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A Missed proofs

A.1 Missed proofs from Subsection 6.1

A.1.1 Proof of Statement 1

Proof. The proof is similar to [10, Lemma 19]. Since the function φi : [p
t
, pt] → R, φi(p) =

Vi(St) − Vi(S
+
t (p, xt)) is continuous and monotone [10, Theorem 7] with φi(pt) = 0. Thus, if

Vi(St) − Vi(S
+
t (pt, xt)) > lik(i)+1/(4i!) then φ(pt) > lik(i)+1/(4i!). Using continuity of φi we get

that the price pi exists.
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To guarantee the existence of J we need to show only that there exists at least one j s.t.
Lj−1 > w ≥ LM(j). Further, in the proof we use notation [x, z) for a directional (oriented)
interval/segment (1-dimensional euclidean vector): where x is the initial point and z is the terminal
one of the interval, but it may be x > z or x < z.

Let 0 = i0 < i1 < . . . < ia = d be the indices i such that M(i) = i. To remove subscripts, let
ys := Lis . Note that y0 = L0 = ∞ (see in Alg. 1) and ya = Ld = 0 (the d-volume of (d − 1)-
dimensional plane). So, we have the set of points ys ∈ [0,∞] and the sum of euclidean vectors
[ya, ya−1) + . . . + [y2, y1) + [y1, y0) = [0,∞). Since w ∈ [0,∞), then w be in at least one vector
[yj , yj−1) that has the same direction as [0,∞).

A.1.2 Proof of Statement 2

Proof. The proof is similar to [10, Lemma 20]. Using the fact that VJ is monotone and additive [10,
Theorem 7] and that S−t (pJ , xt) = (St \ S+

t (pJ , xt)) ∪KJ we have

VJ(S−t (pJ , xt)) = VJ(St)− VJ(S+
t (pJ , xt)) + VJ(KJ) ≤

lJk(J)+1

4J !
+ VJ(KJ). (A.1)

Here we used that VJ(St)− VJ(S+
t (pJ , xt)) ≤ lJk(J)+1/(4J !) due to the choice of the price pJ in our

algorithm. So, it remains to show that VJ(KJ) ≤ lJk(J)+1/(2J !) to prove our statement. We will

use the Cone Lemma [10, Lemma 13] to obtain the following inequalities:

1

J + 1
VJ(KJ)w ≤ VJ+1(St) ≤

1

(J + 1)!
lJ+1
k(J+1) ≤

1

(J + 1)!
lJ+1
(k(J))+1. (A.2)

The first inequality follows from the Cone Lemma and the fact that St contains a cone of base KJ

and height at least w. The second inequality comes from the definition of k(J) and the third comes
from the fact that J = M(J), so k(J + 1) ≥ k(J) + 1.

Finally, from our choice of J, w ≥ LJ = (VJ(KJ)/cJ)1/J . Substituting it in Inequality A.2 we
obtain:

1

J + 1
VJ(KJ)(J+1)/Jc

−1/J
J ≤ 1

(J + 1)!
lJ+1
k(J)+1. (A.3)

Substituting the definition of cJ and simplifying th last inequality, we get the desired bound of
VJ(KJ) ≤ lJk(J)+1/(2J !).

A.1.3 Proof of Statement 3

Proof. The proof is similar to [10, Lemmas 21, 22, 23].
(a) First we prove that for chosen J follows that VJ(St) − VJ(S+

t (pJ , xt)) = lJk(J)+1/(4J !).

Note, that this inequality is guaranteed by the algorithm’s choice of pJ , except when VJ(St) −
VJ(S+

t (pt, xt)) < lJk(J)+1/(4J !) and pJ = pt. So, we need to show that this case is impossible.

Indeed, in this case, S−t (pt, xt) = St by the definition of pt. Then from Statement 2 we get that
[J !VJ(S−t (pJ , xt))]

1/J ≤ lk(J)+1, but this contradicts to the definition of k(J):

ϕJ = [J !VJ(St = S−t (pJ , xt))]
1/J ∈ (lk(J)+1, lk(J)]. (A.4)

(b) Now, we show that in each round t, the width of the knowledge set w ≤ 2lk(J). To prove it we
provide an upper and lower bound on VJ(St). To get a lower bound we apply the Cone Lemma [10,
Lemma 13]:

VJ(St) ≥
1

J
VJ−1(KJ−1)w ≥

1

J
(cJ−1w

J−1)w. (A.5)
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If J > 1, then the first inequality holds since St contains a cone of base KJ−1 and height w, and the
second inequality follows from the fact that w ≤ LJ−1. If J = 1, than we observe that St contains
a segment of length w, so V1(St) ≥ w.

To get an upper bound on VJ(St) simply note that VJ(St) ≤ lJk(J)/J !, where the inequality

follows from the definition of k(J). Together the upper and lower bounds of VJ(St) imply that
cJ−1w

J/J ≤ lJk(J)/J !. Substituting the value of cJ−1 and simplifying the last inequality we obtain
that w ≤ 2lk(J).

(c) Finally, we prove that k(J) ≤ 4(d log2 dT + 1) in the rounds where w ≥ 1/T. It straightfor-
wardly follows from the previous point. In the learning phase we know that w ≤ 2lk(J). Combining
lower and upper bounds of w and using definition of lk we get:

1/T ≤ w ≤ 2lk(J) = 2d2(1 + 1/d)−k(J). (A.6)

Simplifying Inequality A.6 we get the desired bound of k(J).

A.2 Missed proofs from Subsection 7.2

A.2.1 Proof of Corollary 1

Proof. Let us to use the notations of Lemma 3. In order to prove the corollary we will show that
P3,h∩St 6=∅, where h = γmtdiam(St)/(1−γ) (thus, we will get that pJ−γmtdiam(St)/(1−γ) ≥ p

t
).

Applying Lemma 3 it is enough to show that

h =
γmt

1− γ
diam(St) ≤ 2w

[(
4(1 + 1/d)J

4(1 + 1/d)J − 1

)1/J

− 1

] [
1− (3/4)1/J

]
. (A.7)

in order to prove that P3,h ∩ St 6= ∅. Inequality A.7 is equivalent to

mt ≥ logγ(1− γ) + logγ(2w)− logγ(diam(St))+

+ logγ

(
1− (3/4)1/J

)
+ logγ

((
4(1 + 1/d)J

4(1 + 1/d)J − 1

)1/J

− 1

)
.

(A.8)

Note that from the definition of mt, we have

mt = dlogγ (1− γ) + logγ w − logγ diam(St)+

+ logγ

((
8(1 + 1/d)d

8(1 + 1/d)d − 1

)1/d

− 1

)
+ logγ

(
1− (3/4)1/d

)
e

(A.9)

So, inequality A.8 holds, since logγ is monotonically decreasing function.

A.2.2 Proof of Corollary 2

Proof. Let us to use the notations of Lemma 3 and the abbreviation S+
t for S+

t (pJ , xt). Let h =
2γmtdiam(St)/(1− γ). To prove this corollary we provide an upper bound of S+

t (pJ − h, xt).
Since St is convex, we have S+

t (pJ−h, xt) ⊆ S+
t ∪Dh ⊆ S+

t ∪(Homh(Cone)\Cone). Since Cone ⊆
S+
t and using monotone and homogeneity [10, Theorem 7, Theorem 9] of the intrinsic volumes,

we get an upper bound of the J-th intrinsic volume VJ(Dh) which equals to VJ(Homh(Cone)) −
VJ(Cone) :

VJ(Homh(Cone))− VJ(Cone) = VJ(Cone)

[(
l + h

l

)J
− 1

]
≤ VJ(S+

t )

[(
l + h

l

)J
− 1

]
. (A.10)
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Thus, using Statement 3 to get that VJ(St)− VJ(S+
t ) = lJk(J)+1/(4J !), we obtain

VJ(St)− VJ(S+
t (pJ − h, xt)) ≥ VJ(St)− VJ(S+

t )− VJ(S+
t )[((l + h)/l)J − 1] =

= lJk(J)+1/(4J !)− VJ(S+
t )[((l + h)/l)J − 1].

(A.11)

Therefore, we have to check that

VJ(S+
t (pJ , xt))

[(
l + h

l

)J
− 1

]
≤
lJk(J)+1

4J !
−
lJk(J)+1

8J !
. (A.12)

From Statement 3 we can bound VJ(S+
t (pJ , xt)) as follows:

VJ(S+
t (pJ , xt)) = VJ(St)− lJk(J)+1/(4J !) ≤ lJk(J)/J !− lJk(J)+1/(4J !), (A.13)

here we also used that ϕJ ∈ (lk(J)+1, lk(J)] to get an upper bound of VJ(St). Substituting Inequal-
ity A.13 and the definition of l(k) in Inequality A.12 we have to prove that

h = 2
γmt

1− γ
diam(St) ≤ l

[(
8(1 + 1/d)J − 1

8(1 + 1/d)J − 2

)1/J

− 1

]
. (A.14)

Since l ≥ 2w[1− (3/4)1/J ] from Lemma 2, it is enough to show that

mt ≥ logγ (1− γ) + logγ w − logγ diam(St)+

+ logγ

((
8(1 + 1/d)d

8(1 + 1/d)d − 1

)1/d

− 1

)
+ logγ

(
1− (3/4)1/d

)
.

(A.15)

So, inequality A.8 holds, since logγ is monotonically decreasing function.

A.2.3 Proof of Remark 1

Proof. Consider the modified number of penalization rounds:

mt = dlogγ (1− γ) + logγ w − logγ diam(St)+

+ logγ

((
8(1 + 1/d)d

8(1 + 1/d)d − 1

)1/d

− 1

)
+ logγ

(
1− (3/4)1/d

)
e

At first, we note that penalization rounds occur in case w ≥ 1/T, then logγ(w) = O(logγ T ).

Since St ⊆ X = [0, 1]d, the diameter of the knowledge set diam(St) ≤ d + 1 for all rounds t and
−logγ(diam(St)) ≤ −logγ(d+ 1). The fifth and sixth terms of mt have asymptotic O(logγ d). Thus,
the upper bound of mt is O(logγ(1− γ) + logγ(dT )).

B Discussion of Algorithm 1

B.1 Squaring trick

One can see that our algorithm requires knowledge of the horizon T (for example, the learning
phase is defined by inequality w ≥ 1/T ). To be free of this assumption, we apply the standard
technique “squaring trick” [11, 2]: we divide the range of possible values of the time horizon T into

4



ranges (bi−1, bi], i = 1, . . . ,∞ such that bi − bi−1 = 22
i

and b0 = 0. Define the index M such that

bM−1 < T ≤ bM (this index is unknown to the seller). Then 22
M−1

< T, i.e. M ≤ O(log log T ).
After that we run independent instances of Algorithm 1: Ai during phase (bi, bi+1] with the time
horizon Ti := bi − bi−1. Note that decisions of the strategic buyer during current phase does not
affect on other, since the algorithms run independently [3]. So, the seller’s regret during the phase
(bi−1, bi] is O(log2 Ti) (see Theorem 1). Since

M∑
i=1

log2γ Ti = (log2γ 2)
M∑
i=1

4i = log2γ 2
4(4M − 1)

3
≤ O(4log log T ) = O(log2 T ), (B.1)

we get that the total seller’s regret for such procedure is O(log2 T ).

B.2 Extension to nonlinear models

Our setup focuses on the linear valuation model, but it is easy to generalize our analysis to some
of nonlinear models. Let us consider the valuation model vt := φ(〈ψ(xt), θ

∗〉), where ψ : X → X
is a mapping and φ : R+ → R+ is an increasing function s.t. φ(x) + h ≤ φ(x + h) for all x ∈ R+

and h ≥ 0. In order to apply Algorithm 1 in this model, we perform the following procedure. After
receiving a vector xt, we consider x̃t := ψ(xt) as a new contextual vector. Then, we find the price
pt from Algorithm 1 for the vector x̃t and propose the new price p̃t := (φ(pt + h) + φ(pt − h))/2
to the buyer, where h = γmtdiam(St)/(1 − γ). From the properties of the function φ, the price p̃t
satisfies the inequality

φ(pt − h) + h ≤ p̃t ≤ φ(pt + h)− h. (B.2)

We notice that after such modification the new algorithm has exactly the same regret bound
as Algorithm 1 applied to the contextual vectors x̃t and proposing the prices pt instead of p̃t. It
holds from the following considerations. From Propositions 1, 2 we know that after rejection and
mt penalization rounds we have

φ(〈x̃t, θ∗〉) ≤ p̃t +
γmt

1− γ
diam(St). (B.3)

Using Inequality B.2 we get that the previous inequality is equivalent to

〈x̃t, θ∗〉 ≤ pt +
γmt

1− γ
diam(St). (B.4)

Similarly, after acceptance and mt penalization rounds we have

〈x̃t, θ∗〉 ≥ pt −
γmt

1− γ
diam(St). (B.5)

Note that bounds from Inequalities B.4, B.5 match with bounds from Propositions 1, 2 applied
to the contextual vector x̃t and the price pt. Thus, our modification of Algorithm 1 satisfies all
properties of Algorithm 1: after substituting x̃t instead of xt, all statements and lemmas formulated
in Section 6 of the main text remain true for the price pt. So, we get the same upper bound of the
seller’s regret for this modification.
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B.3 Independence of γ

Let us assume that we do not know the true value of the parameter γ, but its upper bound γ0
(s.t. γ ≤ γ0 < 1) is known. Then, we can obtain our regret upper bound as well. The technique
is similar to the one used in [4, 7, 6]. Note that bounds from Propositions 1, 2 are monotonous in
the parameter γ and blows up when γ → 1. Therefore, the bounds from these statements are true
for γ0, i.e. after rejection and mt penalization rounds we have

〈xt, θ∗〉 ≤ pt +
γmt
0

1− γ0
diam(St). (B.6)

Also, after acceptance and mt penalization rounds we get

〈xt, θ∗〉 ≥ pt −
γmt
0

1− γ0
diam(St). (B.7)

Note that all statements and lemmas formulated in Section 6 of the main text remain true after
substituting the parameter γ0 instead of γ. Thus, using Algorithm 1 for the parameter γ0, we get
that the asymptotic of the seller’s regret still has the form of O(log2 T ). From this, we can conclude
that our algorithm is also applicable in the situation when the true value of the parameter γ is
unknown and we just have its upper bound.

C Discussion of setup of repeated contextual auctions

As we noted in Sections 2, 3 of the main text, we study the setting of repeated contextual posted-
price auctions which is seemingly similar to the one described by [1, 8]. However, note that,
in the setups considered by [1, 8], expected regret supθ∗∈[0,1]d,D Ex1:T∼DSReg(T,A, θ∗, γ, x1:T , D)
was minimized. In contrast to that studies, in our approach, we minimize worst-case regret
supx1:T∈XT ,θ∗∈[0,1]d,D SReg(T,A, θ∗, γ, x1:T , D). Note that SReg is a function of both a distribution D
(the buyer maximizes his surplus with the fixed distribution D) and context vectors x1:T (similarly
to the scenario of [6]). Then, in the case of expected regret, fixing the distribution, we compute
Ex1:T∼DSReg(T,A, θ∗, γ, x1:T , D) and lose an ability to variate vectors x1:T . So, it is easy to see that

sup
x1:T∈XT ,θ∗∈[0,1]d,D

SReg(T,A, θ∗, γ, x1:T , D) ≥ sup
θ∗∈[0,1]d,D

Ex1:T∼DSReg(T,A, θ∗, γ, x1:T , D), (C.1)

and algorithm A that gives an upper bound for our worst-case regret implies the same upper bound
for expected regret.

Also we emphasize that an algorithm minimizing worst-case regret have to be deterministic and
his regret does not depend on any randomness (it is not true for the setup of [1, 8]).

D Introduction to intrinsic volumes

We now present a formal definition of intrinsic volumes and summarize their most important
properties. Our overview is similar to [10, Section 5]. We refer to the book [9] for a comprehensive
introduction to integral geometry.

Let K be the convex set in Rd and B be an unit ball. We define by K + εB the (Minkowski)
sum of sets K and B. Steiner shows that V ol(K+εB) is a polynomial in ε and the intrinsic volumes
Vj(K), j ∈ {0, . . . , d} can be defined as the normalized coefficients of this polynomial:

V ol(K + εB) =

d∑
j=0

kd−jVj(K)εd−j ,
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where kd−j is the volume of the (d− j)-dimensional unit ball.

Definition D.1 (Valuations). Let Convd be the class of compact convex bodies in Rd. A valuation
is a map ν : Convd→R such that ν(∅) = 0 and for every S1, S2 ∈ Convd satisfying S1∪S2 ∈ Convd
it holds that ν(S1 ∪ S2) + ν(S1 ∩ S2) = ν(S1) + ν(S2). A valuation is said to be monotone if
ν(S1) ≤ ν(S2) whenever S1 ⊆ S2. A valuation is said to be non-negative is ν(S) ≥ 0 for any
S ∈ Convd. Finally, a valuation is rigid if ν(S) = ν(T (S)) for every rigid motion T of Rd.

To define what it means for a valuation to be continuous, we need a notion of distance between
two convex sets. We define the Hausdorff distance δ(K,L) between two sets K,L ∈ Convd to be
the minimum ε such that K + εB ⊆ L and L+ εB ⊆ K where B is a unit ball. Finally, a sequence
Kt ∈ Convd converges to K ∈ Convd (Kt → K) if δ(Kt,K)→ 0.

Definition D.2 (Continuity). A valuation function ν is continuous if whenever Kt → K then
ν(Kt)→ K.

The following theorem states that the intrinsic volumes satisfy natural properties.

Theorem 1. The intrinsic volumes are non-negative monotone continuous rigid valuation.

Otherwise, the intrinsic volumes are quite special. They form the basis for the set of all valua-
tions that are continuous and rigid.

Theorem 2 (Hadwiger). If ν is a continuous rigid valuation of Convd, then there are constants
c0, . . . , cd such that ν =

∑d
i=0 ciVi, where Vi are intrinsic volumes.

Next we describe a few important properties of the intrinsic volumes that will be useful in the
analysis of Algorithm 1.

Theorem 3 (Homogeneity). The map Vj is j-homogenous, i.e., ∀α ∈ R≥0 : Vj(αK) = αjVj(K).

Following [10] we introduce inequlities

Lemma 1 (Isoperimetric inequality). For any S ∈ Convd and any i ≥ 1 it holds that

(i!Vi(S))1/i ≥ ((i+ 1)!Vi+1(S))1/(1+i).

Lemma 2 (Cone Lemma). Let K be a convex set in Rd, and let S be a cone in Rd+1 with base K
and height h. Then, for all 0 ≤ j ≤ d,

Vj+1(S) ≥ 1

j + 1
hVj(K).
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