
Best Arm Identification for Cascading Bandits in the Fixed Confidence Setting

A. Notations

[n] set {1, · · · , n} for any n ∈ N

[n](m) set of all m-permutations of [n], i.e., all ordered m-subset of [n] for any m ≤ n

[L] ground set of size L

w(i) click probability of item i ∈ [L]

K size of recommendation list/pulled arm

[L](K) set of all K-permutations of [L]

St recommendation list/pulled arm at time step t

iti i-th pulled item at time step t

Wt(i) an r.v. that reflects whether the user clicks at item i at time step t

Sπt chosen arm at time step t by algorithm π

Oπ
t stochastic outcome by pulling Sπt at time step t by algorithm π

k̃t feedback from the user at time step t

w̄(i) equals to 1− w(i), i.e., one minus the click probability

w the vector of click probabilities w(i)’s

w∗ maximum click probability

w′ minimum click probability

ε tolerance parameter

K ′ε number of ε-optimal items (abbreviated as K ′ for brevity)

S∗ optimal arm in [K](K)

π deterministic and non-anticipatory algorithm

Ŝπ output of algorithm π

T π time complexity of algorithm π

φπ final recommendation rule of algorithm π

Ft observation history

δ risk parameter (failure probability)

T∗(w, ε, δ,K) optimal expected time complexity (abbreviated as T∗)

Dt survival set in Algorithm 1

At accept set in Algorithm 1

Rt reject set in Algorithm 1

Tt(i) number of observations of item i by time step t

ŵt(i) empirical mean of item i at time step t in Algorithm 1

kt number of ε-optimal items to identify at time step t in Algorithm 1

Ct(i, δ) confidence radius of item i at time step t in Algorithm 1

Ut(i, δ) upper confidence bound (UCB) of item i at time step t in Algorithm 1

Lt(i, δ) lower confidence bound (LCB) of item i at time step t in Algorithm 1
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j∗ empirically (K + 1)-th optimal item at time step t in Algorithm 1

j′ empirically K-th optimal item at time step t in Algorithm 1

ρ(δ) parameter used to define the confidence radius Ct(i, δ)

c1, c2, . . . finite and positive universal constants whose values may vary from line to line

∆i gap between the click probabilities

∆̄i variation of ∆i incurred by the tolerance parameter ε

T̄i,δ number of observations required to identify item i with fixed δ and ε

σ(i) descending order of ∆̄i of ground items

k̂t number of surviving items pulled at time step t during the proceeding of Algorithm 1

Xk̂t;t
number of observations of surviving items at time step t

µ(k,w) lower bound on EXk;t (abbreviated as µk)

v(k,w) upper bound on EX2
k;t (abbreviated as vk)

K1,K2,Mk parameters used in Theorem 4.1

N1, N2, N3 constituents in the upper bound established in Theorem 4.1

π1 represents Algorithm 1 for brevity

µ̃(k,w) upper bound on EXk;t (abbreviated as µ̃k)

E(i, δ) “nice event” in the analysis of Algorithm 1

w(`)(`) click probability of item ` under instance ` (1 ≤ ` ≤ L)

Sπ,`t chosen arm at time step t by algorithm π under instance ` (0 ≤ ` ≤ L)

Oπ,`
t stochastic outcome by pulling Sπt at time step t by algorithm π under instance ` (0 ≤ ` ≤ L)

B. Useful definitions and theorems
Here are some basic facts from the literature that we will use:

Theorem B.1 (Azuma’s Inequality for Martingales with Subgaussian Tails, implied by Shamir (2011)). Let {(Dt,Ft)}∞t=1

be a martingale difference sequence, and suppose that for any λ ≤ 0, we have E[eλDt |Ft−1] ≤ eλ2ω2/2 almost surely. Then
for all ω ≥ 0,

Pr

[
n∑
t=1

Dt ≤ −ω

]
≤ exp

(
− ω2

2
∑n
t=1 v

2
t

)
.

Theorem B.2 (Non-asymptotic law of the iterated logarithm (Jamieson et al., 2014; Jun et al., 2016)). Let X1, X2, . . . be
i.i.d. zero-mean sub-Gaussian random variables with scale σ > 0; i.e. EeλXi ≤ eλ

2σ2

2 . Let ω ∈ (0,
√

1/6). Then,

P

(
∀τ ≥ 1,

∣∣∣∣∣
τ∑
s=1

Xs

∣∣∣∣∣ ≤ 4σ

√
log (log2(2τ)/ω)

τ

)
≥ 1− 6ω2.

C. Influence of ε
In general, a larger ε indicates a smaller time complexity. Here are two explanations. (i) When ε grows, K ′ε, the number
of ε-optimal items also grows. Then it should be easier to identify an ε-optimal arm. (ii) If ε is sufficiently large such
that K ′ε ≥ 2K − 1, then there are at least K items left in the survival set Dt before the algorithm stops. Otherwise, when
|Dt| < K, the agent pulls |Dt| < K surviving items at some steps and this results in a wastage in the number of time steps.
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Proposition C.1. Assume K ′ ≥ 2K − 1. With probability at least 1− δ, Algorithm 1 outputs an ε-optimal arm after at
most (c1N

′
1 + c2N

′
2) steps where

N ′1 =
2v2
K

µ2
K

log

(
2

δ

)
= O

(
v2
K

µ2
K

log

(
2

δ

))
,

N ′2 =
2

µK

L−K′+K−1∑
i=1

T̄σ(i) + (K ′ −K + 1)T̄σ(L−K′+K) + (K ′ −K)


= O

 1

µK


L−K′+K−1∑

i=1

∆̄−2
σ(i) log

[
L

δ
log

(
L

δ∆̄2
σ(i)

)]
+ (K ′ −K + 1)∆̄−2

σ(L−K′+K) log

[
L

δ
log

(
L

δ∆̄2
σ(L−K′+K)

)]
 .

D. Proofs of main results
In this Section, we provide proofs of Proposition 4.2, Corollary 4.3, Propositions 4.4, 4.6, 4.7, Corollary 4.9, Theorem 5.1,
5.4, Lemmas 5.2 – 5.11, and complete the proof of Theorems 4.1, 4.8, Proposition C.1 in this order.

D.1. Proof of Proposition 4.2

Proposition 4.2. Assume 0 < w′ < w∗ ≤ 1. We have

N1 ≤

 4K log
(

4K
δ

)
0 < w∗ ≤ 1/K,

8Kw∗2

w′2 log
(

8Kw∗2

δw′2

)
1/K < w∗ ≤ 1.

Proof. According to Lemma 5.2 and Theorem 5.4,

µk ≥ min{k/2, 1/(2w∗)}, vk = min{k,
√

2/w′}.

We upper bound vk/µk and k/µk in two cases:

(i): 0 < w∗ ≤ 1/K: 0 < w′ < w∗ ≤ 1/K, vk = k, µk ≥ k/2.

vk
µk
≤ k

k/2
= 2 ⇒

K−K2∑
k=1

v2
K−k+1

µ2
K−k+1

log

1

δ

K−K2∑
j=1

v2
K−j+1

µ2
K−j+1

 ≤ 4K log

(
4K

δ

)
.

(ii): 1/K < w∗ ≤ 1: vk ≤
√

2/w′, µk ≥ 1/(2w∗).

vk
µk
≤
√

2/w′

1/(2w∗)
=

2
√

2w∗

w′
⇒

K−K2∑
k=1

v2
K−k+1

µ2
K−k+1

log

1

δ

K−K2∑
j=1

v2
K−j+1

µ2
K−j+1

 ≤ 8Kw∗2

w′2
log

(
8Kw∗2

δw′2

)
.

D.2. Proof of Corollary 4.3

Corollary 4.3. (i) If all w(i)’s are at most 1/K, with probability at least 1− δ, Algorithm 1 outputs S∗ after at most

O

(
1

K

L−K∑
i=1

T̄σ(i) + T̄σ(L−1)

)

= O

(
1

K

L−K∑
i=1

∆−2
σ(i) log

[
L

δ
log

(
L

δ∆2
σ(i)

)]
+ ∆−2

σ(L−1) log

[
L

δ
log

(
L

δ∆2
σ(L−1)

)])
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steps; (ii) if all w(i)’s are at least 1/2, with probability at least 1− δ, Algorithm 1 outputs S∗ after at most

O

( L−1∑
i=1

T̄σ(i)

)
= O

( L−1∑
i=1

∆−2
σ(i) log

[
L

δ
log

(
L

δ∆2
σ(i)

)])
steps.

Proof. According to Lemma 5.2 and Theorem 5.4,

µk ≥ min{k/2, 1/(2w∗)}, vk = min{k,
√

2/w′}.

We first upper bound vk/µk and k/µk in two cases:

(i): 0 < w∗ ≤ 1/K: 0 < w′ < w∗ ≤ 1/K, vk = k, µk ≥ k/2.

vk
µk
≤ k

k/2
= 2,

k

µk
≤ k

k/2
= 2.

(ii): 1/K < w∗ ≤ 1: vk ≤
√

2/w′, µk ≥ 1/(2w∗).

vk
µk
≤
√

2/w′

1/(2w∗)
=

2
√

2w∗

w′
,

k

µk
≤ k

1/(2w∗)
= 2kw∗.

Next, we separate the upper bound in Theorem 4.1 into two parts and bound them separately:

(A) =

K−1∑
k=1

v2
K−k+1

µ2
K−k+1

log

1

δ

K−1∑
j=1

v2
K−j+1

µ2
K−j+1

 ,

(B) =
1

µK

L−K∑
i=1

T̄σ(i) +

K−K1−1∑
k=1

T̄σ(L−K+k)

(
K − k + 1

µK−k+1
− K − k
µK−k

)
+

(
K1 + 1

µK1+1
− 2

)
T̄σ(L−K1) + 2T̄σ(L−K2)

with K1 = min{b1/w∗c,K − 1}, K2 = 1.

Case 1: All click probabilities w(i) are at most 1/K. 1/w∗ ≥ K and vk/µk ≤ 2, K1 = K − 1.

(A) ≤ 4(K − 1) log

(
4(K − 1)

δ

)
= O

(
K log

(
K

δ

))
,

(B) ≤ 2

K

L−K∑
i=1

T̄σ(i) +

(
2

µ2
− 2

)
T̄σ(L−K+1) + 2T̄σ(L−1) = O

(
1

K

L−K∑
i=1

T̄σ(i) + T̄σ(L−1)

)
.

Case 2: All click probabilities w(i) are at least 1/2. 1/w∗ ≤ K implies vk/µk ≤ 4
√

2, K1 ≥ 1.

(A) ≤ 32(K − 1) log

(
32(K − 1)

δ

)
= O

(
K log

(
K

δ

))
,

(B) ≤ 2

L−K∑
i=1

T̄σ(i) +

K−2∑
k=1

T̄σ(L−K+k)

(
K − k + 1

µK−k+1
− K − k
µK−k

)
+

2

µ2
T̄σ(L−1)

= 2

L−K∑
i=1

T̄σ(i) +

K−3∑
k=0

K − k
µK−k

T̄σ(L−K+k+1) −
K−2∑
k=1

K − k
µK−k

T̄σ(L−K+k) +
2

µ2
T̄σ(L−1)

= 2

L−K∑
i=1

T̄σ(i) +
K

µK
T̄σ(L−K+1) +

K−2∑
k=0

K − k
µK−k

[
T̄σ(L−K+k+1) − T̄σ(L−K+k)

]
≤ 2

L−K∑
i=1

T̄σ(i) +
K

µK
T̄σ(L−K+1) +

K−2∑
k=0

2(K − k) ·
[
T̄σ(L−K+k+1) − T̄σ(L−K+k)

]
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≤ 2

L−K∑
i=1

T̄σ(i) +

K−2∑
k=1

T̄σ(L−K+k) [2(K − k + 1)− 2(K − k)] + 4T̄σ(L−1)

= O

(
L−1∑
i=1

T̄σ(i)

)
.

Recall that when ε = 0,

T̄i = O

(
∆−2
i log

(
L

δ
log

(
L

δ∆2
i

)))
for all i ∈ [L]. Altogether, we complete the proof.

D.3. Proof of Proposition 4.4

Proposition 4.4. (i) If all w(i)’s are at most 1/K,

ET π1≤c1 log

(
1

δ

)
·
{

1

K

L−K∑
i=1

∆−2
σ(i) log

[
L log

(
L

∆2
σ(i)

)]
+∆−2

σ(L−1) log

[
L log

(
L

∆2
σ(L−1)

)]}
;

(ii) if all w(i)’s are at least 1/2,

ET π1 ≤ c2
L−1∑
i=1

∆−2
σ(i) log

[
L log

(
L

∆2
σ(i)

)]
log

(
1

δ

)
.

Proof. (i) Consider all click probabilities w(i)′’s are at most 1/K. For any 0 < δ′ ≤ δ, revisit the proof and result of
Theorem 4.1. First, Lemma 5.7 implies that P

(⋂L
i=1 E(ε, δ′)

)
≥ 1 − δ′/2. Assume

⋂L
i=1 E(ε, δ′) holds from now on.

Secondly, Lemma 5.8 indicates that Algorithm 1 can correctly identify item i after T̄i,δ observations. Thirdly, similar to the
discussion in Section 5.2, we set

∑K−1
k=1 δk ≤ δ′/2. Additionally applying the analysis in Proposition 4.2 and Corollary 4.3,

with probability at least 1− δ′, we can bound the time complexity by

K−1∑
k=1

v2
K−k+1

µ2
K−k+1

log

 1

δ‘

K−K2∑
j=1

v2
K−j+1

µ2
K−j+1

+K +
8

K

L−K∑
i=1

T̄σ(i) + 8T̄σ(L−1)

≤ 4K log

(
4K

δ′

)
+K +

8

K

L−K∑
i=1

217

∆2
σ(i)

log

[
24L

δ′
log2

(
648× 12L

δ′∆2
σ(i)

)]
+

7136

∆2
σ(L−1)

log

[
24L

δ′
log2

(
648× 12L

δ′∆2
σ(L−1)

)]

≤ 5K log

(
4K

δ′

)
+

1

K

L−K∑
i=1

10600

∆2
σ(i)

log

[
L

δ′
log2

(
L

δ′∆2
σ(i)

)]
+

10600

∆2
σ(L−1)

log

[
L

δ′
log2

(
L

δ′∆2
σ(L−1)

)]

≤ 10610 log

(
1

δ′2

)
·

{
1

K

L−K∑
i=1

∆−2
σ(i) log

[
L log

(
L

∆2
σ(i)

)]
+ ∆−2

σ(L−1) log

[
L log

(
L

∆2
σ(L−1)

)]}
.

In short, set

A = 21220

{
1

K

L−K∑
i=1

∆−2
σ(i) log

[
L log

(
L

∆2
σ(i)

)]
+ ∆−2

σ(L−1) log

[
L log

(
L

∆2
σ(L−1)

)]}
,

then Pr(T > −A log δ′) < δ′ for any 0 ≤ δ′ ≤ δ.
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Meanwhile, Tonelli’s Theorem implies that

ET = E

[∫ T
0

1 dx

]
= E

[∫ +∞

0

I(T > x) dx

]
=

∫ +∞

0

E [I(T > x)] dx =

∫ +∞

0

P(T > x) dx.

Since x = −A log δ implies δ = e−x/A and
∫ +∞

0
e−x/A dx = Ae−x/A|0x=+∞ = A,

ET ≤
∫ −A log δ

0

1 dx+

∫ +∞

−A log δ

P(T > x) dx ≤ −A log δ +

∫ +∞

0

P(T > x) dx = −A log δ +A

≤ 42440 log

(
1

δ

)
·

{
1

K

L−K∑
i=1

∆−2
σ(i) log

[
L log

(
L

∆2
σ(i)

)]
+ ∆−2

σ(L−1) log

[
L log

(
L

∆2
σ(L−1)

)]}
.

(ii) Consider all click probabilities w(i)’s are at least 1/2. The analysis is similar to that in Case (i). With the analysis
in Theorem 4.1 and results in Proposition 4.2 and Corollary 4.3, for any 0 < δ′ ≤ δ, with probability at least 1− δ′, the
time complexity is at most

K−1∑
k=1

v2
K−k+1

µ2
K−k+1

log

 1

δ′

K−1∑
j=1

v2
K−j+1

µ2
K−j+1

+K + 8

L−1∑
i=1

T̄σ(i)

≤ 8Kw∗2

w′2
log

(
8Kw∗2

δw′2

)
+K +

L−1∑
i=1

8× 217

∆2
σ(i)

log

[
24L

δ′
log2

(
648× 12L

δ′∆2
σ(i)

)]

≤ 32K log

(
32K

δ

)
+K +

L−1∑
i=1

10598

∆2
σ(i)

log

[
L

δ′
log2

(
L

δ′∆2
σ(i)

)]

≤ 10630

L−1∑
i=1

∆−2
σ(i) log

[
L log

(
L

∆2
σ(i)

)]
log

(
1

δ′2

)
.

Set A = 21260
∑L−1
i=1 ∆−2

σ(i) log

[
L log

(
L

∆2
σ(i)

)]
, then Pr(T > −A log δ′) < δ′ for any 0 ≤ δ′ ≤ δ. Lastly,

ET ≤ 42520

L−1∑
i=1

∆−2
σ(i) log

[
L log

(
L

∆2
σ(i)

)]
log

(
1

δ

)
.

D.4. Proof of Proposition 4.6

Proposition 4.6. Under Assumption 4.5, (i) if 0 < w∗ ≤ 1/K, with probability at least 1− δ, Algorithm 1 outputs S∗ after
at most

O

(
L

K(w∗ − w′)2
log

[
L

δ
log

(
L

δ(w∗ − w′)2

)])
steps; (ii) if 1/K < w∗ ≤ 1, with probability at least 1− δ, Algorithm 1 outputs S∗ after at most

O

(
w∗L

(w∗−w′)2
log

[
L

δ
log

(
L

δ(w∗−w′)2

)]
+
w∗2

w′2
log

(
1

δ

))
steps.

Proof. We first remind ourselves how the algorithm proceeds. In this instance, ε = 0 yields K∗ = 1. For any item
i ∈ [L], ∆̄i = ∆i = w∗ −w′. And according to Lemma 5.8, item i will be correctly classified with high probability after T̄i
observations where ρ = δ/(12L),

T̄i,δ = T̄(w,δ) = T̄(w) = 1 +

⌊
216

(w∗ − w′)2
log

(
2

ρ
log2

(
648

ρ(w∗ − w′)2

))⌋
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= O

(
1

(w∗ − w′)2
log

[
L

δ
log2

(
L

δ(w∗ − w′)2

)])
.

This implies that each item requires the same number of observations to be correctly identified. According to the design of
algorithm, Tt(j)− 1 ≤ Tt(i) ≤ Tt(j) + 1 for any remaining items i 6= j. Therefore, the worst case is as follows:

• the agent observes one item for T̄(w) times and the others for T̄(w) − 1 times after t′ steps, and identifies one item per
step for the subsequent L− 2 steps.

Therefore, we now turn to upper bounding the number of steps required to eliminate an item for the first time. According to
Lemma 5.6, we set δ0 = δ/2, k = K, n = t′, ω′K = −

√
−2t′v2

K log(δ/2). Then the total number of observations during t′

steps should be larger than t′µK + ω′K with probability at least 1− δ/2. The number of observations can be upper bounded
as follows:

t′µK + ω′K ≤ T̄(w) + (L− 1)[T̄(w) − 1] = L · T̄(w) − L+ 1.

Then with Lemma 5.7 and its ensuing discussion in Section 5.2, with probability at least 1− δ, the time complexity is upper
bounded by

2(L · T̄(w) − L+ 1)

µK
+

2v2
K

µ2
K

log

(
2

δ

)
.

Next, we consider how the values of w∗ and w′ affect the bound. According to Lemma 5.2 and Theorem 5.4,

µk ≥ min{k/2, 1/(2w∗)}, vk = min{k,
√

2/w′}.

We discuss two cases separately:

Case 1: 0 < w∗ ≤ 1/K: 0 < w′ < w∗ ≤ 1/K, vK = K, µK ≥ K/2. The upper bound becomes:

4(L · T̄(w) − L+ 1)

K
+

8K2

K2
log

(
2

δ

)
= O

(
L

K(w∗ − w′)2
log

[
L

δ
log2

(
L

δ(w∗ − w′)2

)])
.

Case 2: 1/K < w∗ ≤ 1: vk ≤
√

2/w′, µk ≥ 1/(2w∗). The bound becomes

2(L · T̄(w) − L+ 1)

1/(2w∗)
+

4/w′2

1/(2w∗)2
log

(
2

δ

)
= O

(
w∗L

(w∗ − w′)2
log

[
L

δ
log2

(
L

δ(w∗ − w′)2

)]
+

(
w∗

w′

)2

· log

(
1

δ

))
.

D.5. Proof of Proposition 4.7

Proposition 4.7. Under Assumption 4.5, (i) if 0<w∗≤1/K,

ET π1 ≤ c1L

K(w∗ − w′)2
log

[
L log

(
L

(w∗ − w′)2

)]
log

(
1

δ

)
;

(ii) if w′ ≥ 1/2 or w∗/w′ ≤ 2,

ET π1 ≤ c2w
∗L

(w∗ − w′)2
log

[
L log

(
L

(w∗ − w′)2

)]
log

(
1

δ

)
.

Proof. For any 0 < δ′ ≤ δ, we revisit the proof of Proposition 4.6. Firstly, Lemma 5.7 implies that P
(⋂L

i=1 E(ε, δ′)
)
≥

1 − δ′/2. Assume
⋂L
i=1 E(ε, δ′) holds from now on. Secondly, Lemma 5.8 implies that the agent can identify any item

correctly after

T̄(w,δ′) = 1 +

⌊
216

(w∗ − w′)2
log

(
24L

δ′
log2

(
648 ∗ 24L

δ′(w∗ − w′)2

))⌋
≤ 1320

(w∗ − w′)2
log

[
L

δ′
log

(
L

δ′(w∗ − w′)2

)]
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observations. Then with analysis similar to Appendix D.4, we can upper bound the time complexity of Algorithm 1 with
probability 1− δ′.

Case 1: 0 < w∗ ≤ 1/K: with probability at least 1− δ′, the time complexity is upper bounded by

4L · T̄(w,δ′)

K
+ 8 log

(
2

δ′

)
≤ 5288L

K(w∗ − w′)2
log

[
L

δ′
log

(
L

δ′(w∗ − w′)2

)]
≤ 10576L

K(w∗ − w′)2
log

[
L log

(
L

(w∗ − w′)2

)]
log(

1

δ′
) := −A log δ′.

Then for any 0 < δ′ ≤ δ, Pr(T > −A log δ′) < δ′. Meanwhile, Tonelli’s Theorem implies that

ET = E

[∫ T
0

1 dx

]
= E

[∫ +∞

0

I(T > x) dx

]
=

∫ +∞

0

E [I(T > x)] dx =

∫ +∞

0

P(T > x) dx.

Since x = −A log δ implies δ = e−x/A and
∫ +∞

0
e−x/A dx = Ae−x/A|0x=+∞ = A,

ET ≤
∫ −A log δ

0

1 dx+

∫ +∞

−A log δ

P(T > x) dx ≤ −A log δ +

∫ +∞

0

P(T > x) dx = −A log δ +A

≤ 21152L

K(w∗ − w′)2
log

[
L log

(
L

(w∗ − w′)2

)]
log(

1

δ
).

Case 2: 1/2 ≤ w′ < 1 or w∗/w′ ≤ 2: with a similar analysis, for any 0 < δ ≤ δ′, with

4w∗LT̄(w,δ′) + 16

(
w∗

w′

)2

log

(
2

δ′

)
≤ 5280w∗L

(w∗ − w′)2
log

[
L

δ′
log

(
L

δ′(w∗ − w′)2

)]
+ 64 log

(
1

δ′

)
≤ 10624w∗L

(w∗ − w′)2
log

[
L log

(
L

(w∗ − w′)2

)]
log

(
1

δ′

)
:= −A log δ′

Pr(T > −A log δ′) < δ′. Lastly,

ET ≤ 21248w∗L

(w∗ − w′)2
log

[
L log

(
L

(w∗ − w′)2

)]
log

(
1

δ

)
.

D.6. Proof of Corollary 4.9

Corollary 4.9. Under Assumption 4.5, we have

T∗ ≥ KL(1− δ, δ)
µ̃K

·
[

K

KL(w∗, w′)
+

L−K
KL(w′, w∗)

]
= Ω

(
min{w′, 1− w∗} · Lw′

(w∗ − w′)2
log
[1

δ

])
.

where µ̃K = [1− (1− w′)K ]/w′ ≤ 1/w′.

Proof. First, by setting w(i) = w∗ for all 1 ≤ i ≤ K and w(j) = w′ for all k < j ≤ L, the result in Theorem 4.8 becomes

KL(1− δ, δ)
µ̃K

·
[

K

KL(w∗, w′)
+

L−K
KL(w′, w∗)

]
≥ log(1/2.4δ)

µ̃K
·
[

K

KL(w∗, w′)
+

L−K
KL(w′, w∗)

]
.

Next, according to Pinsker’s and reverse Pinsker’s inequality for any two distributions P and Q defined in the same finite
space X we have

δ(P,Q)2 ≤ 1

2
KL(P,Q) ≤ 1

αQ
δ(P,Q)2
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where δ(P,Q) = sup{|P (A)−Q(A)|
∣∣A ⊂ X} and αQ = minx∈X:Q(x)>0Q(x). In our case, set δ(w∗, w′) = (w∗−w′)2

and α = min{w′, w∗, 1− w∗, 1− w′} = min{w′, 1− w∗}, we have

(w∗ − w′)2 ≤ 1

2
KL(w∗, w′) ≤ 1

α
(w∗ − w′)2 =

1

min{w′, 1− w∗}
(w∗ − w′)2,

(w∗ − w′)2 ≤ 1

2
KL(w′, w∗) ≤ 1

α
(w∗ − w′)2 =

1

min{w′, 1− w∗}
(w∗ − w′)2.

Further since µ̃K ≤ 1/w′ as stated by Lemma 5.2, the lower bound becomes

Ω

(
min{w′, 1− w∗} · Lw′

(w∗ − w′)2
log

[
1

δ

])
.

D.7. Proof of Theorem 5.1

Theorem 5.1. Consider a set of items with weights u = (u1, . . . , uk) such that u1 ≥ . . . ≥ uk, and let µk(u, I) be the
expected number of observations when items are placed with order I . Let Idec = (1, . . . , k), Iinc = (k, . . . , 1), and I be any
order, then
(i) boundedness: µk(u, Idec)≤ µk(u, I) ≤ µk(u, Iinc);
(ii) monotonicity: let v=(v1, . . . , vk) be another vector of weights, then µk(u, I)≥µk(v, I) if ui≤vi for all i∈ [k].

Proof. (i) Consider any ordered set I = (iI1, . . . , i
I
k). To show µk(u, Idec) ≤ µk(u, I) ≤ µk(u, Iinc), it is sufficient to show

the following:

(∗): If there exists 1 ≤ m < k such that uiIm < uiIm+1
, we can change their positions to get I ′ and have µk(u, I) >

µk(u, I ′).

The proof of (∗) is as follows:

if 1 ≤ m < k − 1,

µk(u, I)− µk(u, I ′) = m ·
m−1∏
j=1

(1− uiIj )(uiIm − uiIm+1
) + (m+ 1) ·

m−1∏
j=1

(1− uiIj )[uiIm+1
(1− uiIm)− uiIm(1− uiIm+1

)]

= −
m−1∏
j=1

(1− uiIj )(uiIm − uiIm+1
) > 0;

if m = k − 1,

µk(u, I)− µk(u, I ′) = m ·
m−1∏
j=1

(1− uiIj )(uiIm − uiIm+1
) + (m+ 1) ·

m−1∏
j=1

(1− uiIj )[(1− uiIm)− (1− uiIm+1
)]

= −
m−1∏
j=1

(1− uiIj )(uiIm − uiIm+1
) > 0.

(ii) To show the monotonicity, it is sufficient to show the following:

(#): Set two sets of click probabilities u, v such that viIm > uiIm for some 1 ≤ m ≤ k and viIj = uiIj for j 6= m. Then we
have µk(u, I) ≥ µk(v, I).

Here is the proof of (#). If m = k, then obviously we have µk(u, I) = µk(v, I). If 1 ≤ m < k, we exchange positions of
the m-th and (m+ 1)-th item to get a new ordered set I1, then

µk(u, I)− µk(u, I1) = −
m−1∏
j=1

(1− uiIj )(uiIm − uiIm+1
), µk(v, I)− µk(v, I1) = −

m−1∏
j=1

(1− uiIj )(viIm − uiIm+1
).



Best Arm Identification for Cascading Bandits in the Fixed Confidence Setting

Hence

µk(u, I)− µk(v, I) = [µk(u, I)− µk(u, I1)]− [µk(v, I)− µk(v, I1)] + µk(u, I1)− µk(v, I1)

= −
m−1∏
j=1

(1− uiIj )(uiIm − viIm) + µk(u, I1)− µk(v, I1)

> µk(u, I1)− µk(v, I1).

If m+ 1 < k, note that the only difference between (u, I1) and (v, I1) now lies in the click probability of the (m+ 1)-th
item. In detail,

u
i
I1
m+1

= uiIm , viI1m+1
= viIm and u

i
I1
j

= v
i
I1
j
, ∀j 6= m+ 1.

We exchange positions of the (m+ 1)-th and (m+ 2)-th item in I1 to get a new ordered set I2. Similarly we have

µk(u, I1)− µk(v, I1) = [µk(u, I1)− µk(u, I2)]− [µk(v, I1)− µk(v, I2)] + µk(u, I2)− µk(v, I2)

= −
m∏
j=1

(1− u
i
I1
j

)(u
i
I1
m+1
− v

i
I1
m+1

) + µk(u, I2)− µk(v, I2)

= −
m∏
j=1

(1− u
i
I1
j

)(uiIm − viIm) + µk(u, I2)− µk(v, I2)

> µk(u, I2)− µk(v, I2).

We can continue this operation for n = k −m times and get In. Iteratively, we have µk(u, I)− µk(v, I) ≥ µk(u, In)−
µk(v, In). Besides, the only difference between (u, In) and (v, In) now lies in the click probability of the k-th item:

uiInk
= uiIm , viInk

= viIm and uiInj
= viInj

, ∀j 6= k.

Since µk(u, In) = µk(v, In), µk(u, I) ≥ µk(v, I).

D.8. Proof of Lemma 5.2

Lemma 5.2. For any k, t,

min
{k

2
,

1

2w∗

}
≤ µk ≤ EXk;t ≤ µ̃k ≤ min

{ 1

w′
, k
}
.

Proof. Lower bound. According to Lemma 5.1, the expectation of observations attains its minimum when we pull an
ordered set {1, 2, . . . , k}, and attains its maximum when we pull an ordered set {L− k + 1, L− k + 2, . . . , L}. In other
words, depending on the instance, the expectation of observations can be lower bounded as follows:

µk = µ(k,w) =

k−1∑
i=1

i · w(i) ·
i−1∏
j=1

[1− w(j)] + k ·
k−1∏
j=1

[1− w(j)].

Moreover, since the lower bound µk is larger than the expectation of observations when w(i) = w∗ for all 1 ≤ i ≤ k or we
pull item 1 for K times (note that this is not allowed in Algorithm 1), we can utilize only w∗ to lower bound the expectation:

µk ≥
k−1∑
i=1

i · w∗(1− w∗)i−1 + k(1− w∗)k−1 := g(w∗)

then

g(w) = w + 2w(1− w) + . . .+ (k − 1)w(1− w)k−2 + k(1− w)k−1
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(1− w) · g(w) = w(1− w) + 2w(1− w)2 + . . .+ (k − 1)w(1− w)k−1 + k(1− w)k

w · g(w) = w + w(1− w) + w(1− w)2 + . . .+ w(1− w)k−2 + [k − (k − 1)w](1− w)k−1 − k(1− w)k

w · g(w) = w + w(1− w) + w(1− w)2 + . . .+ w(1− w)k−2 + (k − kw + w − k + kw)(1− w)k−1

w · g(w) = w · 1− (1− w)k

w

g(w) =
1− (1− w)k

w
.

Let w∗ = k−β ∈ [0, 1], then β ≥ 0. Since (1 − 1/x)x is a nondecreasing function of x and limx→∞(1 − 1/x)x = 1/e,
k1−β ≥ 0,

g(w∗) =
1− (1− w∗)k

w∗
=

1− (1− k−β)k
β ·k1−β

k−β
≥ kβ ·

(
1− e−k

1−β
)
.

If β ≥ 1, let f(x) = e−x, then f (n)(x) = (−1)n · e−x. For any x ≥ 0, there exists y ∈ [0, x] such that

f(x) = f(0) + f ′(0) · x+
1

2!
f (2)(0) · x2 +

1

3!
f (3)(0) · y3 = 1− x+

x2

2
− y3

3
≤ 1− x+

x2

2
.

This leads to 1− e−x ≥ x(1− x/2) and

g(w∗) ≥ kβ · k1−β(1− k1−β/2) ≥ k(1− 1/2) = k/2.

Otherwise, 0 ≤ β < 1. Since

β ↗ ⇒ 1− β ↘ ⇒ k1−β ↘ ⇒ −k1−β ↗ ⇒ e−k
1−β
↗ ⇒ 1− e−k

1−β
↘ ,

1− e−k1−β decreases as β increases. Then,

g(w∗) ≥ kβ · (1− e−k
1−1

) = kβ · (1− e−1) ≥ kβ · (1− 1/2) = kβ/2.

Altogether, µk ≥ min{k/2, kβ/2} = min{k/2, 1/(2w∗)}.

Upper bound. Similarly we can see that the expectation of observations attains its maximum when we pull an ordered set
{L,L− 1, . . . , L− k + 1}, and therefore upper bounded by

µ̃k = µ̃(k,w) =

k−1∑
i=1

i · w(L+ 1− i) ·
i−1∏
j=1

[1− w(L+ 1− j)] + k ·
k−1∏
j=1

[1− w(L+ 1− j)].

Furthermore, the upper bound µ̃k is smaller than the expectation of observations when w(j) = w′ for all L−k+ 1 ≤ j ≤ L
or we pull item L for K times (again note that this is not allowed in Algorithm 1):

µ̃k ≤
k−1∑
i=1

i · w′(1− w′)i−1 + k(1− w′)k−1 = g(w′) ≤ 1

w′
.

D.9. Proof of Theorem 5.4

Theorem 5.4. Let X be an almost surely bounded nonnegative r.v.. If EX2 ≤ v2, then X is v-LSG.

Proof. Set EX = µ and 0 ≤ X ≤ M a.s., then M ≥ 0 and 0 ≤ µ ≤ M . It is equivalent to show that for any v ≥ EX2,
λ ≤ 0,

E[exp(λX)] ≤ exp

(
v2λ2

2
+ λµ

)
.
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Set

f(λ) :=
v2λ2

2
+ λµ− logE[exp(λX)],

it is further equivalent to show f(λ) ≥ 0. Then since 0 ≤ X ≤M a.s., for any λ ≤ 0, by Bounded Convergence Theorem,

E[exp(λX)] ≤ 1,

∣∣∣∣ d

dλ
exp(λX)

∣∣∣∣ = |X exp(λX)| ≤M a.s.,

⇒ d

dλ
E[exp(λX)] = E

[
d

dλ
exp(λX)

]
= E[X exp(λX)] ≤M,

∣∣∣∣ d

dλ
X exp(λX)

∣∣∣∣ = |X2 exp(λX)| ≤M2 a.s.,

⇒ d

dλ
E[X exp(λX)] = E

[
d

dλ
X exp(λX)

]
= E[X2 exp(λX)] ≤M2,∣∣∣∣ d

dλ
X2 exp(λX)

∣∣∣∣ = |X3 exp(λX)| ≤M3 a.s.,

⇒ d

dλ
E[X2 exp(λX)] = E

[
d

dλ
X2 exp(λX)

]
= E[X3 exp(λX)].

Therefore,

f(0) = 0,

f ′(λ) = v2λ+ µ−
d

dλE[exp(λX)]

E[exp(λX)]
= v2λ+ µ− E[X exp(λX)]

E[exp(λX)]
,

f ′(0) = µ− EX = 0,

f ′′(λ) = v2 − E[X2 exp(λX)]E[exp(λX)]− (E[X exp(λX)])2

(E[exp(λX)])2
≥ v2 − E[X2 exp(λX)]

E[exp(λX)]
:= g(λ),

g′(λ) =
−E[X3 exp(λX)]E[exp(λX)] + E[X2 exp(λX)]E[X exp(λX)]

E[exp(λX)])2
.

Let µ be the probability measure of X on R. Since 0 ≤ X ≤M a.s., µ([0,M ]) = 1 and

− E[X3 exp(λX)]E[exp(λX)] + E[X2 exp(λX)]E[X exp(λX)]

= −
∫

[0,M ]

∫
[0,M ]

x3eλx+λy dµ(x) dµ(y) +

∫
[0,M ]

∫
[0,M ]

x2yeλx+λy dµ(x) dµ(y)

=
1

2

∫
[0,M ]

∫
[0,M ]

eλx+λy(−x3 − y3 + x2y + xy2) dµ(x) dµ(y)

=
1

2

∫
[0,M ]

∫
[0,M ]

eλx+λy[−x2(x− y)− y2(y − x)] dµ(x) dµ(y)

=
1

2

∫
[0,M ]

∫
[0,M ]

eλx+λy(x− y)(y2 − x2) dµ(x) dµ(y)

= −1

2

∫
[0,M ]

∫
[0,M ]

eλx+λy(x− y)2(x+ y) dµ(x) dµ(y) ≤ 0.

Since E[exp(λX)])2 > 0, g′(λ) ≤ 0. Hence g(λ) is monotonically decreasing on R. Further, for any λ ≤ 0, since
v2 ≥ EX2

f ′′(λ) ≥ g(λ) ≥ g(0) = v2 − EX2 ≥ 0 ⇒ f ′(λ) is monotonically increasing
⇒ f ′(λ) ≤ f ′(0) = 0 ⇒ f(λ) is monotonically decreasing ⇒ f(λ) ≥ f(0) = 0.
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Given v2 ≥ EX2, it is more challenging to show X is v-SG than to show X is v-LSG. By revisiting the proof above,
we see that given X is v-LSG, to show X is v-SG suffices to show f(λ) ≥ 0 for any λ ≥ 0. Since it is hard to directly tell
whether the inequality above holds for any λ ≥ 0, it is natural to look at how f(λ) grows in R.

Fix any M0 > 0. For any λ ∈ [0,M0], again, applying the Bounded Convergence Theorem, we have

d

dλ
E[exp(λX)] = E

[
d

dλ
exp(λX)

]
,

d

dλ
E[X exp(λX)] = E

[
d

dλ
X exp(λX)

]
,

⇒ f ′(λ) = v2λ+ µ− E[X exp(λX)]

E[exp(λX)]
,

f ′′(λ) = v2 − E[X2 exp(λX)]E[exp(λX)]− (E[X exp(λX)])2

(E[exp(λX)])2
.

Since f(0) = 0 and f ′ is differentiable on R, it requires at least r > 0 such that f ′(λ) ≥ 0 for any λ ∈ [0, r]. Furthermore,
since f ′(0) = 0, one may consider showing that f ′′(λ) ≥ 0 on [0, r].

In the proof above, we define a function g to show that f ′′(λ) ≥ g(λ) ≥ 0 on (−∞, 0]. However, since g(λ) ≤ 0 on
[0,+∞), this cannot help to show f ′′(λ) ≥ 0 on [0, r].

The discussion above indicates that showing X is v-SG is more challenging than showing X is v-LSG.

D.10. Proof of Lemma 5.5

Lemma 5.5. For any k, t, EX2
k;t ≤ v2

k = min{k2, 2/w′2 }.

Proof. Recall w′ is the minimum click probability. We abbreviate Xk;t as X . Firstly, since X ∈ [1, k], EX2 ≤ k2. Next,
note that EX2 increases when the click probabilities decrease or k increases. Set Y as a random variable drawn from a
geometric distribution with parameter w′, then EX2 ≤ EY 2. Since EY 2 = 2/w′2 − 1/w′, EX2 ≤ 2/w′2.

D.11. Proof of Lemma 5.6

Lemma 5.6. For any k, t, δ > 0, set

E∗ :=

{ n∑
t=1

Xk;t ≤ nµk −

√
2nv2

k log

(
1

δ

) }
,

then Pr(E∗) ≤ δ. Further when E∗ holds, for any T >0,
∑n
t=1Xk;t≤T implies that n≤2T/µk+2 log(1/δ)v2

k/µ
2
k.

Proof. We abbreviate Xk;t as Xt (the number of observations of surviving items at step t when pulling k surviving items),
and set Dt = Xt − EXt, Ft denote the decisions and observations up to step t. Besides, let St be the set to pull at step t,
then St is determined by Ft−1, and Xt depends on St. Since

E[Dt|Ft−1] = E[ E[Xt − EXt|St] | Ft−1 ] = 0,

D1, . . . , Dt i s a martingale difference sequence adapted to F = (Ft)t. Besides, according to Theorem 5.4, for any t, any
λ ≤ 0, v2

k ≥ EX2 yields E[eλDt |Ft−1] ≤ eλ2v2/2. Then for any ω > 0,

Pr

[
n∑
t=1

(Xt − EXt) ≤ −ω

]
= Pr

[
n∑
t=1

Dt ≤ −ω

]
≤ exp

(
− ω2

2nv2
k

)
.

Let the probability bound in the right hand side be δ, then

δ = exp

(
− ω2

2nv2
k

)
⇒ ω =

√
2nv2

k log

(
1

δ

)
.
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Note that EXt ≥ µk for any t,

δ ≥ Pr

(
n∑
t=1

(Xt − EXt) ≤ −ω

)
= Pr

(
n∑
t=1

Xt ≤
n∑
t=1

EXt − ω

)

≥ Pr

(
n∑
t=1

Xt ≤ nµk − ω

)
≥ Pr

(
n∑
t=1

Xt ≤ nµk −

√
2nv2

k log

(
1

δ

) )
.

Next, for any T > 0, consider

nµk −

√
2nv2

k log

(
1

δ

)
≤ T.

Set

a0 =
1

µk

√
2v2
k log

(
1

δ

)
, b0 =

T

µk
, x =

√
n,

then x ≥ 0 and x2 − a0x− b0 ≤ 0. Note that (p+ q)2 ≤ 2(p2 + q2),

x ≤ a0 +
√
a2

0 + 4b0
2

⇒ n ≤

(
a0 +

√
a2

0 + 4b0
2

)2

≤ a2
0 + 2b0 =

2T

µk
+

2v2
k

µ2
k

log

(
1

δ

)
.

D.12. Proof of Lemma 5.7

Lemma 5.7. For any δ∈ [0, 1], P
(⋂L

i=1 E(i, δ)
)
≥ 1− δ/2.

Remark D.1 (Sub-Gaussian property). Define ηt(i) = Wt(i)− w(i), then ηt(i) is 1/2-sub-Guassian.

Proof of Remark D.1. Any non-negative random variable bounded in [a, b] a.s. is sub-Gaussian with parameter (b− a)/2.
Meanwhile, Wt(i) ∈ [0, 1] yields that ηt(i) ∈ [w(i)− 1, w(i)]. [w(i)− (w(i)− 1)]/2 = 1/2.

Proof. For all i ∈ [L], E(i, δ) = {∀t ≥ 1, |ŵt(i)− w(i)| ≤ Ct(i, δ)}. Recall that

Ct(i, δ) = C̃ (Tt(i), ρ) , C̃(τ, ρ) = 4

√
log (log2(2τ)/ρ)

τ + 1
, ρ(δ) =

√
δ/(12L),

then according to Theorem B.2,

P (E(i, δ)) ≥ 1− 6ρ(δ)2 = 1− δ

2L
⇒ P

(
Ē(i, δ)

)
≤ δ

2L
,

⇒ P

(
L⋂
i=1

E(i, δ)

)
= 1− P

(
L⋃
i=1

Ē(i, δ)

)
≥ 1−

L∑
i=1

P
(
Ē(i, δ)

)
≥ 1− L · δ

2L
= 1− δ/2.

D.13. Proof of Lemma 5.8

Lemma 5.8. Fix any 0<δ′≤δ, assume
⋂L
i=1 E(i, δ′) holds. Set T ′t := mini∈Dt Tt(i), then for any time step t,

∀i≤K ′, T ′(t)≥ T̄i,δ′ ⇒ Lt(i, δ)>Ut(j
∗, δ)−ε⇒ i∈At,

∀i>K ′, T ′(t)≥ T̄i,δ′ ⇒ Ut(i, δ)<Lt(j
′, δ)−ε⇒ i∈Rt.
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Preliminary. Since we use the UCB of the empirical top-(kt + 1) item to accept ε-optimal items, hopefully it should be
close to the true click probability of item (kt + 1); likewise, the LCB of the empirical top-(kt) item should be close to the
true click probability of item (kt). This is stated in Lemma D.2.

Lemma D.2 (Jun et al. (2016, Lemma 3)). Denote by î the index of the item with empirical mean is i-th largest: i.e.,
ŵ(1̂) ≥ . . . ≥ ŵ(L̂). Assume that the empirical means of the arms are controlled by ε : i.e., ∀i, |ŵ(i)− w(i)| < ε. Then,

∀i, w(i)− ε ≤ ŵ(̂i) ≤ w(i) + ε.

After that, Lemma 5.8 shows that the agent will correctly classify the items after a sufficient number of observations, and
also show what is the sufficient number of observations for each item.

Proof. Recall

kt = K − |At|, ρ(δ′) = δ′/(12L), T̄i,δ′ = 1 +

⌊
216

∆̄2
i

log

(
2

ρ(δ′)
log2

(
648

ρ(δ′)∆̄2
i

))⌋
.

And We use ρ and ρ′ as abbreviations for ρ(δ) and ρ(δ′) respectively.

It suffices to show for the case where At and Rt are empty since otherwise the problem is equivalent to removing rejected or
accepted arms from consideration and starting a new problem with Lnew = L− |At| − |Rt| and Knew = K − |At| while
maintaining the observations so far. Note that when At is empty, kt = K.

First of all, Tt(i) ≥ T ′t implies that

Ct(i, δ) = C̃ (Tt(i), ρ) ≤ C̃ (T ′t , ρ) , Ct(i, δ
′) = C̃ (Tt(i), ρ

′) ≤ C̃ (T ′t , ρ
′) . (D.1)

Then since
⋂L
i=1 E(i, δ′) holds, |ŵt(i)−w(i)| ≤ C̃ (Tt(i), ρ

′) ≤ C̃ (T ′t , ρ
′) for all i ∈ Dt. Combining this with Lemma D.2,

we have

w(i) + C̃ (T ′t , ρ
′) ≤ ŵt(i) ≤ w(i) + C̃ (T ′t , ρ

′) ∀i ∈ Dt. (D.2)

We first prove that for any i ≤ K ′,

T ′(t) ≥ T̄i,δ′ ⇒ Lt(i, δ) > Ut(j
∗, δ)− ε where j∗ =

(kt+1)
arg max
j∈Dt

ŵt ⇒ i ∈ At.

For clarity, we write j∗ = K̂ + 1, which is the item with the (K + 1)st largest empirical mean at the t-th step. We assume
the contrary: Lt(i, δ) ≤ Ut(K̂ + 1, δ)− ε. We can apply (D.1) and (D.2) to obtain

Lt(i, δ) ≥ ŵt(i)− C̃ (T ′t , ρ) ≥ w(i)− C̃ (T ′t , ρ)− C̃ (T ′t , ρ
′) ,

Ut(K̂ + 1)− ε ≤ ŵt(K̂ + 1) + C̃ (T ′t , ρ)− ε ≤ w(K + 1) + C̃ (T ′t , ρ) + C̃ (T ′t , ρ
′)− ε.

Next,

w(i)− C̃ (T ′t , ρ)− C̃ (T ′t , ρ
′) ≤ w(K + 1) + C̃ (T ′t , ρ) + C̃ (T ′t , ρ

′)− ε,

⇒ 0
(a)
< w(i)− w(K + 1) + ε ≤ 2C̃ (T ′t , ρ) + 2C̃ (T ′t , ρ

′) ≤ 4C̃ (T ′t , ρ
′) = 16

√
log (log2(2T ′t )/ρ

′)

T ′t
,

⇒ T ′t ≤
216

([w(i)− w(K + 1) + ε]2
log (log2(2T ′t )/ρ

′) .

Part (a) of the second line above follows from: (i) if i ≤ K, w(i)−w(K+1)+ε = ∆i+ε > 0; (ii) else, K < i ≤ K ′, since
w(i) ≥ w(K)− ε, we have w(i)−w(K + 1) + ε = w(i)−w(K) +w(K)−w(K + 1) + ε = ∆K −∆i + ε ≥ ∆K > 0.
Then invert to the third line using

τ ≤ c log

(
log2 2τ

ρ′

)
⇒ τ ≤ c log

(
2

ρ′
log2

(
3c

ρ′

))
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with c = 216[w(i)− w(K + 1) + ε]−2 to have

T ′t ≤
216

[w(i)− w(K + 1) + ε]2
log

(
2

ρ′
log2

(
648

ρ′[w(i)− w(K + 1) + ε]2

))
< 1 +

⌊
216

[w(i)− w(K + 1) + ε]2
log

(
2

ρ′
log2

(
648

ρ′[w(i)− w(K + 1) + ε]2

))⌋
= T̄i,δ′ .

Therefore, T̄ ′t ≥ T̄i,δ′ implies that Lt(i, δ) > Ut(j
∗, δ)− ε where j∗ = arg max

(kt+1)
j∈Dt ŵt. Then i ∈ At is accepted.

Subsequently, we prove that for any i > K ′,

T ′(t) ≥ T̄i,δ′ ⇒ Ut(i, δ) < Lt(j
′, δ)− ε where j′ =

(kt)
arg max
j∈Dt

ŵt ⇒ i ∈ Rt.

Again for brevity, we write K̂ = j′, the item with the Kth largest empirical mean at the t-th step. We assume the contrary:
Ut(i, δ) ≥ Lt(K̂, δ)− ε. Again applying (D.1) and (D.2), we have

Ut(i, δ) ≤ ŵt(i) + C̃ (T ′t , ρ) ≤ w(i) + C̃ (T ′t , ρ) + C̃ (T ′t , ρ
′) ,

Lt(K̂, δ)− ε ≥ ŵt(K̂)− C̃ (T ′t , ρ)− ε ≥ w(K)− C̃ (T ′t , ρ)− C̃ (T ′t , ρ
′)− ε.

Next,

w(i) + C̃ (T ′t , ρ) + C̃ (T ′t , ρ
′) ≥ w(K)− C̃ (T ′t , ρ)− C̃ (T ′t , ρ

′)− ε,

⇒ 0 < w(K)− w(i)− ε ≤ 2C̃ (T ′t , ρ) + 2C̃ (T ′t , ρ
′) ≤ 4C̃ (T ′t , ρ

′) = 16

√
log (log2(2T ′t )/ρ

′)

T ′t
.

Similar to the first case, with

T̄i,δ′ = 1 +

⌊
216

(w(K)− w(i)− ε)2
log

(
2

ρ′
log2

(
648

ρ′(w(K)− w(i)− ε)2

))⌋
we obtain that T̄ ′t ≥ T̄i,δ′ implies Ut(i, δ) < Lt(j

′, δ)− ε where j′ = arg max
(kt)
j∈Dt ŵt. Then i ∈ Rt is rejected.

D.14. Proof of Lemma 5.9

Lemma 5.9. Assume
⋂L
i=1 E(i, δ) holds. Algorithm 1 stops after identifying at most L−max{K ′ −K, 1} items.

Proof. Assume
⋂L
i=1 E(i, δ) holds.

Case (i): K ′ = K. In the worst case, the algorithm does not terminate before identifying the (L− 1)-th one. In this case,
after identifying the (L− 1)-th one with sufficient observations, either the accept set or the reject set is full, i.e., |At| = K
or |Rt| = L−K, the the agent can just place the remaining item in the unfilled set.

Hence, the algorithm terminates after sufficiently observing and identifying at most L− 1 = L−max{K ′ +K, 1} items.

Case (ii): K ′ > K. The algorithm classify all items correctly according to Lemma 5.8. since the number of ε-optimal items
is K ′ = max{i : w(i) ≥ w(K)− ε} ≥ K , the number of suboptimal items is L−K ′ ≤ L−K. Hence, |Rt| ≤ L−K ′.
Besides, |At| ≤ K according to the design of the algorithm. Therefore,

|At|+ |Rt| ≤ L−K ′ +K.

In other words, the algorithm terminates after sufficiently observing and identifying at most L−K ′ +K = L−max{K ′ +
K, 1} items.
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D.15. Proof of Lemma 5.11

Lemma 5.11. For any 1 ≤ ` ≤ L,

KL
(
{Sπ,0t ,Oπ,0

t }Tt=1, {S
π,`
t ,Oπ,`

t }Tt=1

)
= E[TT (`)] ·KL

(
w(`), w(`)(`)

)
≥ sup
E∈T

KL
(
P0(E),P`(E)

)
.

To manifest the difference between instance ` and other instances, with w(0)(i) = w(i) for all i ∈ [L] we write

• {w(0)(1), w(0)(2), . . . , w(0)(L)} under instance 0;

• {w(0)(1), w(0)(2), . . . , w(0)(`− 1), w(`)(`), w(0)(`+ 1), . . . , w(0)(L)} under instance `.

We combine Lemma 5.10 and a result from Kaufmann et al. (2016) to relate the time complexity and KL divergence together.
Lemma D.3 ((Kaufmann et al., 2016, Lemma 19)). Let T be any almost surely finite stopping time with respect to Ft. For
every event E ∈ FT , instance 1 ≤ ` ≤ L,

KL
(
{Sπ,0t ,Oπ,0

t }Tt=1, {S
π,`
t ,Oπ,`

t }Tt=1

)
≥ KL(P0(E),P`(E)).

Notations. Before presenting the proof, we remind the reader of the definition of the KL divergence (Cover & Thomas,
2012). For two discrete random variables X and Y with common support A,

KL(X,Y ) =
∑
x∈A

PX(x) log
PX(x)

PY (x)

denotes the KL divergence between probability mass functions of X and Y . Next, we also use KL(PX‖PY ) to also signify
this KL divergence. Lastly, when a and b are two real numbers between 0 and 1, KL(a, b) = KL (Bern(a)‖Bern(b)), i.e.,
KL(a, b) denotes the KL divergence between Bern(a) and Bern(b).

Proof. For any certain st, we can observe that the KL divergence KL
(
POπ,0

t |S
π,0
t

(· | st)
∥∥∥POπ,`

t |S
π,`
t

(· | st)
)

should
grow with the KL divergence of observed items. Further, for each observed item i, there is a KL divergence of
KL
(
w(0)(i), w(`)(i)

)
. Whenever Sπ,0t = st, we have

KL
(
POπ,0

t |S
π,0
t

(· | st)
∥∥∥POπ,`

t |S
π,`
t

(· | st)
)

=
∑
i∈st

E0 [1{i is observed at time t}] ·KL
(
w(0)(i), w(`)(i)

)
.

Then according to Lemma 5.10,

KL
(
{Sπ,0t ,Oπ,0

t }Tt=1, {S
π,`
t ,Oπ,`

t }Tt=1

)
=

T∑
t=1

∑
st∈[L](K)

Pr[Sπ,0t = st] ·KL
(
POπ,0

t |S
π,0
t

(· | st)
∥∥∥POπ,`

t |S
π,`
t

(· | st)
)

=

T∑
t=1

∑
st∈[L](K)

Pr[Sπ,0t = st] ·
∑
i∈st

E0 [1{i is observed at time t}] ·KL
(
w(0)(i), w(`)(i)

)

=

L∑
i=1

T∑
t=1

∑
st∈[L](K)

E0

[
1{Sπ,0t = st, i ∈ st, i is observed at time t}

]
·KL

(
w(0)(i), w(`)(i)

)

=

L∑
i=1

E[TT (i)] ·KL
(
w(0)(i), w(`)(i)

)
= E[TT (`)] ·KL

(
w(0)(`), w(`)(`)

)
.
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D.16. Proof of Theorem 4.1

Preliminary. Recall that ∆̄σ(1) ≥ ∆̄σ(2) ≥ . . . ≥ ∆̄σ(L), and Tt(i) counts the number of observations of item i up to the
t-th step. The worst case is that the algorithm eliminates σ(1), σ(2), . . . in order, and the algorithm eliminates at most 1
item at one time step. Besides, the design of Algorithm 1 implies that

Tt(j)− 1 ≤ Tt(i) ≤ Tt(j) + 1, ∀i 6= j ∈ Dt. (D.3)

In the following discussion,we assume
⋂L
i=1 E(i, δ) holds and K ′ < 2K−1 (discussion on K ′ ≥ 2K−1 is in Appendix C).

Note that Lemma 5.7 implies that P
(⋂L

i=1 E(i, δ)
)
≥ 1− δ/2. Besides, we write µ(k,w) as µk, v(k,w) as vk, T̄i,δ as T̄i,

ρ(δ) as ρ for simplicity.

Bound the number of observations per phrase. Observe that there are less than K surviving items remaining in the
survival set Dt at some steps before the algorithm terminates, we separate the steps into several phrases:

(i) During the first phrase, the agent eliminates L−K + 1 items within t1 steps. According to Lemma 5.8 and Line (D.3),

Tt1(σ(j)) ≤ T̄σ(j), ∀1 ≤ j ≤ L−K + 1;

Tt1(σ(i)) ≤ T̄σ(L−K+1) + 1, ∀L−K + 1 < i ≤ L.

Then the total number of observations of surviving items in Dt within this phrase can be bounded as follows:

L−K+1∑
i=1

T̄σ(i) +

L∑
i=L−K+2

Tt1(σ(i)) ≤
L−K∑
i=1

T̄σ(i) +KT̄σ(L−K+1) + (K − 1) := T̃1.

(ii) During the k-th phrase for any 2 ≤ k ≤ K −max{K ′ −K, 1}, the agent eliminates the L−K + k-th item within tk
steps. Again apply Lemma 5.8 and Line (D.3):

T∑k
j=1 tj

(σ(L−K + k)) ≤ T̄σ(L−K+k);

T∑k
j=1 tj

(σ(i)) ≤ T̄σ(L−K+k) + 1, ∀L−K + k + 1 ≤ i ≤ L;

T∑k−1
j=1 tj

(σ(i)) ≥ T̄σ(L−K+k−1) − 1, ∀L−K + k ≤ i ≤ L.

Then the total number of observations of surviving items in Dt within this phrase can also be bounded:

T̄σ(L−K+k) +

L∑
i=L−K+k+1

T∑k
i=j tj

(σ(i))−
L∑

i=L−K+k

T∑k−1
j=1 tj

(σ(i))

≤ (K − k + 1)[T̄σ(L−K+k) − T̄σ(L−K+k−1)] + 2(K − k) + 1 := T̃k.

Bound the number of time steps per phrase. Recall that the k-th (1 ≤ k ≤ K −max{K ′ −K, 1}) phrase consist of tk
time steps. Let Zk be the total number of observations within the tk steps. Lemma 5.6 indicates that

P(Zk ≥ tkµK+1−kωK+1−k) ≥ 1− δk with ωK+1−k = −
√
−2tkv2

K+1−k log δk.

Then according to Lemma 5.6, for any k (1 ≤ k ≤ K −max{K ′ −K, 1}), with probability at least 1− δk,

tk ≤
2T̃k

µK−k+1
−

2v2
K+1−k

µ2
K−k+1

· log δk.

Bound the time complexity. Altogether, we would have
∑K−max{K′−K,1}
k=1 tk as the time complexity. Besides, we bound

the total error incurred by partial observation by δ/2. In other words,

T ≤
K−max{K′−K,1}∑

k=1

−2v2
K−k+1

µ2
K−k+1

· log δk + 2

2K−K′∑
k=1

T̃k
µK−k+1

 where
K−max{K′−K,1}∑

k=1

δk ≤ δ/2.

Depending on the value of K ′ −K, there are two cases:
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Case 1: K ′ −K ≥ 1 , i.e., K −max{K ′ −K, 1} = 2K −K ′;

Case 2: K ′ = K , i.e., K −max{K ′ −K, 1} = K − 1.

For brevity, we only go through the remaining analysis for the first case, the analysis for the second one is similar.

Since the second term in the bound on T merely depends on the problem, we turn to analyze the first term. Since the first
term holds for any values of δk’s such that

∑2K−K′
k=1 δk ≤ δ/2, we minimize the first term with the method of Lagrange

multiplier. Set ck =
2v2K−k+1

µ2
K−k+1

, the problem turns to

(N) = max
δk:1≤k≤2K−K′

2K−K′∑
k=1

ck log δk s.t.
2K−K′∑
k=1

δk ≤ δ/2.

Let

L
(
{δk}2K−K

′

k=1 , {ck}2K−K
′−1

k=1 , λ
)

=

2K−K′∑
k=1

ck log δk + λ

2K−K′∑
k=1

δk − δ/2

 ,

then for all 1 ≤ k ≤ 2K −K ′,
∂L

∂δk
=
ck
δk

+ λ = 0 ⇒ δ∗k =
ckδ

2
∑2K−K′
j=1 cj

.

(N) attains its maximum when δk = δ∗k for all 1 ≤ k ≤ 2K −K ′. Hence

2K−K′∑
k=1

tk ≤ −
2K−K′∑
k=1

ck log δ∗k + 2

2K−K′∑
k=1

T̃k
µK−k+1

=

2K−K′∑
k=1

ck log

(
2
∑2K−K′
j=1 cj

ckδ

)
+ 2

2K−K′∑
k=1

T̃k
µK−k+1

=

2K−K′∑
k=1

ck log

2

δ

2K−K′∑
j=1

cj


︸ ︷︷ ︸

(♠)

+

2K−K′∑
k=1

ck log

(
1

ck

)
︸ ︷︷ ︸

(♥)

+ 2

2K−K′∑
k=1

T̃k
µK−k+1︸ ︷︷ ︸

(♣)

.

Now we bound (♠), (♥), (♣) individually.

Bounding (♠) : note that µK+1−k ≥ 2 for all 1 ≤ k ≤ 2K −K ′, K ′ ≥ K and ck =
2v2K−k+1

µ2
K−k+1

,

(♠) =

2K−K′∑
k=1

ck log

2

δ

2K−K′∑
j=1

cj

 =

2K−K′∑
k=1

2v2
K−k+1

µ2
K−k+1

log

2

δ

2K−K′∑
j=1

2v2
K−j+1

µ2
K−j+1

 .

Bounding (♥) : Let g(x) = log x
x for x > 0, then g′(x) = 1−log x

x2 . Since g′(x) > 0 when x ∈ (0, e), g′(e) = 0, g′(x) < 0
when x ∈ (e,+∞), g(x) is increasing on (0, e), is decreasing on (e,+∞) and attains its global maximum g(e) = 1

e at
x = e. Hence,

(♥) =

2K−K′∑
k=1

g

(
1

ck

)
≤ 2K −K ′

e
≤ K.

Bounding (♣) : We first rewrite this term according to the definition of T̃k’s:

T̃1 =

L−K∑
i=1

T̄σ(i) +KT̄σ(L−K+1) + (K − 1),
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T̃k = (K − k + 1)[T̄σ(L−K+k) − T̄σ(L−K+k−1)] + 2(K − k) + 1 ∀2 ≤ k ≤ 2K −K ′ − 1,

⇒ (♣) ≤ 2

µK

[
L−K∑
i=1

T̄σ(i) +KT̄σ(L−K+1) +K

]
+

2K−K′∑
k=2

2(K − k + 1)

µK−k+1

[
T̄σ(L−K+k) − T̄σ(L−K+k−1) + 3

]
⇒ (♣)/4 ≤ 1

µK

[
L−K∑
i=1

T̄σ(i) +KT̄σ(L−K+1)

]
+

2K−K′∑
k=2

K − k + 1

µK−k+1

[
T̄σ(L−K+k) − T̄σ(L−K+k−1)

]
.

Next, since µk ≥ min{k/2, 1/(2w∗)} as shown in Lemma 5.2, when K − k + 1 ≤ 1/w∗,

k ≥ K + 1− b1/w∗c, µK−k+1 ≥
K − k + 1

2
,
K − k + 1

µK−k+1
≤ 2.

Hence with K0 = max{min{2K −K ′,K − b1/w∗c}, 1},

K

µK
T̄σ(L−K+1) +

K1∑
k=2

K − k + 1

µK−k+1

[
T̄σ(L−K+k) − T̄σ(L−K+k−1)

]
=
KT̄σ(L−K+1)

µK
+

K0∑
k=2

(K − k + 1)T̄σ(L−K+k)

µK−k+1
−
K0−1∑
k=1

(K − k)T̄σ(L−K+k)

µK−k

=
(K −K0 + 1)T̄σ(L−K+K0)

µK−K0+1
+

K0−1∑
k=1

T̄σ(L−K+k)

(
K − k + 1

µK−k+1
− K − k
µK−k

)
,

and

2K−K′∑
k=K0+1

K − k + 1

µK−k+1

[
T̄σ(L−K+k) − T̄σ(L−K+k−1)

]
≤ 2

2K−K′∑
k=K0+1

T̄σ(L−K+k) − T̄σ(L−K+k−1)

= 2T̄σ(L+K−K′) − 2T̄σ(L−K+K0).

Further,

(♣)/4 ≤ 1

µK

L−K∑
i=1

T̄σ(i) +

K0−1∑
k=1

T̄σ(L−K+k)

(
K − k + 1

µK−k+1
− K − k
µK−k

)
+

(
K −K0 + 1

µK−K0+1
− 2

)
T̄σ(L−K+K0) + 2T̄σ(L+K−K′).

Summation of (♠), (♥), (♣). Recall ρ = δ/(12L) and

T̄i = 1 +

⌊
216

∆̄2
i

log

(
2

ρ
log2

(
648

ρ∆̄2
i

))⌋
.

The time complexity is upper bounded by

c1

2K−K′∑
k=1

v2
K−k+1

µ2
K−k+1

log

1

δ

2K−K′∑
j=1

v2
K−j+1

µ2
K−j+1

+ c2
1

µK

L−K∑
i=1

T̄σ(i) + c3

2K−K′∑
k=2

K − k + 1

µK−k+1

[
T̄σ(L−K+k) − T̄σ(L−K+k−1)

]
where

1

µK

L−K∑
i=1

T̄σ(i) = O

(
1

µK

L−K∑
i=1

∆̄−2
σ(i) log

[
L

δ
log

(
L

δ∆̄2
σ(i)

)])
,

2K−K′∑
k=2

K − k + 1

µK−k+1

[
T̄σ(L−K+k) − T̄σ(L−K+k−1)

]
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=

K0−1∑
k=1

T̄σ(L−K+k)

(
K − k + 1

µK−k+1
− K − k
µK−k

)
+

(
K −K0 + 1

µK−K0+1
− 2

)
T̄σ(L−K+K0) + 2T̄σ(L+K−K′)

= c4

K0−1∑
k=1

∆̄−2
σ(L−K+k) log

[
L

δ
log

(
L

δ∆̄2
σ(L−K+k)

)]
·
(
K + 1− k
µK+1−k

− K − k
µK−k

)

+ c5

(
K −K0 + 1

µK−K0+1
− 2

)
∆̄−2
σ(L−K+K0) log

[
L

δ
log

(
L

δ∆̄2
σ(L−K+K0)

)]
+ c6∆̄−2

σ(L+K−K′) log

[
L

δ
log

(
L

δ∆̄2
σ(L+K−K′)

)]
.

D.17. Proof of Theorem 4.8

Recall that Oπ
t is a vector in {0, 1, ?}K , where 0, 1, ? represents observing no click, observing a click and no observation

respectively. For example, when Sπt = (2, 1, 5, 4) and Oπ
t = (0, 0, 1, ?), items 2, 1, 5, 4 are listed in the displayed order;

items 2, 1 are not clicked, item 5 is clicked, and the response to item 4 is not observed. By the definition of the cascading
model, the outcome Oπ

t = (0, 0, 1, ?) is in general a (possibly emtpy) string of 0s, followed by a 1 (if the realized reward is
1), and then followed by a possibly empty string of ?s. Clearly, Sπ,`t , Oπ,`

t are random variables with distribution depending
on w(`) (hence these random variables distribute differently for different `), albeit a possibly complicated dependence on
w(`).

With the analysis in Section 5.3, according to Lemma 5.11 and the definition of the instance `, one obtains for i ∈ {1, . . . ,K}
or j ∈ {K + 1, . . . , L} respectively,

E[TT (i)] ≥ KL(1− δ, δ)
KL (w(i), w(K + 1)) + α

, E[TT (j)] ≥ KL(1− δ, δ)
KL (w(j), w(K)) + α

.

Let Yt denote the number of observations of items at time step t. By revisiting the definition of Xk;t in Section 4.1, we see
that XK;t actually counts the observation of all pulled items at time step t. Hence, Yt ≤ XK;t. Setting α→ 0 and summing

over the items yields a bound on the expected number of total observations E
[∑T

t=1 Yt

]
=
∑L
i=1 E[TT (i)]. Meanwhile, an

upper bound of EXK;t as stated in Lemma 5.2 and tower property indicates that

E

[ T∑
t=1

Yt

]
= E

[
E

[
T∑
t=1

Yt | T = T

] ]
≤ E

[
E

[
T∑
t=1

µ̃K

∣∣∣ T = T

] ]
= E [ µ̃K · T ] = µ̃K · E[T ].

Note that KL(x, 1− x) ≥ log(1/2.4x) for any x ∈ [0, 1], we complete the proof of Theorem 4.8.

D.18. Proof of Proposition C.1

Proposition C.1. Assume K ′ ≥ 2K − 1. With probability at least 1− δ, Algorithm 1 outputs an ε-optimal arm after at
most (c1N

′
1 + c2N

′
2) steps where

N ′1 =
2v2
K

µ2
K

log

(
2

δ

)
= O

(
v2
K

µ2
K

log

(
2

δ

))
,

N ′2 =
2

µK

L−K′+K−1∑
i=1

T̄σ(i) + (K ′ −K + 1)T̄σ(L−K′+K) + (K ′ −K)


= O

 1

µK


L−K′+K−1∑

i=1

∆̄−2
σ(i) log

[
L

δ
log

(
L

δ∆̄2
σ(i)

)]
+ (K ′ −K + 1)∆̄−2

σ(L−K′+K) log

[
L

δ
log

(
L

δ∆̄2
σ(L−K′+K)

)]
 .

Proof. Consider K ′ ≥ 2K − 1, i.e, K ′ −K ≥ K − 1. According to Lemma 5.9, there are at least K ′ −K + 1 ≥ K items
in the survival set Dt before the algorithm terminates, so the algorithm pulls K items from the surviving set Dt at each time
step. And for simplicity, we again write µ(k,w) as µk, v(k,w) as vk, T̄i,δ as T̄i, ρ(δ) as ρ.

Recall Lemma 5.6, we set δ0 = δ/2, k = K, n = t′0, ρ′ = −
√
−2t′0v

2
K log(δ/2). Then the total number of observations

during t′0 steps should be larger than t′0µK + ρ′ with probability at least 1− δ/2. And since the number of observations can
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be upper bounded, we consider

t′0µK + ρ′ ≤
L−K′+K∑

i=1

T̄σ(i) +

L∑
i=L−K′+K+1

Tt′0(σ(i)) ≤
L−K′+K∑

i=1

T̄σ(i) + (K ′ −K)
(
T̄σ(L−K′+K) + 1

)
=

L−K′+K−1∑
i=1

T̄σ(i) + (K ′ −K + 1)T̄σ(L−K′+K) + (K ′ −K) := T̃0.

Lastly, with Lemma 5.6, 5.7 and 5.8, we obtain that with probability at least 1− δ, Algorithm 1 stops after at most

2T̃0

µK
+

2v2
K

µ2
K

log

(
2

δ

)
= N ′2 +N ′1

steps.
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E. Additional numerical results
E.1. Order of pulled items

L = 64, K = 16, δ = 0.1, ε = 0

L = 64, K = 8, δ = 0.1, ε = 0

L = 128, K = 16, δ = 0.1, ε = 0

L = 128, K = 8, δ = 0.1, ε = 0
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L = 64, K = 16, δ = 0.1, ε = 0.05

L = 64, K = 8, δ = 0.1, ε = 0.05

L = 128, K = 16, δ = 0.1, ε = 0.05

L = 128, K = 8, δ = 0.1, ε = 0.05
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L = 64, K = 16, δ = 0.05, ε = 0

L = 64, K = 8, δ = 0.05, ε = 0

L = 128, K = 16, δ = 0.05, ε = 0

L = 128, K = 8, δ = 0.05, ε = 0
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L = 64, K = 16, δ = 0.05, ε = 0.05

L = 64, K = 8, δ = 0.05, ε = 0.05

L = 128, K = 16, δ = 0.05, ε = 0.05

L = 128, K = 8, δ = 0.05, ε = 0.05

Figure E.1: Average time complexity incurred by different sorting order of St: ascending order of Ti(t) (Algorithm 1),
ascending/descending order of µ̂t(i)/Ut(i)/Lt(i) in the cascading bandits.
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After a large amount of observations, it is likely that the empirical mean ŵt(i) approaches the true weight w(i), and w(i)
lies between the confidence bounds Ut(i, δ) and Lt(i, δ) with high probability. Therefore, one may consider to sort St in the
descending or ascending order of ŵt(i)’s, Ut(i, δ)’s or Lt(i, δ)’s (the difference to Algorithm 1 reveals in Line 5–9). Diving
into the numerical results, we found an algorithm always manages to find an ε-optimal arm provided that it is not terminated
by the limit of 107 steps. Hence, we focus on the comparison of averaged stopping time.

In Figure E.1, we can see that sorting St in the ascending order of µ̂t(i) or Ut(i), especially the latter one, incurs an
apparently larger averaged stopping time than other methods in most cases. Next, the descending order of µ̂t(i) does not
work well in some cases. Thirdly, the ascending order of Lt(i) performs almost the same as our algorithm in most cases but
there are several cases where it performs much worse and does not terminate even after 107 iterations. Lastly, the descending
order of Ut(i) works almost as well as Algorithm 1 empirically but is in lack of theoretical guarantee on time complexity.
Meanwhile, the standard deviation of the stopping time of our algorithm is negligible comparing to the average value. For
instance, in the left-most case of Figure 6.1, the standard deviation is about 22318.54 when the average is about 754140.65.

E.2. Further empirical evidence

Table E.1: Fitted results of upper bounds on the stopping time T of Algorithm 1 with ε = 0 (Proposition 4.6).

No. w∗ w′ Fitting model c1 c2 R2-statistic p-value

1 1/K 1/K2 c1K + c2 23802.95 67400.19 0.9988 1.39× 10−58

2 1− 1/K2 1− 1/K c1K
2 + c2 21615.50 2007597.07 0.9987 1.29× 10−57

3 1/
√
K 1/K c1K + c2 944.82 31626.49 0.9729 3.58× 10−32

4 1− 1/K 1− 1/
√
K c1K + c2 23343.29 8823.27 0.9995 3.00× 10−65

5 1− 1/K 1/K c1K
2 + c2 1.22 3414.56 0.9917 3.03× 10−42

As shown in Table E.1, p-value is the probability that we reject the assumption of our fitting model versus a constant
model (Glantz et al., 1990). Hence, the small p-values indicates that our fitting models are reasonable. Next, all c1’s are
positive, implying all averaged stopping time grows with K, which corroborates our theoretical results.
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(a) w∗ = 1
K , w

′ = 1
K2 (b) w∗ = 1− 1

K2 , w
′ = 1− 1

K

(c) w∗ = 1√
K
, w′ = 1

K (d) w∗ = 1− 1
K , w

′ = 1− 1√
K

(e) w∗ = 1− 1
K , w

′ = 1
K

Figure E.2: Fit the averaged stopping time with functions of K for each case in order. Fix L = 128, δ = 0.1, ε = 0. Blue
dots are the averaged stopping time, red line is the fitted curve, and cyan dashed lines show the 95% confidence interval.


