
































Best Arm Identification for Cascading Bandits in the Fixed Confidence Setting

Set
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it is further equivalent to show f(A) > 0. Then since 0 < X < M a.s., for any A < 0, by Bounded Convergence Theorem,
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Let p be the probability measure of X on R. Since 0 < X < M a.s., u([0, M]) = 1 and
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Since Elexp(AX)])?2 > 0, ¢’(\) < 0. Hence g()\) is monotonically decreasing on R. Further, for any A < 0, since
v2 > EX?

> g(A\) > g(0) =v* —EX? >0 = f'()\) is monotonically increasing
= N < f(0)=0 = f(A) is monotonically decreasing = f(\) > f(0) =
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Casel: K — K > 1,ie, K — max{K' — K,1} = 2K — K;
Case2: K' = K ,ie, K —max{K'— K,1} = K — 1.

For brevity, we only go through the remaining analysis for the first case, the analysis for the second one is similar.

Since the second term in the bound on 7 merely depends on the problem, we turn to analyze the first term. Since the first

2KK

term holds for any values of d;’s such that ) ;= 0k < ¢/2, we minimize the first term with the method of Lagrange

20
multiplier. Set ¢, = % the problem turns to
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Now we bound (&), (©), (&) individually.

Bounding (#) : note that 11— > 2forall 1 <k <2K — K', K’ > K and ¢}, = QUK okt

B pgr
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Bounding (©) : Let g(z) = logx for x > 0, then ¢'(z) = 11& Since ¢’(x) > 0 when z € (0,¢), ¢'(e) =0, ¢'(x) <0
when z € (e, +00), g(x) is 1ncreasmg on (0,e), is decreasmg on (e, +00) and attains its global maximum g(e) = = at

x = e. Hence,
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Bounding (&) : We first rewrite this term according to the definition of T} ’s:

Z To’(z o(L—K+1) + (K - 1)v
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E. Additional numerical results

E.1. Order of pulled items
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