+\operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \\
& =C[O(\max (\epsilon, \xi))]^{\lambda}+\operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]
\end{aligned}
$$

We next analyze (7) in Lemma 1:

$$
\begin{aligned}
& \operatorname{Pr}\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq f_{\widetilde{y}}(\boldsymbol{x}) / \hat{\delta}\right] \leq \operatorname{Pr}\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), \widetilde{\eta}_{m_{\boldsymbol{x}}}(\boldsymbol{x})-\epsilon \leq f_{\widetilde{y}}(\boldsymbol{x}) / \hat{\delta}\right] \\
& =\operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \frac{f_{\widetilde{y}}(\boldsymbol{x}) / \hat{\delta}-\sum_{j \neq m_{\boldsymbol{x}}} \tau_{j, m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}\right] \\
& \leq \operatorname{Pr}\left[\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \frac{f_{\widetilde{y}}(\boldsymbol{x}) /(\delta-\xi)-\sum_{j \neq m_{\boldsymbol{x}}} \tau_{j, m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}\right] \\
& =\operatorname{Pr}\left[0<\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x})-\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})<\frac{f_{\widetilde{y}}(\boldsymbol{x}) / \delta-\sum_{j \neq m_{\boldsymbol{x}}} \tau_{j, m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}-\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\frac{\xi f_{\tilde{y}(\boldsymbol{x})}}{\delta(\delta-\xi)}}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}\right]
\end{aligned}
$$

Observe that $\frac{\xi}{\delta(\delta-\xi)}=\frac{\delta}{(\delta-\xi)} \frac{\xi}{\delta^{2}}=[1+O(\xi)] \frac{\xi}{\delta^{2}}$, where second equality comes from Taylor expansion. Then we substitute the δ as what we did in Lemma 1 and continue the calculation:

$$
\begin{align*}
& \operatorname{Pr}\left[\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \geq \eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}), f_{m_{\boldsymbol{x}}}(\boldsymbol{x}) \leq f_{\widetilde{y}}(\boldsymbol{x}) / \hat{\delta}\right] \\
& \leq \operatorname{Pr}\left[0<\eta_{m_{\boldsymbol{x}}}(\boldsymbol{x})-\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})<\frac{f_{\widetilde{y}}(\boldsymbol{x}) / \delta-\sum_{j \neq m_{\boldsymbol{x}}} \tau_{j, m_{\boldsymbol{x}}} \eta_{j}(\boldsymbol{x})}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}-\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x})+\frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\frac{\xi f_{\widetilde{y}}(\boldsymbol{x})}{\delta(\delta-\xi)}}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}\right] \\
& \leq \operatorname{Pr}\left[0 \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x})-\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\xi f_{\widetilde{y}}(\boldsymbol{x})}{\delta^{2} \tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\xi O(\xi) f_{\widetilde{y}}(\boldsymbol{x})}{\delta^{2} \tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}\right] \\
& \leq \operatorname{Pr}\left[0 \leq \eta_{m_{\boldsymbol{x}}}(\boldsymbol{x})-\eta_{s_{\boldsymbol{x}}}(\boldsymbol{x}) \leq \frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\xi}{\delta^{2} \tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\xi^{2}}{\delta^{2} \tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}\right] \\
& \leq C\left[\frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\xi}{\delta^{2} \tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\xi^{2}}{\delta^{2} \tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}\right]^{\lambda} \tag{11}
\end{align*}
$$

Here Tsybakove condition hold, because $\frac{\epsilon}{\tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\xi}{\delta^{2} \tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\xi^{2}}{\delta^{2} \tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}} \leq \frac{t_{0} \delta^{2} \min _{i} \tau_{i i}-\xi^{2}-\xi}{\delta^{2} \tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\xi}{\delta^{2} \tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}}+\frac{\xi^{2}}{\delta^{2} \tau_{m_{\boldsymbol{x}}, m_{\boldsymbol{x}}}} \leq t_{0}$. As a result:

$$
\begin{aligned}
& \operatorname{Pr}\left[\widetilde{y}_{\text {new }} \neq h^{*}(\boldsymbol{x}), \widetilde{y} \text { is accepted }\right] \\
& \leq(11)+\operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right] \\
& \leq C[O(\max (\epsilon, \xi))]^{\lambda}+\operatorname{Pr}\left[u_{\boldsymbol{x}} \neq m_{\boldsymbol{x}}, u_{\boldsymbol{x}} \neq \widetilde{y}\right]
\end{aligned}
$$

which compete the proof for cases that are accepted.
Other terms will not be affected by the choice of δ. By now we completes the proof.

[^0]: ${ }^{1}$ Department of Applied Mathematics and Statistics, Stony Brook University, NY, USA ${ }^{2}$ Department of Computer Science, Rutgers University, NJ, USA ${ }^{3}$ Bain \& Company, Bangalore, India. ${ }^{4}$ Department of Computer Science, City University of New York, NY, USA ${ }^{5}$ Department of Biomedical Informatics, Stony Brook University, NY, USA. Correspondence to: Songzhu Zheng zheng.songzhu@stonybrook.edu.

 Proceedings of the $37^{\text {th }}$ International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by the author(s).

