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In appendix A we provide additional details and further results of experiments. In appendix B, we list the assumptions we
used, and prove the non-asymptotic verison of Theorem 4.2 and 4.6. In appendix C, we give the details of Sec. 3, including
deriving algorithms presented in Sec. 3.2, examples in Sec. 3.4 and a general formula for curl-free kernels. Appendix D
includes some technical results used in proofs. Finally, We present samples drawn from trained WAEs in appendix E.

A. Experiment Details and Additional Results
In experiments, we use the IMQ kernel k(x, y) := (1 + ‖x− y‖22/σ2)−1/2 and its curl-free version in corresponding kernel
estimators. We use the median of the pairwise Euclidean distances between samples as the kernel bandwidth. The parameter
ν of the ν-method is set to 1. The maximum iteration number of KEF-CG is 40 and the convergence tolerance of it is 10−4.

A.1. Grid Distributions

We use αM eigenvalues in SSGE with α searched in {0.99, 0.97, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4}. We search the number
of iteration steps of the ν-method in {20, 30, 40, 50, 60, 70, 80, 90, 100}. We search the regularization coefficient λ of Stein,
NKEF, KEF-CG in {10−k : k = 0, 1, · · · , 8}. The experiments are repeated 32 times.

A.2. Wasserstein Autoencoders

We use the standard Gaussian distribution N (0, I) as the prior p(z), and N (µφ(x), σ2
φ(x)) as the approximated posterior

qφ(z|x), and Bernoulli(Gθ(z)) as the generator pθ(x|z). We use minibatch size 64. Models are optimized by the Adam
optimizer with learning rate 10−4. Each configuration is repeated 3 times, and the mean and the standard deviation are
reported in Table 3 and Table 4. All models are timed on GeForce GTX TITAN X GPU.

Table 3. Negative log-likelihoods on the MNIST dataset and per epoch time on 128 latent dimension.

LATENT DIM 8 32 64 128 TIME

STEIN 97.15 ± 0.14 92.10 ± 0.07 101.60 ± 0.44 114.41 ± 0.25 4.2S
SSGE 97.24 ± 0.07 92.24 ± 0.17 101.92 ± 0.08 114.57 ± 0.23 9.2S
KEF 97.07 ± 0.03 90.93 ± 0.23 91.58 ± 0.03 92.40 ± 0.34 201.1S
NKEF2 97.71 ± 0.24 92.29 ± 0.41 92.82 ± 0.18 94.14 ± 0.69 36.4S
NKEF4 97.59 ± 0.15 91.19 ± 0.08 91.80 ± 0.12 92.94 ± 0.58 97.5S
NKEF8 97.23 ± 0.06 90.86 ± 0.09 92.39 ± 1.32 92.49 ± 0.41 301.2S

KEF-CG 97.39 ± 0.22 90.77 ± 0.12 92.66 ± 0.67 92.05 ± 0.06 13.7S
ν-METHOD 97.28 ± 0.17 90.94 ± 0.02 91.48 ± 0.09 92.10 ± 0.06 78.1S

SSM 96.98 ± 0.27 89.06 ± 0.01 93.06 ± 0.68 96.92 ± 0.08 6.0S

Table 4. Fréchet Inception Distances on the CelebA dataset and per epoch time on 128 latent dimension.

LATENT DIM 8 32 64 128 TIME

STEIN 73.85 ± 1.39 58.29 ± 0.46 57.54 ± 0.57 76.31 ± 1.33 164.4S
SSGE 72.49 ± 1.09 58.01 ± 0.60 58.39 ± 1.00 76.85 ± 1.12 172.2S
NKEF2 75.12 ± 1.55 53.92 ± 0.29 51.16 ± 0.30 55.17 ± 0.43 244.7S
NKEF4 73.15 ± 0.77 54.54 ± 1.02 50.76 ± 0.19 53.70 ± 0.10 412.5S

KEF-CG 72.92 ± 0.60 54.32 ± 0.31 50.44 ± 0.20 50.66 ± 0.89 166.2S
ν-METHOD 72.02 ± 1.22 52.86 ± 0.20 50.16 ± 0.23 52.80 ± 0.43 220.9S

SSM 69.72 ± 0.25 49.93 ± 0.74 72.68 ± 1.75 94.07 ± 3.57 163.3S

MNIST We parameterize µφ, σ2
φ andGθ(z) by fully-connected neural networks with two hidden layers, both of which con-

sist of 256 units activated by ReLU. For SSM, the score is parameterized by a fully-connected neural network with two hidden
layers consisting of 256 units activated by tanh. The regularization coefficients of Stein, KEF, NKEF, KEF-CG are searched
in {10−k : k = 2, 3, · · · , 7} for the best log-likelihood, and the number of iteration steps of the ν-method are searched in
{50, 70, · · · , 150}, and we use αM eigenvalues in SSGE with α searched in {0.99, 0.97, 0.95, 0.93, 0.91, 0.89, 0.87}. We
run 1000 epoches and evaluate the model by AIS (Neal, 2001), where the parameters are the same as in SSGE. Specifically,
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we set the step size of HMC to 10−6, and the leapfrog step to 10. We use 5 chains and set the temperature to 103.

CelebA We parameterize µφ, Gθ by convolutional neural networks similar to Song et al. (2019). σ2
φ is set to 1. For

SSM, we use the same network as in MNIST to parameterize the score. The regularization coefficients of Stein, KEF,
NKEF, KEF-CG are searched in {10−k : k = 2, 3, · · · , 7} for the best log-likelihood, and the number of iteration
steps of the ν-method are searched in {20, 30, 40, 50, 60, 70}, and we use αM eigenvalues in SSGE with α searched
in {0.99, 0.97, 0.95, 0.93, 0.91, 0.89, 0.87}. We run 100 epoches and evaluate the model using the Fréchet Inception
Distance (FID). As KEF and NKEF8 are slow, we do not compare them in this dataset. Results are reported in Table 4.

B. Error Bounds
In the following, we suppress the dependence ofHK on K for simplicity. We use ‖·‖HS to denote the Hilbert-Schmidt norm
of operators. The assumptions required in obtaining an error bound are listed below.
Assumption B.1. X is a non-empty open subset of Rd, with piecewise C1 boundary.
Assumption B.2. p, log p and each element of K are continuously differentiable. p and its total derivative Dp : X → Rd
can both be continuously extended to X̄ , where X̄ is the closure of X . Each element of K and its total derivative can be
continuously extended to X̄ × X̄ .
Assumption B.3. For all i, j ∈ [d], K(x, x)ijp(x) = 0 on ∂X , and

√
|K(x, x)ij |p(x) = o(‖x‖1−d2 ) as x → ∞, where

∂X := X̄ \ X .
Assumption B.4. Define anHK-valued random variable ξx := divxKT

x , let ξ :=
∫
X ξxdρ. There are two constants Σ,K,

such that ∫

X

{
exp

(‖ξx − ξ‖H
K

)
− ‖ξx − ξ‖H

K
− 1

}
dρ ≤ Σ2

2K2
.

Assumption B.5. There is a constant κ > 0 such that supx∈X trK(x, x) ≤ κ2.

Assumptions B.1-B.3 are similar to those in Sriperumbudur et al. (2017). They guarantee the integration by parts is valid, so
we can obtain Eρ[Kx∇ log p] = −Eρ[divxKT

x ]. Assumptions B.4 and B.5 come from Bauer et al. (2007), and are used in
the concentration inequalities. Note that Assumption B.4 can be replaced by a stronger one that ‖ξx − ξ‖H is uniformly
bounded on X .

We follows the idea of Bauer et al. (2007, Theorem 10) to prove Theorem 4.2. The non-asymptotic version is given as
follows
Theorem B.1. Assume Assumptions B.1-B.5 hold. Let r̄ be the qualification of the regularizer gλ, and ŝgp,λ be defined
as in (8). Suppose there exists f0 ∈ HK such that sp = LrKf0, for some r ∈ [0, r̄]. Then for any 0 < δ < 1,
M ≥ (2

√
2κ2 log(4/δ))

2r+2
r , choosing λ = M−

1
2r+2 , the following inequalities hold with probability at least 1− δ

‖ŝp,λ − sp‖H ≤ C1M
− r

2r+2 log
4

δ
,

and for r ∈ [0, r̄ − 1/2], we have

‖ŝp,λ − sp‖ρ ≤ C2M
− 2r+1

4r+4 log
4

δ
,

where C1 = 2B(K + Σ) + 2
√

2Bκ2‖sp‖H + (γr + κ2γcr)‖f0‖H, and C2 = 2B(K + Σ)κ+ 2
√

2Bκ3‖sp‖H + ((γr +
κ2γ 1

2
cr) + c 1

2
(γr + κ2γcr))‖f0‖H, and cr is a constant depending on r. Op is the Big-O notation in probability.

Proof. We consider the following decomposition

‖ŝp,λ − sp‖H ≤ ‖gλ(L̂K)(ζ̂ − ζ)‖H + ‖gλ(L̂K)LKsp − sp‖H
≤ ‖gλ(L̂K)(ζ̂ − ζ)‖H + ‖gλ(L̂K)(LK − L̂K)sp‖H + ‖rλ(L̂K)sp‖H,

where rλ(σ) := gλ(σ)σ − 1. By Definition 4.1, we have ‖gλ(L̂K)‖ ≤ B/λ. From Lemma D.3 and D.4, with probability at
least 1− δ, we have

‖gλ(L̂K)(ζ̂ − ζ)‖H + ‖gλ(L̂K)(LK − L̂K)sp‖H ≤
2B(K + Σ) + 2

√
2Bκ2 ‖sp‖H

λ
√
M

log
4

δ
.
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By Definition 4.1, ‖rλ(L̂K)LrK‖ ≤ γrλr and ‖rλ(L̂K)‖ ≤ γ, then

‖rλ(L̂K)sp‖H ≤ ‖rλ(L̂K)L̂rKf0‖H + ‖rλ(L̂K)(LrK − L̂rK)f0‖H
≤ γrλr ‖f0‖H + γ‖LrK − L̂rK‖ ‖f0‖H .

When r ∈ [0, 1], from Bauer et al. (2007, Theorem 1), there exists a constant cr such that ‖LrK − L̂rK‖ ≤ cr‖LK − L̂K‖r.
Then by Lemma D.4, and choose λ ≥ 2

√
2κ2M−1/2 log(4/δ), we have

‖LrK − L̂rK‖ ≤ cr
(

2
√

2κ2√
M

log
4

δ

)r
≤ crλr.

Collecting the above results,

‖ŝp,λ − sp‖H ≤
(

A1

λ
√
M

+A2λ
r

)
log

4

δ
,

where A1, A2 are constants which do not depend on λ and M . Then, we can choose λ = M−
1

2r+2 to obtain the bound.
Combining with λ ≥ 2

√
2κ2M−1/2 log(4/δ), we require M

r
2r+2 ≥ 2

√
2κ2 log(4/δ).

When r > 1, from Lemma D.5, there exists a constant c′r such that ‖LrK−L̂rK‖HS ≤ c′r‖LK−L̂K‖HS. Then ‖LrK−L̂rK‖HS ≤
2
√

2c′rκ
2M−1/2 log(4/δ), and a similar discussion can be applied to obtain the bound.

Note that ‖ŝp,λ − sp‖ρ = ‖√LK(ŝp,λ − sp)‖H. Then we can apply the above discussion to obtain the bound for ‖·‖ρ.

Next, we give the non-asymptotic version of Theorem 4.6 as follows

Theorem B.2. Under the same assumption of Theorem B.1, we define gλ(σ) := (λ+σ)−1, and choose Z := {zn}n∈[N ] ⊆ X .
Let Y := {ym}m∈[M ] be a set of i.i.d. samples drawn from ρ. Let ŝp,λ,Z be defined as in (8) with X = Z ∪ Y. Suppose
N = Mα, then for any 0 < δ < 1, M ≥ (2

√
2κ2 log(4/δ))

2r+2
r , choosing λ = M−

1
2r+2 , the following inequalities hold

with probability at least 1− δ

sup
Z
‖ŝp,λ,Z − sp‖H ≤ C1M

− r
2r+2 log

4

δ
+ C3M

α− r
r+1 ,

where C3 := 2(κ2 + 1)2‖sp‖H, and the supZ is taken over all {zn}n∈[N ] ⊂ X .

In particular, when α = r
2r+2 , we have

sup
Z
‖ŝp,λ,Z − sp‖H ≤ (C1 + C3)M−

r
2r+2 log

4

δ
.

Proof. We define TZ := 1
N S
∗
ZSZ, where SZf := (f(z1), · · · , f(zN )) is the sampling operator. Let L̂K := TY and ŝp,λ be

the estimator obtained from Y. Then we can write ŝp,λ,Z := gλ(L̂K +RZ)(L̂K +RZ)sp, where RZ := N
M+N (TZ − L̂K).

We can bound the error as follows

‖ŝp,λ,Z − sp‖H ≤ ‖ŝp,λ,Z − ŝp,λ‖H + ‖ŝp,λ − sp‖H
≤ ‖(gλ(L̂K +RZ)− gλ(L̂K))L̂Ksp‖H + ‖gλ(L̂K +RZ)RZsp‖H + ‖ŝp,λ − sp‖H.

The last term has been bounded by Theorem B.1, and we consider the first two terms. Since gλ(σ) = (λ+σ)−1 is Lipschitz in
[0,∞), from Lemma D.5, we have ‖gλ(L̂K+RZ)−gλ(L̂K)‖HS ≤ ‖RZ‖HS/λ

2. Note ‖gλ(L̂K+RZ)RZ‖HS ≤ ‖RZ‖HS/λ,
we obtain

‖ŝp,λ,Z − ŝp,λ‖H ≤
(
κ2

λ2
+

1

λ

)
‖RZ‖HS‖sp‖H ≤

(
κ2

λ2
+

1

λ

)
2κ2N

M +N
‖sp‖H

≤ 2(κ2 + 1)2N

λ2M
‖sp‖H = 2(κ2 + 1)2Mα− r

r+1 ‖sp‖H .

Combining with Theorem B.1, and noticing that the right hand does not depend on Z, we obtain the final bound.
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Finally, we prove the error bound of the Stein estimator with its original out-of-sample extension.

Proof of Corollary 4.7. The Stein estimator at point x ∈ X can be written as

ŝp,λ,x(x) =
d∑

i=1

〈Kxei, ŝp,λ,x〉Hei,

where {ei} is the standard basis of Rd. Note that

sup
x∈X
‖ŝp,λ,x(x)− sp(x)‖2 ≤

d∑

i=1

sup
x∈X
|〈Kxei, ŝp,λ,x − sp〉H| ≤ κ2 sup

x∈X
‖ŝp,λ,x − sp‖H.

Then, the bound of Stein estimator immediately follows from Theorem 4.6.

C. Details in Section 3
C.1. A General Version of Nyström KEF

In this section, we briefly review the Nyström version of KEF (NKEF, Sutherland et al. (2018)) and give a more general
version of it in our framework.

One of the drawbacks of KEF, as we have mentioned before, is the high computational complexity. It requires to solve an
Md×Md linear system, where M is the sample size and d is the dimension. Note that the solution of KEF in (3) lies in
the subspace generated by {∂ik(xm, ·) : i ∈ [d],m ∈ [M ]} ∪ {ξ̂}. The Nyström version of KEF consider to minimize the
loss (2) in a smaller subspace generated by {∂ik(zn, ·) : i ∈ [d], n ∈ [N ]}, where N �M and {zn} is a subset randomly
sampled from {xm}. Sutherland et al. (2018) showed that it suffices to solve an Nd×Nd linear system, which reduces
the computational complexity, while the convergence rate remains the same as that of KEF if N = Ω(Mθ logM), where
θ ∈ [1/3, 1/2].

In our framework, we can also consider to find our estimator in a smaller subspace. LetHZ be the subspace generated by
{zn}n∈[N ], i.e.,HZ := span{Kznc : n ∈ [N ], c ∈ Rd}. Consider the minimization problem, which is a modification of (6),
where the solution is found inHZ:

ŝZ
p,λ = arg min

s∈HZ

1

M

M∑

m=1

‖s(xm)− sp(xm)‖22 +
λ

2
‖s‖2HK . (16)

The solution can be written as ŝZ
p,λ = (PZL̂KPZ + λI)−1PZζ̂, where ζ̂, L̂K are defined as in Sec. 3.1 and PZ : HK → HK

is the projection operator ontoHZ, which can be defined as

PZf := arg min
g∈HZ

‖g − f‖2H = S∗Z(SZS
∗
Z)−1SZf,

where SZ, S
∗
Z is the sampling operator and its adjoint, respectively. This motivates us to define the Nyström version of our

score estimators for general regularization schemes as follows:

ŝg,Zp,λ := −gλ(PZL̂KPZ)PZζ̂. (17)

To obtain the matrix form of (17), we first introduce two operators:

L := PZL̂KPZ,

L := K−
1
2

ZZ KZXKXZK−
1
2

ZZ .

We want to connect the spectral decompositions of L and L as in Lemma 3.2. Suppose the spectral decomposition of L is∑Md
i=1 σiuiu

T
i , where ‖ui‖RMd = 1. Consider vi := S∗ZK−

1
2

ZZ ui, we can verify that

‖vi‖2H = (K−
1
2

ZZ ui)TKZZK−
1
2

ZZ ui = uT
i ui = 1,

Lvi = S∗ZK−1ZZ KZXKXZK−
1
2

ZZ ui = S∗ZK−
1
2

ZZ Lui = σivi.
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Thus, L =
∑Md
i=1 σi 〈vi, ·〉H vi is the spectral decomposition of L. The estimator can be written as

ŝg,Zp,λ = −S∗ZK−
1
2

ZZ

(
Md∑

i=1

gλ(σi)uiuT
i

)
K−

1
2

ZZ h = −S∗ZK−
1
2

ZZ gλ(L)K−
1
2

ZZ h. (18)

The above estimator only involves smaller matrices. However, it requires some expensive matrix manipulations like the
matrix square root for general regularization schemes. Fortunately, these expensive terms can be cancelled when using the
Tikhonov regularization:

Example C.1. When we consider the Tikhonov regularization gλ(σ) = (σ+λ)−1 and curl-free kernels, the score estimator

(18) becomes ŝg,Zp,λ(x) = −KxZK−
1
2

ZZ (L + λI)−1K−
1
2

ZZ h = −KxZ(KZXKXZ + λKZZ)−1h. Similar to Example 3.5, we find
this is exactly the same as the NKEF estimator obtained in Sutherland et al. (2018, Theorem 1).

C.2. Computational Details

Details of Example 3.6 Using the notation in Example 3.6 and Sec. 2.2, we can reformulate SSGE into a matrix form as
follows:

ĝi(x) = −
J∑

j=1

(
1

M

M∑

n=1

∂iψ̂j(xn)

)
ψj(x)

= −
J∑

j=1

1

M

(√
M

λj

M∑

n,m=1

∂ik(xn, xm)w
(m)
j

)(√
M

λj

M∑

`=1

k(x, x`)w(`)
j

)

= −
J∑

j=1

1

λ2j

(
M∑

n,m=1

∂ik(xn, xm)w
(m)
j

)(
M∑

`=1

k(x, x`)w(`)
j

)

= −
M∑

`=1

k(x, x`)
M∑

n,m=1




J∑

j=1

w
(m)
j w

(`)
j

λ2j


 ∂ik(xn, xm)

= −
M∑

`=1

k(x, x`)
M∑

m=1




J∑

j=1

w
(m)
j w

(`)
j

λ2j



(

M∑

n=1

∂ik(xn, xm)

)

= −k(x,X)




J∑

j=1

wjwT
j

λ2j


 ri,

where ri,j =
∑M
n=1 ∂ik(xn, xj), and w1, · · · ,wM is the unit eigenvectors of k(X,X) corresponding to eigenvalues

λ1 ≥ · · · ≥ λM . w(m)
j is them-th component of wj . Note that when using diagonal kernels, we haveK(x, y) = k(x, y)⊗Id,

then the eigenvectors of K(X,X) are {wi ⊗ ej : i ∈ [M ], j ∈ [d]} and the eigenvalue corresponds to wi ⊗ ej is λi, where
{ej} is the standard basis of Rd. We also note that in this case

h(m−1)d+i = ζ̂(xm)i =
1

M

M∑

`=1

(divx` K(x`, xm))i =
1

M

M∑

`=1

∂ik(x`, xm) = Mri,m.

Comparing with (12), we find that SSGE is equivalent to use diagonal kernels and spectral cut-off regularization.

Details of Example 3.7 For the regularizer gλ(σ) := (λ+σ)−11{σ>0}, from Lemma C.2 we know when K is non-singular,
ŝgp,λ(x) = −KxXK−1( 1

M K + λI)−1h. Next, we consider the minimization problem in (6), and ignore the one-dimensional
subspace Rζ̂ of the solution space, and assume the solution is KxXc as before. We can rewrite the objective in (6) to

1

M
cTK2c + λcKc + 2cTh.

By taking gradient, we find c satisfies ( 1
M K2+λK)c = −h, so it is equivalent to use the previously mentioned regularization.
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C.3. Curl-Free Kernels

Recover the Function From Its Gradient. Since vector fields in a curl-free RKHS is always the gradient of some
functions, it is possible to recover these functions from its gradient. Specifically, suppose the curl-free kernel is defined by
Kcf(x, y) = −∇2ψ(x− y) and f ∈ HKcf

. Assume f is of the following form

f =
m∑

i=1

Kcf(xi, ·)ci = −
m∑

i=1

d∑

j=1

∇(∂jψ(xi − ·))c(j)i = ∇


−

m∑

i=1

d∑

j=1

∂jψ(xi − ·)c(j)i


 ,

where c(j)i is the j-th component of ci. Then, we find a desired function whose gradient is f .

The Special Structure of Kcf(x, y) = −∇2φ(‖x− y‖). As we have mentioned in Sec. 3.5, curl-free kernels have some
special structures. Suppose Kcf is a curl-free kernel defined by∇2φ(r), where r = (x− x′)T and r = ‖r‖. Then

∂

∂ri
φ = φ′

ri
r
,

∇ ∂

∂ri
φ = φ′′

ri
r2

r + φ′
eir − ri r

r

r2
,

where ei is the i-th column of the identity matrix. Then the curl-free kernel is of the form

Kcf(x, y) =

(
φ′

r3
− φ′′

r2

)
rrT − φ′

r
I. (19)

We also obtain a divergence formula for such kernel. Note that

∂jj∂iφ = φ′′′
r2j ri

r3
+ φ′′

(ri + rjδij)r
2 − 2r2j ri

r4

+ φ′′
rj
r

δijr − ri rjr
r2

+
φ′

r6
[
(δijrj − ri)r3 − 3rrj(δijr

2 − rirj)
]
,

where δij = [i = j]. Next, we sum out j and then obtain

div xKcf(x, x′) = −∆(∂iφ)(r) = − r
r

[
φ′′′(r) +

d− 1

r

(
φ′′(r)− φ′(r)

r

)]
. (20)

The Special Structure of Kcf(x, y) = −∇2ϕ(‖x− y‖2). Since many frequently used kernels only depend on ‖x− y‖2,
we consider the structure of curl-free kernels of these types. Suppose Kcf is a curl-free kernel defined by∇2ϕ(r2), where
r = (x− x′)T and r = ‖r‖. Then, using (19) and (20) we can find

Kcf(x, y) = −4ϕ′′rrT − 2ϕ′I, (21)

divxKcf(x, y) = −4[(d+ 2)ϕ′′ + 2r2ϕ′′′]r. (22)

C.4. Details of Different Regularization Schemes

C.4.1. TIKHONOV REGULARIZATION

Proof of Theorem 3.1. When gλ(σ) = (σ + λ)−1, the estimator is ŝp,λ = −(L̂K + λI)−1ζ̂. We need to compute the
explicit formula of the inverse of L̂K + λI . Note that (L̂K + λI)−1ζ̂ is the solution of the following minimization problem

ŝgp,λ = arg min
s∈HK

1

M

M∑

i=1

s(xi)Ts(xi) + 2〈s, ζ̂〉H + λ ‖s‖2H .

From the general representer theorem (Sriperumbudur et al., 2017, Theorem A.2), the minimizer lies in the space generated
by

{Kxic : i ∈ [M ], c ∈ Rd} ∪ {ζ̂}.
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We can assume

ŝgp,λ =

M∑

i=1

Kxici + aζ̂.

Define c := (c1, · · · , cM ) and h := (ζ̂(x1), · · · , ζ̂(xM )), then the optimization objective can be written as

1

M
(cTK2c + 2acTKh + a2hTh) + 2(a‖ζ̂‖2H + hTc) + λ(cTKc + 2acTh + a2‖ζ̂‖2H).

Taking the derivative, we need to solve the following linear system

1

M
(K2c + aKh) + h + λ(Kc + ah) = 0,

1

M
(ahTh + cTKh) + (1 + λa)‖ζ̂‖2H + λcTh = 0.

By some calculations, this system is equivalent to a = −1/λ and (K +MλI)c = h/λ.

C.4.2. SPECTRAL CUT-OFF REGULARIZATION

Proof of Lemma 3.2. Let H0 be the subspace of HK generated by {Kxmc : c ∈ Rd, m ∈ [M ]}. Note that f(xm)Tc =
〈K(·, xm)c, f〉H = 0 for any f ∈ H⊥0 and c ∈ Rd. We know L̂K = 0 on H⊥0 . Also note L̂Kv ∈ H0 and v(xm) =

u(m)
√
Mσ, then

L̂Kv(xk) =
1

M

M∑

m=1

K(xk, xm)v(xm) =
1√
M

M∑

m=1

K(xk, xm)
√
σu(m) = σv(xk),

and we conclude that L̂Kv = σv. The following equation shows v is normalized:

‖v‖2H =
1√
Mσ

M∑

m=1

〈
K(·, xm)u(m), v

〉
H

=
1√
Mσ

M∑

m=1

〈
u(m), v(xm)

〉
Rd

=
M∑

m=1

(u(m))Tu(m) = 1.

Theorem 3.3 is a corollary of the following lemma, which provides a general form for the regularizer gλ with gλ(0) = 0.

Lemma C.2. Let gλ : [0, κ2]→ R be a regularizer such that gλ(0) = 0. Let (σj ,uj)j≥1 be the non-zero eigenvalue and
eigenvector pairs that satisfy 1

M Kuj = σjuj . Then we have

gλ(L̂K)ζ̂ = KxX

(∑ gλ(σi)

Mσi
uiuT

i

)
h,

where KxX and h are defined as in Theorem 3.1.

Proof. Let {(µi, vi)} be the pairs of non-zero eigenvalues and eigenfunctions of L̂K : H → H, then by Lemma 3.2 we have
σi = µi. Note that

L̂K =
∑

µi〈vi, ·〉Hvi and gλ(L̂K) =
∑

gλ(µi)〈vi, ·〉Hvi.

From Lemma 3.2, we have
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gλ(L̂K)ζ̂ =
∑

gλ(σi)〈vi, ζ̂〉Hvi

=
∑



gλ(σi)

〈
1√
Mσi

M∑

j=1

Kxju
(j)
i , ζ̂

〉

H

1√
Mσi

M∑

k=1

Kxku(k)
i





=
1

M

∑ M∑

j,k=1

gλ(σi)σ
−1
i

〈
Kxju

(j)
i , ζ̂

〉
H
Kxku(k)

i

=
1

M

∑ M∑

j,k=1

gλ(σi)σ
−1
i ζ̂(xj)Tu(j)

i Kxku(k)
i

= KxX

(∑ gλ(σi)

Mσi
uiuT

i

)
h.

C.4.3. ITERATIVE REGULARIZATION

Theorem C.3 (Landweber iteration). Let ŝgp,λ be defined as in (8), and gλ(σ) = η
∑t−1
i=0(1 − ησ)i, where t := bλ−1c.

Then we have
ŝgp,λ(x) = −tηζ̂(x) + KxXct,

where c0 = 0 and ct+1 = (Id − ηK/M)ct − tη2h/M , and KxX and h are defined as in Theorem 3.1.

Proof. We note that the iteration process is

ŝ(1)p = −ηζ̂,
ŝ(t)p = −ηζ̂ + (I − ηL̂K)ŝ(t−1)p

= ŝ(t−1)p + η(−ζ̂ − L̂Kŝ(t−1)p ).

where we define ŝ(t)p := ŝp,1/t. We can assume

ŝ(t)p = atζ̂ + KxXct.

Then, by induction,
ŝ(t)p = −ηζ̂ + (I − ηL̂K)(at−1ζ̂ + KxXct−1)

= (at−1 − η)ζ̂ + KxX(ct−1 + ηat−1h/M − ηKct−1/M).

Thus, we have at = −tη and ct = (I− ηK/M)ct−1 − (t− 1)η2h/M , and c1 = 0.

Before introducing the ν-method, we recall that the iterative regularization can be represented by a family of polynomials
gλ(σ) = poly(σ), where gλ converges to the function 1/σ as λ→ 0. For example, in the Landweber iteration we see that

gλ(σ) = η
t−1∑

i=0

(1− ησ)i =
1− (1− ησ)t

σ
.

We can verify that the identification of λ and t−1 satisfies Definition 4.1 about the regularization. To see the qualification,
we note that the maximum |1− σgλ(σ)|σr = σr(1− ησ)t over [0, η−1] is attained when σ = r/(rη + t) and hence

sup
0≤σ≤η−1

|1− σgλ(σ)|σr ≤ ttrr

(rη + t)r+t
≤
(r
t

)r
= max(rr, 1)λr.

Thus, we see that the qualification is∞.
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Example C.4 (ν-method). The ν-method (Engl et al., 1996) is an accelerated version of the Landweber iteration. The idea
behind it is to find better polynomials pt(σ) to approximate the function 1/σ, where pt is a polynomial of degree t. These
polynomials satisfy sup0≤σ≤1 |1− σpt(σ)|σν ≤ cνt2ν . Compared with the definition of the qualification in Definition 4.1,
we can identify λ and t−2. Thus, for the same regularization parameter, the ν-method only requires about λ−1/2 iterations
while the Landweber iteration requires about λ−1 iterations. For more details about the construction of these polynomials,
we refer the readers to Engl et al. (1996, Appendix A.1 and Section 6.3)

Below we give the algorithm of the ν-method, where t = bλ−1/2c and ŝp,λ := ŝ
(t)
p .

ŝ(0)p = 0, ŝ(1)p = −ω1ζ̂,

ŝ(t)p = ŝ(t−1)p + ut(ŝ
(t−1)
p − ŝ(t−2)p ) + ωt(−ζ̂ − L̂Kŝ(t−1)p ),

where

ut =
(t− 1)(2t− 3)(2t+ 2ν − 1)

(t+ 2ν − 1)(2t+ 4ν − 1)(2t+ 2ν − 3)
,

ωt =
4(2t+ 2ν − 1)(t+ ν − 1)

(t+ 2ν − 1)(2t+ 4ν − 1)
.

Smilarly, we can assume
ŝ(t)p = atζ̂ + KxXct.

Then, by induction,

ŝ(t)p =
(

1 + ut − ωtL̂K
)
ŝ(t−1)p − utŝ(t−2)p − ωtζ̂

=
(

1 + ut − ωtL̂K
)

(at−1ζ̂ + KxXct−1)− ut(at−2ζ̂ + KxXct−2)− ωtζ̂

= ((1 + ut)at−1 − utat−2 − ωt) ζ̂
+ KxX

(
(1 + ut)ct−1 −

ωt
M

(at−1h + Kct−1)− utct−2
)
.

Thus, we obtain the iteration formula for at and ct as follows:

at := (1 + ut)at−1 − utat−2 − ωt,
ct := (1 + ut)ct−1 −

ωt
M

(at−1h + Kct−1)− utct−2,

and c0 = c1 = 0, a0 = 0, a1 = −ω1.

D. Technical Results
Lemma D.1. Suppose Assumption B.5 holds, then LK, L̂K : HK → HK are positive, self-adjoint, trace class operators.
Moreover, trLK ≤ κ2 and tr L̂K ≤ κ2.

Proof. The result follows from a simple calculation. It is easy to see LK and L̂K are positive and self-adjoint. We prove
they are in trace class. Let {ϕi} be a orthonormal basis ofHK and {ei} be the standard basis of Rd, then

trLK =
∑

i

〈LKϕi, ϕi〉H =

∫

X

∑

i

〈Kxϕi, ϕi〉Hdρ =

d∑

k=1

∫

X

∑

i

〈〈Kxek, ϕi〉HKxek, ϕi〉Hdρ

=
d∑

k=1

∫

X

∑

i

|〈Kxek, ϕi〉H|2dρ =
d∑

k=1

∫

X
‖Kxek‖2Hdρ =

∫

X
trK(x, x)dρ ≤ κ2

Similarly, we have tr L̂K ≤ κ2.
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We need the following concentration inequality in Hilbert spaces used in Bauer et al. (2007).

Lemma D.2 (Bauer et al. (2007), Proposition 23). Let ξ be a random variable with values in a real Hilbert space H .
Assume there are two constants σ,H , such that

E[‖ξ − Eξ‖mH ] ≤ 1

2
m!σ2Hm−2, ∀m ≥ 2.

Then, for all n ∈ N, 0 < δ < 1, the following inequality holds with probability at least 1− δ

‖ξ̂ − Eξ‖H ≤ 2

(
H

n
+

σ√
n

)
log

2

δ
,

where ξ̂ = 1
n

∑n
i=1 ξi and {ξi} are independent copies of ξ.

Lemma D.3. Under Assumption B.4, we have for all M ∈ N, 0 < δ < 1, the following inequality holds with probability at
least 1− δ

‖ζ̂ − ζ‖H ≤ 2

(
K

M
+

Σ√
M

)
log

2

δ
, (23)

where ζ̂ = 1
M

∑M
m=1 divxm KT

xm and {xm} is the set of i.i.d. samples from ρ.

Proof. Define an HK-valued random variable ξx := divxKT
x . It is easy to see Ex∼ν [ξx] = −LKsp =: ξ. From Assump-

tion B.4, we have for m ≥ 2,

Eν [‖ξx − ξ‖mH] ≤ m!KmEν
[
exp

(‖ξx − ξ‖H
K

)
− ‖ξx − ξ‖H

K
− 1

]
≤ 1

2
m!Σ2Km−2.

Note that ζ̂ = 1
M

∑
m=1 ξxm and Eν ζ̂ = ξ. Then (23) follows from Lemma D.2.

Lemma D.4. Under Assumption B.5, we have for all M ∈ N, 0 < δ < 1, the following inequality holds with probability at
least 1− δ

‖L̂K − LK‖H ≤
2
√

2κ2√
M

√
log

2

δ
. (24)

Proof. This is a direct consequence of Vito et al. (2005, Lemma 8) and Lemma D.1.

The following useful lemma is from De Vito et al. (2014, Lemma 7) and Sriperumbudur et al. (2017, Lemma 15)

Lemma D.5. Suppose S and T are two self-adjoint Hilbert-Schmidt operators on a separable Hilbert space H with
spectrum contained in the interval [a, b]. Given a Lipschitz function r : [a, b]→ R with Lipschitz constant Lr, we have

‖r(S)− r(T )‖HS ≤ Lr ‖S − T‖HS .
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E. Samples

Table 5. WAE samples on MNIST.
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Table 6. WAE samples on CelebA.

d = 8 d = 32 d = 64 d = 128
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