
Go Wide, Then Narrow: Efficient Training of Deep Thin Networks

A. Proof of Proposition 3.3
This result directly follows Theorem 5.5 in Araújo et al. (2019). Let B1

GD denote the infinitely wide network trained by
gradient descent in the limit of M ! 1. By the results in Theorem 5.5 of Araújo et al. (2019), we have

D[Sm
GD, B

1
GD] = Op

✓
n exp(c1 exp(c2n))

✓
1

p
m

+
p
⌘

◆◆
,

where we explicitly give the dependency of constant C5.5 in Araújo et al. (2019) on the depth n, because C5.5 =
O(exp(c1 ⇥ CB.16)), where CB.16 = O(exp(c2n)) and c1 is some positive constant. See Lemma 12.2 in Araújo et al.
(2019) for details.

Similarly,

D[Sm
GD, B

1
GD] = Op

✓
n exp(c1 exp(c2n))

✓
1

p
M

+
p
⌘

◆◆
.

Combining this, we have

D[BM
GD, B

M
GD]  D[Sm

GD, B
1
GD] + D[BM

GD, B
1
GD]

= Op

✓
n exp(c1 exp(c2n))

✓
1

p
m

+
1

p
M

+
p
⌘

◆◆
.

B. Proof of Theorem 3.5
Assumption 3.4 Denote by S

m
WIN the result of mimicking B

M
GD following Algorithm 1. When training S

m
WIN, we assume

the parameters of Sm
WIN in each layer are initialized by randomly sampling m neurons from the the corresponding layer of

the wide network B
M
GD. Define B

M
GD,[i:n] = B

M
n � · · ·B

M
i .

Theorem 3.5 Assume all the layers of BM
GD are Lipschitz maps and all its parameters are bounded by some constant.

Under the assumptions 3.1, 3.2, 3.4, we have

D[Sm
WIN, B

M
GD] = Op

✓
`Bn
p
m

◆
,

where `B = maxi2[n]

���BM
GD,[i+1:n]

���
Lip

and Op(·) denotes the big O notation in probability, and the randomness is w.r.t.

the random initialization of gradient descent, and the random mini-batches of stochastic gradient descent.

Proof. To simply the notation, we denote B
M
GD by B

M and S
m
WIN by S

m in the proof. We have

B
M (x) = (BM

n �B
M
n�1 � ... �B

M
1 )(x)

S
m(x) =

�
S
m
n � S

m
n�1 � ... � S

m
1

�
(x).

We define
B

M
[k1:k2]

(z) = (BM
k2

�B
M
k2�1 � ... �B

M
k1
)(z),

where z is the input of BM
[k1:k2]

. Define

F0(x) =
�
B

M
n � ... �B

M
3 �B

M
2 �B

M
1

�
(x)

F1(x) =
�
B

M
n � ... �B

M
3 �B

M
2 � S

m
1

�
(x)

F2(x) =
�
B

M
n � ... �B

M
3 � S

m
2 � S

m
1

�
(x)

· · ·

Fn(x) = (Sm
n � ... � S

m
3 � S

m
2 � S

m
1 ) (x),

following which we have F0 = B
M and Fn = S

m, and hence

D[Sm
, B

M ] = D[Fn, F0] 
nX

k=1

D[Fk, Fk�1].



Go Wide, Then Narrow: Efficient Training of Deep Thin Networks

Define `i�1 :=
���BM

[i:n]

���
Lip

for i 2 [n] and `n = 1. Note that

D[F1, F0] =

s

Ex⇠D

⇣
BM

[2:n] �B
M
1 (x)�BM

[2:n] � S
m
1 (x)

⌘2
�

 `1

r
Ex⇠D

h�
BM

1 (x)� Sm
1 (x)

�2i

By the assumption that we initialize S
m
1 (x) by randomly sampling neurons from B

M
1 (x), we have, with high probability,

r
Ex⇠D

h�
BM

1 (x)� Sm
1 (x)

�2i


c
p
m
,

where c is constant depending on the bounds of the parameters of BM . Therefore,

D[F1, F0] = Op

✓
`1
p
m

◆
.

Similarly, we have

D[Fk, Fk�1] = O

✓
`k
p
m

◆
, 8k = 2, . . . , n.

Combine all the results, we have

D[BM
, S

m] = O

✓
nmaxk2[n] `k

p
m

◆
.

Remark Since the wide network B
M
GD is observed to be easy to train, it is expected that it can closely approximate the

underlying true function and behaves nicely, hence yielding a small `B . An important future direction is to develop rigorous
theoretical bounds for controlling `B .


