A. Proof of Proposition 3.3

This result directly follows Theorem 5.5 in Araújo et al. (2019). Let B_{GD}^{∞} denote the infinitely wide network trained by gradient descent in the limit of $M \rightarrow \infty$. By the results in Theorem 5.5 of Araújo et al. (2019), we have

$$
\mathbb{D}\left[S_{\mathrm{GD}}^{m}, \quad B_{\mathrm{GD}}^{\infty}\right]=\mathcal{O}_{p}\left(n \exp \left(c_{1} \exp \left(c_{2} n\right)\right)\left(\frac{1}{\sqrt{m}}+\sqrt{\eta}\right)\right)
$$

where we explicitly give the dependency of constant $C_{5.5}$ in Araújo et al. (2019) on the depth n, because $C_{5.5}=$ $O\left(\exp \left(c_{1} \times C_{B .16}\right)\right)$, where $C_{B .16}=\mathcal{O}\left(\exp \left(c_{2} n\right)\right)$ and c_{1} is some positive constant. See Lemma 12.2 in Araújo et al. (2019) for details.

Similarly,

$$
\mathbb{D}\left[S_{\mathrm{GD}}^{m}, \quad B_{\mathrm{GD}}^{\infty}\right]=\mathcal{O}_{p}\left(n \exp \left(c_{1} \exp \left(c_{2} n\right)\right)\left(\frac{1}{\sqrt{M}}+\sqrt{\eta}\right)\right)
$$

Combining this, we have

$$
\begin{aligned}
\mathbb{D}\left[B_{\mathrm{GD}}^{M}, \quad B_{\mathrm{GD}}^{M}\right] & \leq \mathbb{D}\left[S_{\mathrm{GD}}^{m}, \quad B_{\mathrm{GD}}^{\infty}\right]+\mathbb{D}\left[B_{\mathrm{GD}}^{M}, \quad B_{\mathrm{GD}}^{\infty}\right] \\
& =\mathcal{O}_{p}\left(n \exp \left(c_{1} \exp \left(c_{2} n\right)\right)\left(\frac{1}{\sqrt{m}}+\frac{1}{\sqrt{M}}+\sqrt{\eta}\right)\right)
\end{aligned}
$$

B. Proof of Theorem 3.5

Assumption 3.4 Denote by S_{WIN}^{m} the result of mimicking B_{GD}^{M} following Algorithm 1. When training S_{WIN}^{m}, we assume the parameters of S_{WIN}^{m} in each layer are initialized by randomly sampling m neurons from the the corresponding layer of the wide network B_{GD}^{M}. Define $B_{\mathrm{GD},[i: n]}^{M}=B_{n}^{M} \circ \cdots B_{i}^{M}$.

Theorem 3.5 Assume all the layers of B_{GD}^{M} are Lipschitz maps and all its parameters are bounded by some constant. Under the assumptions 3.1, 3.2, 3.4, we have

$$
\mathbb{D}\left[S_{\mathrm{WIN}}^{m}, B_{\mathrm{GD}}^{M}\right]=\mathcal{O}_{p}\left(\frac{\ell_{B} n}{\sqrt{m}}\right)
$$

where $\ell_{B}=\max _{i \in[n]}\left\|B_{\mathrm{GD},[i+1: n]}^{M}\right\|_{\text {Lip }}$ and $\mathcal{O}_{p}(\cdot)$ denotes the big O notation in probability, and the randomness is w.r.t. the random initialization of gradient descent, and the random mini-batches of stochastic gradient descent.

Proof. To simply the notation, we denote B_{GD}^{M} by B^{M} and $S_{\text {WIN }}^{m}$ by S^{m} in the proof. We have

$$
\begin{aligned}
B^{M}(\mathbf{x}) & =\left(B_{n}^{M} \circ B_{n-1}^{M} \circ \ldots \circ B_{1}^{M}\right)(\mathbf{x}) \\
S^{m}(\mathbf{x}) & =\left(S_{n}^{m} \circ S_{n-1}^{m} \circ \ldots \circ S_{1}^{m}\right)(\mathbf{x}) .
\end{aligned}
$$

We define

$$
B_{\left[k_{1}: k_{2}\right]}^{M}(\mathbf{z})=\left(B_{k_{2}}^{M} \circ B_{k_{2}-1}^{M} \circ \ldots \circ B_{k_{1}}^{M}\right)(\mathbf{z}),
$$

where \mathbf{z} is the input of $B_{\left[k_{1}: k_{2}\right]}^{M}$. Define

$$
\begin{aligned}
F_{0}(\mathbf{x}) & =\left(B_{n}^{M} \circ \ldots \circ B_{3}^{M} \circ B_{2}^{M} \circ B_{1}^{M}\right)(\mathbf{x}) \\
F_{1}(\mathbf{x}) & =\left(B_{n}^{M} \circ \ldots \circ B_{3}^{M} \circ B_{2}^{M} \circ S_{1}^{m}\right)(\mathbf{x}) \\
F_{2}(\mathbf{x}) & =\left(B_{n}^{M} \circ \ldots \circ B_{3}^{M} \circ S_{2}^{m} \circ S_{1}^{m}\right)(\mathbf{x}) \\
& \ldots \\
F_{n}(\mathbf{x}) & =\left(S_{n}^{m} \circ \ldots \circ S_{3}^{m} \circ S_{2}^{m} \circ S_{1}^{m}\right)(\mathbf{x}),
\end{aligned}
$$

following which we have $F_{0}=B^{M}$ and $F_{n}=S^{m}$, and hence

$$
\mathbb{D}\left[S^{m}, B^{M}\right]=\mathbb{D}\left[F_{n}, F_{0}\right] \leq \sum_{k=1}^{n} \mathbb{D}\left[F_{k}, F_{k-1}\right]
$$

Define $\ell_{i-1}:=\left\|B_{[i: n]}^{M}\right\|_{\text {Lip }}$ for $i \in[n]$ and $\ell_{n}=1$. Note that

$$
\begin{aligned}
\mathbb{D}\left[F_{1}, F_{0}\right] & =\sqrt{\mathbb{E}_{\mathbf{x} \sim \mathcal{D}}\left[\left(B_{[2: n]}^{M} \circ B_{1}^{M}(\mathbf{x})-B_{[2: n]}^{M} \circ S_{1}^{m}(\mathbf{x})\right)^{2}\right]} \\
& \leq \ell_{1} \sqrt{\mathbb{E}_{\mathbf{x} \sim \mathcal{D}}\left[\left(B_{1}^{M}(\mathbf{x})-S_{1}^{m}(\mathbf{x})\right)^{2}\right]}
\end{aligned}
$$

By the assumption that we initialize $S_{1}^{m}(\mathbf{x})$ by randomly sampling neurons from $B_{1}^{M}(\mathbf{x})$, we have, with high probability,

$$
\sqrt{\mathbb{E}_{x \sim \mathcal{D}}\left[\left(B_{1}^{M}(\mathbf{x})-S_{1}^{m}(\mathbf{x})\right)^{2}\right]} \leq \frac{c}{\sqrt{m}}
$$

where c is constant depending on the bounds of the parameters of B^{M}. Therefore,

$$
\mathbb{D}\left[F_{1}, F_{0}\right]=\mathcal{O}_{p}\left(\frac{\ell_{1}}{\sqrt{m}}\right) .
$$

Similarly, we have

$$
\mathbb{D}\left[F_{k}, F_{k-1}\right]=\mathcal{O}\left(\frac{\ell_{k}}{\sqrt{m}}\right), \quad \forall k=2, \ldots, n
$$

Combine all the results, we have

$$
\mathbb{D}\left[B^{M}, S^{m}\right]=\mathcal{O}\left(\frac{n \max _{k \in[n]} \ell_{k}}{\sqrt{m}}\right)
$$

Remark Since the wide network B_{GD}^{M} is observed to be easy to train, it is expected that it can closely approximate the underlying true function and behaves nicely, hence yielding a small ℓ_{B}. An important future direction is to develop rigorous theoretical bounds for controlling ℓ_{B}.

