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Abstract
We study the problem of Robust Outlier Arm Iden-
tification (ROAI), where the goal is to identify
arms whose expected rewards deviate substan-
tially from the majority, by adaptively sampling
from their reward distributions. We compute the
outlier threshold using the median and median
absolute deviation of the expected rewards. This
is a robust choice for the threshold compared to
using the mean and standard deviation, since it
can identify outlier arms even in the presence of
extreme outlier values. Our setting is different
from existing pure exploration problems where
the threshold is pre-specified as a given value or
rank. This is useful in applications where the goal
is to identify the set of promising items but the
cardinality of this set is unknown, such as finding
promising drugs for a new disease or identify-
ing items favored by a population. We propose
two δ-PAC algorithms for ROAI, which includes
the first UCB-style algorithm for outlier detection,
and derive upper bounds on their sample complex-
ity. We also prove a matching, up to logarithmic
factors, worst case lower bound for the problem,
indicating that our upper bounds are generally
unimprovable. Experimental results show that our
algorithms are both robust and about 5x sample
efficient compared to state-of-the-art.

1. Introduction
Multi-armed bandits are commonly used to identify the op-
timal items (arms) among multiple candidates through adap-
tive queries (pure exploration setting (Jamieson & Nowak,
2014)). Every item is associated with an unknown probabil-
ity distribution, and when a bandit algorithm selects (pulls)
an item, it observes a value (reward) sampled from this
distribution. Depending on its objective and the history of
observed values, the bandit algorithm has to decide which
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item to sample at every time t, so as to identify the optimal
items using as few samples as possible. Pure exploration
bandit algorithms have been proposed for various objectives,
such as identifying arms with the largest rewards (Jamieson
et al., 2014; Jamieson & Nowak, 2014; Chen et al., 2016),
identifying arms above a given threshold (Locatelli et al.,
2016; Mukherjee et al., 2017; Xu et al., 2019) or clustering
arms (Katariya et al., 2018; 2019).

In this paper, we study bandit algorithms for identifying
outlier arms. Outlier arms are defined as those with ex-
pected rewards that are outliers relative to the overall set
of expected rewards (e.g., arms with expected rewards that
are several deviations above the mean/median of the overall
set of expected rewards). The outlier detection problem
has wide applications in scientific discovery (Grün et al.,
2015; Chaudhary et al., 2015), fraud detection (Porwal &
Mukund, 2018), medicine (Schiff et al., 2017), and public
health (Hauskrecht et al., 2013). In contrast to passive out-
lier detection algorithms which identify outlier items using a
pre-sampled dataset, bandit algorithms actively query items
with the goal of identifying outliers using as few samples
as possible. This is important because it can lead to early
detection of fraud for example. Outlier arms subsume good
arms with expected rewards substantially above the average,
and most applications mentioned in good arm identification
(Kano et al., 2019) apply to our setting.

As observed in Zhuang et al. (2017), bandit outlier detection
cannot be reduced to best arm(s) identification in bandits
because of the inherent double exploration dilemma - the
threshold is unknown and any algorithm must balance ex-
ploring individual arms and exploring the outlier threshold.
Zhuang et al. (2017) define the outlier threshold θ̄ using the
k-sigma rule applied to the mean µ̄ and standard deviation
σ̄ of the expected rewards i.e., θ̄ = µ̄+ k · σ̄. However this
threshold can fail to identify the correct outlier arms because
the mean and standard deviation are themselves sensitive
to outlier values (non-robust estimators). It can also miss
outliers when the number of arms is small. In this paper,
we define the threshold using the k-sigma rule applied to
the median and the median absolute deviation, which are
robust estimators with the highest possible breakdown point
0.5. This is the recommended practice in literature (Ham-
pel, 1974; Huber, 2004; Swallow & Kianifard, 1996), and
emphasized by Leys et al. (2013) in their aptly titled paper:
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“Detecting outliers: Do not use standard deviation around
the mean, use absolute deviation around the median”. Sim-
ilarly, Chung et al. (2008) conduct extensive experiments
to compare the two methods and show that the median-
based threshold identifies outliers that were missed by the
mean-based threshold. We show through our theoretical and
empirical results that this robust threshold not only identifies
outliers more accurately, but it also requires fewer samples
to do so than the mean-based threshold.

1.1. Contributions and Paper Organization

We make the following contributions. In Section 2 we for-
mally define the Robust Outlier Arm Identification (ROAI)
problem with justifications from Huber’s ε-contamination
model. In Section 3, we propose two algorithms for the
ROAI problem, which includes the first UCB-style algo-
rithm for outlier detection. We theoretically prove the cor-
rectness our algorithms and derive their sample complexity
upper bounds in Section 4. A matching, up to logarithmic
factors, worst case lower bound is provided in Section 5,
indicating our upper bounds are generally tight. We further
generalize our algorithms to settings with known contam-
ination upper bound in Section 6. Experiments conducted
in Section 7 show that our algorithms are both more robust
and more sample efficient than previous state-of-the-art. We
conclude our paper in Section 8 with open problems. All
proofs are deferred to the Appendix due to lack of space.

1.2. Related Work

The pure exploration problem in the multi-armed bandit set-
ting has a long history, starting from the work of (Bechhofer,
1958; Paulson et al., 1964). The aim of pure exploration
is to identify an arm or arms with certain properties. For
example, the best-arm identification problem involves cor-
rectly deciding which arm has the largest expected reward.
The instance-dependent sample complexity bound on the
best arm identification problem was analyzed/improved by
(Even-Dar et al., 2002; 2006; Gabillon et al., 2012; Karnin
et al., 2013; Jamieson et al., 2014; Jamieson & Nowak, 2014;
Chen et al., 2016). The problem was also generalized to
the setting of identifying the top-m arm (Kalyanakrishnan
et al., 2012; Chen et al., 2017a;b); the thresholding bandit
(Locatelli et al., 2016; Mukherjee et al., 2017; Xu et al.,
2019) which identifies all arms with expected reward above
a given threshold θ; and the good arm identification problem
(Kano et al., 2019; Katz-Samuels & Jamieson, 2019), where
for a given ε “good arms” have expected reward within ε
of the largest. Lower bounds developed in the pure explo-
ration setting (Mannor & Tsitsiklis, 2004; Chen & Li, 2015;
Kaufmann et al., 2016; Garivier & Kaufmann, 2016; Sim-
chowitz et al., 2017) shed light on the optimality of existing
algorithms.

In all of the above settings, the subset of arms of interest is
determined by a user-defined parameter, e.g., m, θ, and ε.
Outlier arm identification cannot be cast in these settings,
since the cut-off cannot be a prespecified threshold or rank.
The cut-off depends on the overall distribution of expected
rewards, which is unknown in advance. In other words,
outlier arm identification has an instance-dependent iden-
tification target. Bandit problems with instance-dependent
identification targets have attracted some attention recently.
One of the work (Katariya et al., 2019) studies the problem
of identifying the largest gap in the ordering of the expected
rewards, which provides a natural separation of the arms
into two groups or clusters. Another line of work (Zhuang
et al., 2017) focuses on identifying outlier arms with an out-
lier threshold adaptive to the bandit instance. Specifically,
they use the threshold θ̄ = µ̄ + k · σ̄, with µ̄ and σ̄ being
the mean and standard deviation of distribution of expected
rewards, respectively. The parameter k is usually chosen as
2 or 3 according to the famous three-sigma rule.

Our work focuses on robust and sample-efficient approaches
to the outlier arm identification problem. We model our set-
ting through Huber’s ε-contamination model (Huber et al.,
1964) and apply robust estimators with the highest possi-
ble breakdown point (Donoho & Huber, 1983; Rousseeuw
& Hubert, 2011), i.e., median and median absolute devi-
ation (MAD), in building the outlier threshold. Robust
statistics were previously incorporated in the bandit set-
ting (Altschuler et al., 2019), but they mainly deal with
traditional settings, i.e., best arm identification, with each
reward distribution being contaminated rather than identi-
fying instance-adaptive subsets. Although our work could
also be generalized to the setting with contaminated reward
distribution by incorporating their techniques, we do not
pursue this direction here.

2. Problem Setting and Notations
We consider the standard multi-armed bandit setting where
there are n arms and the reward of each arm follows a 1-
subgaussian distribution with mean yi. The goal of the agent
is to identify outlier arms whose expected rewards substan-
tially deviate from the majority, in the fixed confidence and
pure exploration setting. Without loss of generality, we as-
sume yi ≥ yi+1 and n = 2m− 1, so that the median arm is
unambiguous.1 We also only consider identifying outliers
with high rewards; identifying outliers with low rewards is
analogous. Let y(m) = median{yi} denote the expected
reward of the median arm, and let ADi = |yi − y(m)| repre-
sent the absolute deviation of arm i from the median. Let
AD(m) = median{|yi − y(m)|} denote the Median Abso-
lute Deviation (MAD) of expected reward. Note that y(m)

1If n = 2m, we choose the median as m without loss of
generality.
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and AD(m) serve as the first two robust moments of the
means of the underlying bandit instance {yi}ni=1. We de-
fine outlier arms to be arms whose mean is greater than the
threshold θ given by

θ = y(m) + k ·AD(m), (1)

where k ≥ 1 is a user-specified parameter. The goal of
the agent is to identify outlier arms using as few samples
as possible. Specifically, we are interested in designing
adaptive algorithms that return the subset of outlier arms
So = {i ∈ [n] : yi > θ} (we assume yi 6= θ, ∀ i ∈ [n]). We
call this setting Robust Outlier Arm Identification (ROAI).
For a given error probability δ ∈ (0, 1), we say an algorithm
is δ-PAC if it correctly identifies So with probability at least
1− δ using a finite number of samples.

Our choice of the threshold is justified under Huber’s ε-
contamination model, where with probability 1−ε the mean
yi is drawn from an unknown meta distribution P with
mean µ and standard deviation σ, and with probability ε the
mean yi is drawn from a contamination distribution. Note
that sample median and MAD enjoy the highest possible
breakdown point 0.5 (Donoho & Huber, 1983; Rousseeuw &
Hubert, 2011). Hence, our threshold in Eq. (1) (up to scaling
of AD(m)) is a more robust estimator of the true threshold
as compared to existing thresholds constructed using the
sample mean and sample standard deviation (which have a
breakdown point of 0) (Zhuang et al., 2017). Furthermore,
for many common meta distributions including the normal
and uniform distribution, Altschuler et al. (2019) prove tight
non-asymptotic concentration results for the median and
MAD constructed from contaminated samples.

Given our assumption of yi ≥ yi+1, let the outlier set be
So = {1, . . . , n1} where n1 is unknown. For a given set
{zi}ni=1, we use z(k) to denote the k-th largest value in {zi};
particularly, we use z(m) := median{zi}.

3. Algorithms
We formally introduce our algorithms in the section. We first
provide a subroutine for constructing confidence intervals
(CIs) of various quantities including the outlier threshold in
Section 3.1; and then introduce our elimination- and LUCB-
style algorithms in Section 3.2.

For any arm i ∈ [n] and time t, we use Si,t and Ni,t
to denote the sum of rewards and number of pulls; and
use ŷi,t = Si,t/Ni,t to denote the empirical mean reward.
For any quantity q ∈ {yi, y(m),ADi,AD(m), θ}, we use
Lq,t, Uq,t, Iq,t to denote the lower bound, upper bound, and
the CI respectively of q at time t.

3.1. Construction of Confidence Intervals (CIs)

The CI of individual arms i can easily be constructed using
Hoeffding’s inequality as [Lyi,t, Uyi,t] = [ŷi,t−βNi,t , ŷi,t−
βNi,t ], where βs =

√
log(4ns2/δ)/2s.

The construction of CIs for the median (Iy(m),t), MAD
(IAD(m),t), and the outlier threshold (Iθ,t), which are
needed for ascertaining whether an arm is an outlier, is
explained in Algorithm 1. On line 1, the CI Iy(m),t is con-
structed using the CIs of all arms. This is necessary because
the identity of the median arm may be unknown. If the
median arm can be unambiguously determined, this CI re-
duces to the CI of the median-th arm. The CI IAD(m),t is

similarly constructed from IADi,t. We set ÂDi,t and θ̂t as
the midpoint of their corresponding confidence intervals.

Algorithm 1 Construction of Confidence Intervals
Input: CIs of individual arms {Iyi,t}ni=1

Output: CIs Iy(m),t, IADi,t, IAD(m),t, Iθ,t
1: Ly(m),t = median{Lyi,t}
Uy(m),t = median{Uyi,t}
Iy(m),t = [Ly(m),t, Uy(m),t]

2: for i = 1, . . . , n do
3: LADi,t = max{Lyi,t − Uy(m),t, Ly(m),t − Uyi,t}

UADi,t = max{Uyi,t − Ly(m),t, Uy(m),t − Lyi,t}
IADi,t ∈ [LADi,t, UADi,t]

ÂDi,t = (UADi,t + LADi,t) /2
4: end for

5: LAD(m),t = median{LADi,t}
UAD(m),t

= median{UADi,t}
IAD(m),t = [LAD(m),t, UAD(m),t]

6: Lθ,t = Ly(m),t + k · LAD(m),t

Uθ,t = Uy(m),t + k · UAD(m),t

Iθ,t = [Lθ,t, Uθ,t] and θ̂t = (Uθ,t + Lθ,t) /2

3.2. Algorithms

We introduce our elimination-style (Even-Dar et al., 2006)
algorithm ROAIElim and LUCB-style (Kalyanakrishnan
et al., 2012) algorithm ROAILUCB in this section. Any
pure exploration bandit algorithm is specified through its
sampling, stopping, and recommendation rule (Kaufmann
et al., 2016). The stopping and recommendation rules are
the same for both algorithms. We stop at the first time t
such that {i ∈ [n] : Iyi,t ∩ Iθ,t 6= ∅} = ∅, and upon
stopping we output the empirical subset of outlier arms
Ŝo,t = {i ∈ [n] : ŷi,t > θ̂t}. We present our two algorithms
next.
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ROAIElim: The pseudocode of ROAIElim is given in
Algorithm 2. At round t, ROAIElim constructs three
active sets for the median, the MAD, and the threshold.
Each of these active sets contains arms whose CIs overlap
with the respective CI. Since the threshold is constructed
from the median and the MAD, any of these arms can con-
tribute towards shrinking the CI of the threshold, and hence
ROAIElim samples all arms in the union of these active
sets.

Algorithm 2 ROAIElim
Input: Error tolerance ε, probability of failure δ, and outlier

detection parameter k
Output: Subset of outlier arms Ŝo,t

1: Initialize AE,1 = Amedian
E,1 = AMAD

E,1 = AθE,1 = [n]
2: for t = 1, 2, . . . do
3: Sample arms in AE,t and update {Ii,t}i∈AE,t
4: Update CIs using Algorithm 1
5: Set

Amedian
E,t+1 = {i ∈ [n] : Iyi,t ∩ Iy(m),t 6= ∅} ∩Amedian

E,t

AMAD
E,t+1 = {i ∈ [n] : IADi,t ∩ IAD(m),t 6= ∅} ∩AMAD

E,t

AθE,t+1 = {i ∈ [n] : Iyi,t ∩ Iθ,t 6= ∅} ∩AθE,t

AE,t+1 = Amedian
E,t+1 ∪AMAD

E,t+1 ∪AθE,t+1

6: If AθE,t+1 = ∅, stop and return Ŝo,t
7: end for

ROAILUCB: The pseudocode of ROAILUCB is presented
in Algorithm 3. We use the notation Jκi,t to denote κi
arms with the largest empirical means {ŷi,t}, and JAD

κi,t to
denote the κi arms with the largest empirical absolute devi-
ations {ÂDi,t}. Since we are mainly interested in shrinking
confidence intervals around the median quantity, we set
κ1 = m− 1 and κ2 = m.

Motivated by the LUCB algorithm (Kalyanakrishnan et al.,
2012), ROAILUCB finds the 4 arms at the median bound-
ary, 4 arms at the MAD boundary, and 2 arms at the thresh-
old boundary, and samples arms in the union of these sets.
Unlike ROAIElim, ROAILUCB samples at most 10 arms
in each round.

4. Analysis
In Section 4.1, we discuss correctness and sample complex-
ity results of our algorithms. We compare the robustness and
sample complexity of our algorithms with previous work in
Section 4.2. The proofs can be found in the Appendix.

Algorithm 3 ROAILUCB
Input: Error tolerance ε, probability of failure δ, and outlier

detection parameter k
Output: Subset of outlier arms Ŝo,t

1: Initialize AL,1 = [n]
2: for t = 1, 2, . . . do
3: Sample arms in AL,t and update {Iyi,t}i∈AL,t
4: Update CIs using Algorithm 1
5: Set

Amedian
L,t+1 = arg min

i∈Jm−1,t

{Lyi,t} ∪ arg min
i∈Jm,t

{Lyi,t}

∪ arg max
i/∈Jm−1,t

{Uyi,t} ∪ arg max
i/∈Jm,t

{Uyi,t}

AMAD
L,t+1 = arg min

i∈JAD
m−1,t

{LADi,t} ∪ arg min
i∈JAD

m,t

{LADi,t}

∪ arg max
i/∈JAD

m−1,t

{UADi,t} ∪ arg max
i/∈JAD

m,t

{UADi,t}

AθL,t+1 = arg min
i∈Ŝo,t

{Lyi,t} ∪ arg max
i∈Ŝn,t

{Uyi,t}

∩ {i ∈ [n] : Iyi,t ∩ Iθ,t 6= ∅}

AL,t+1 = Amedian
L,t+1 ∪AMAD

L,t+1 ∪AθL,t+1

6: If AθL,t+1 = ∅, stop and return Ŝo,t
7: end for

4.1. Correctness and Sample Complexity

Lemma 1 shows the correctness of CIs in Algorithm 1.
We use it to prove the correctness of our algorithms in
Theorem 1.

Lemma 1. Suppose

P (∀t ∈ N,∀i ∈ [n], yi ∈ Iyi,t) ≥ 1− δ.

Then the CIs returned by Algorithm 1 are valid with proba-
bility 1− δ, i.e., for q ∈ {y(m), {ADi}ni=1,AD(m), θ},

P (∀t ∈ N, q ∈ Iq,t) ≥ 1− δ.

Theorem 1 (Correctness). ROAIElim and ROAILUCB
are δ-PAC.

In order to state our sample complexity bounds, we first
introduce some new notations. Define

∆θ
i = |θ − yi|, ∆θ

∗ = min
i∈[n]
{∆θ

i },

∆median
i = |y(m) − yi|, ∆MAD

i = |AD(m)−ADi |,
∆∗i = max{∆θ

∗,min{∆θ
i ,∆

median
i ,∆MAD

i }}. (2)



Robust Outlier Arm Identification

Theorem 2 (Sample Complexity). With probability at
least 1 − δ, the sample complexity of ROAIElim and
ROAILUCB is upper bounded by

Ck2
n∑

i=1

log (nk/δ∆∗i )
(∆∗i )

2
, (3)

where C is a universal constant.

The sample complexity is inversely proportional to ∆∗i de-
fined in Eq. (2). In order to interpret the sample complexity,
we consider two cases. If there exists arms whose means
are close to the threshold θ, i.e., ∆θ

∗ is small, then in order
to classify these arms correctly, we need to estimate θ and
consequently the median and the MAD accurately. Hence
the complexity of sampling an arm depends on its gaps from
y(m),AD(m), θ. Conversely, if all the arm means are widely
separated from the threshold, i.e., ∆θ

∗ is large and there is
a clear distinction between normal and outlier arms, then
we do not need to estimate θ accurately, and the sample
complexity is O(n/(∆θ

∗)
2).

We highlight that the proof of Theorem 2 is non-trivial
and cannot be reduced to existing techniques. The existing
works (Kalyanakrishnan et al., 2012; Katariya et al., 2018)
deal with scenarios where the positions of the separating
boundaries depend only on the arm means, and furthermore
they are user-specified. This holds true only for the median
in our case, it does not hold for the AD, MAD, and the
threshold because their values do not depend on a single
arm. The CIs of these estimators have varying degree of
uncertainty and we quantify these in our Lemmas. The
technical contributions may be of independent interest and
we refer the reader to our proofs in the Appendix.

4.2. Comparison to Previous Work

We compare our setting and analysis to algorithms by
Zhuang et al. (2017), which is the only work study outlier
detection in the bandit setting.

To deal with the unknown µ and σ, (Zhuang et al., 2017)
use the sample mean µ̄ =

∑n
i=1 yi/n and sample standard

deviation σ̄ =
√∑n

i=1(yi − µ̄)2/n to approximate µ and
σ, respectively, and define the outlier threshold to be θ̄ =
µ̄+ k · σ̄. As discussed in Section 2, these estimators have
a breakdown point 0 and are very sensitive to outliers; a
single extreme outlier arm can ruin their threshold.

Algorithms developed in (Zhuang et al., 2017) also require
the reward distribution of the arms to be strictly bounded;
our analysis is general and works for any sub-gaussian dis-
tributions.

Finally, although a direct comparison of sample complex-
ities is not possible due to different definitions of outlier
thresholds, we empirically see that our algorithms require

fewer samples to achieve the same error rate.

5. Lower bound
In this section, we study lower bound on the expected num-
ber of samples needed to identify outlier arms by any δ-PAC
algorithm, where the outlier threshold is defined by Eq. (1).

Our lower bound is instance-dependent. Recall that our
upper bound scales like Õ(

∑
i∈[n] 1/(∆∗i )

2
) where ∆∗i is

given by Eq. (2). The problem is easy when ∆∗i is large,
and the upper bound could potentially be large when ∆θ

i is
small. In this section we argue that this is unavoidable. We
show that if ∆θ

i is small enough, there exists a lower bound
that matches the upper bound up to logarithmic factors.
This indicates that our sample complexity upper bounds are
generally unimprovable.

We apply the change of measure technique (Kaufmann
et al., 2016), which give a lower bound in terms of the
KL-divergence. To connect the KL-divergence to the Eu-
clidean distance in our upper bound, we assume that the
reward distribution of each arm isN (yi, 1).2 We use Dyi to
denote the distribution N (yi, 1) as it is fully characterized
by its mean yi.

For a bandit instance Dy = (Dy1 , . . . , Dyn), assume with-
out loss of generality that yi ≥ yi+1 and that each arm is
unambiguously identifiable as an outlier or normal arm, i.e.,
yi 6= θ, ∀ i ∈ [n]. We use Ey(·) to represent the expectation
with respect to the bandit instance Dy and randomness in
the algorithm. We develop lower bounds for the following
subset of bandit instances.

Definition 1. LetMn,ρ = {Dy = (Dy1 , . . . , Dyn) : yi 6=
θ} be a subset of bandit instances with θ defined in Eq. (1)
and k ≥ 2, and satisfying the following two conditions.

1. There exists a unique median y(m) and a unique MAD
AD(m), with

η := 1/2· min
i∈{m,m−1}

{
y(i) − y(i+1),AD(i)−AD(i+1)

}
.

2. There exists a constant ρ < η such that at least two
arms l1 and l2 such that ρ/2 < θ − yli < ρ, and
at least two arms u1 and u2 such that ρ/2 < yui −
θ < ρ; furthermore, there exists no arm with mean in
[θ − ρ/2, θ + ρ/2].

It is easy to see that Mn,ρ 6= ∅ for reasonably large n.
The conditions in Definition 1 are essentially to make sure
that slightly changing the median y(m) or the MAD AD(m)

will incur a change in the set of outlier arms. Then, for

2The lower bound could be generalized to other distributions,
as discussed in (Kaufmann et al., 2016).
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any δ-PAC algorithm to correctly identify the subset of
outlier arms, it is necessary to accurately identify the outlier
threshold, which eventually leads to a matching sample
complexity lower bound. We state our lower bound for the
subset of bandit instancesMn,ρ next.

Theorem 3. Suppose bandit instance Dy ∈ Mn,ρ. Then
for δ ≤ 0.15, any δ-PAC outlier arm identification algo-
rithmA with outlier threshold constructed as in Eq. (1) and
an almost surely finite stopping time τ , we have that

Ey[τ ] ≥
∑

i∈[n]

1

5 (∆∗i )
2 log

(
1

2.4δ

)
.

In general for bandit instances outsideMn,ρ but with non-
empty subset of outlier arms, the outlier identification prob-
lem is at least as hard as the top-n1 arm identification prob-
lem where n1 is the number of outlier arms given by an
oracle. Thus, any lower bound for top-n1 arm identifica-
tion, e.g., Theorem 4 in (Kaufmann et al., 2016), applies
as a general lower bound for the outlier arm identification
problem.

6. Heuristic to Reduce Sample Complexity
The sample complexity of our algorithms is inversely pro-
portional to (∆∗i )

2 (see Eq. (2)), which could be as small
as (min{∆θ

i ,∆
median
i ,∆MAD

i })2 if ∆θ
∗ is small. As n in-

creases, there can be many arms with small ∆median
i or

∆MAD
i and the sample complexity can be high as a result.

In general, we cannot circumvent this cost if the outlier
threshold is constructed as in Eq. (1).

However, it might not be necessary to always construct out-
lier threshold using all n arms, and one heuristic approach is
to construct threshold only from a subset of arms. Suppose
we know, from an oracle, an upper bound c < 0.5 on the
fraction of arms drawn from the contaminated distribution,
we could then randomly draw a subset Ω ⊆ [n] of arms
with cardinality |Ω| ≥ 2bncc+ 1. The cardinality require-
ment makes sure the fraction of contamination within the
subset Ω is smaller than 0.5 so that the median and MAD
are not arbitrarily destroyed by outliers; but of course the
threshold constructed crucially depends on the selection of
Ω. Although the outlier set computed from this modified
threshold could differ from the outlier set computed from
[n], we could potentially enjoy a smaller sample complexity.
We next state an upper bound on the sample complexity in
this setting.3 Empirical examinations of the performance
are summarized in Section 7.2.

Corollary 1. Suppose we run Algorithm 3 with y(m),
AD(m) and θ constructed using arms in Ω ⊆ [n]. Then,
with probability at least 1 − δ, the sample complexity is

3See Appendix F for details of the algorithm.

upper bounded by

Ck2
∑

i∈Ω

log (nk/(δ∆∗i ))
(∆∗i )

2
+ C

∑

i/∈Ω

log
(
n/(δ∆θ

i )
)

(∆θ
i )

2
,

where ∆∗i = max{∆θ
∗,min{∆θ

i ,∆
median
i ,∆MAD

i }} andC
is a universal constant.

7. Experiments
We conduct three experiments. In Section 7.1, we verify
the tightness of our sample complexity upper bounds in
Section 4.1. In Section 7.2, we compare our setting to
the non-robust version proposed by Zhuang et al. (2017)
and empirically confirm the robustness of our thresholds as
discussed in Section 4.2. Finally, in Section 7.3, we compare
the anytime performance of our algorithms with baselines on
a synthetic and a real-world dataset. For ease of comparison,
we make the fraction of contamination deterministic rather
than random as in the original Huber’s contamination model.
All our results are averaged over 500 runs. Error bar in
Fig. 2, Fig. 4 and Fig. 5 are rescaled by 2/

√
500. Our code

is publicly available (Zhu et al., 2020).

7.1. Sample Complexity
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Figure 1. (a) Configuration of the arm means, we vary ∆θ
∗ to

change hardness (b) Theoretical upper bound vs empirical stop-
ping time, the linear relationship shows that our upper bounds are
correct up to constants.

In order to test that the hardness predicted by our upper
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bound scales correctly, we first plot the empirical stopping
time of each algorithm against the theoretical sample com-
plexity (Theorem 2 with C = 10). We choose the arm
configuration in Fig. 1(a) containing 15 normal arms (in
blue) with fixed means equally distributed from 0 to 2, an
outlier threshold θ ≈ 2.837, and 2 outlier arms (in orange)
above the outlier threshold. The distance between the out-
lier arms is fixed at 0.2. We decrease ∆θ

∗ from 0.6 to 0.2,
and this changes the theoretical sample complexity. Note
that the threshold does not change. The reward of each
arm is normally distributed with standard deviation 0.5. In
Fig. 1(b), we plot the empirical stopping time of our algo-
rithms against the theoretical sample complexity, and we
see a linear relationship between the two, which suggests
that our sample complexity in Theorem 2 is correct up to
constants. Fig. 1(b) also shows that our adaptive algorithms
always outperform random sampling, and the gains increase
with the hardness of the problem.

7.2. Setting Comparison

In this section, we compare the robustness of our outlier
threshold and the sample complexity upper bound of our
algorithms to the threshold and algorithms considered by
Zhuang et al. (2017). We introduce the nomenclature of the
algorithms next. Round Robin (RR) and Weighted Round
Robin (WRR) are algorithms proposed by Zhuang et al.
(2017) which use a non-robust outlier threshold. We denote
by ROAI-λnε the algorithm suggested in Section 6 that
constructs the outlier threshold from a subset Ω of arms
with |Ω| = max{λbnεc + 1, 15}. For each run of this
experiment, we generate the means of normal arms from
N (0.3, 0.0752) (clipped to the three-sigma range), and the
means of outlier arms from Unif(x, 1). We draw 105 arms
in total. We multiply MAD with 1/(Φ−1(3/4)) ≈ 1.4826
to make it consistent for the true scale of normal distribution
(Leys et al., 2013).

We first study robustness. In Fig. 2, we generate outlier
arms from Unif(0.7, 1) and vary the fraction ε of contami-
nated arms from 0 to 0.2, and compare the robustness of the
proposed outlier threshold from different algorithms. We
measure the robustness as deviation of the proposed thresh-
old from the true threshold. The true threshold is chosen
according to the three-sigma rule. It is clear that our outlier
thresholds are much more robust to contamination.

We next compare the upper bounds on the sample complex-
ity of different algorithms. We generate 10 outlier arms from
Unif(x, 1) with x varying from 0.6 to 0.9. In Fig. 3, we
plot the median sample complexity upper bounds of each
algorithm in log scale, ignoring universal constants. We
notice that under these contamination settings, our sample
complexity upper bounds are orders of magnitude smaller
than the ones proposed in Zhuang et al. (2017). From Fig. 2
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Figure 2. Deviation of the proposed outlier threshold from the true
threshold as a function of the contamination level ε. This shows
that our threshold is robust to contamination.

and Fig. 3, we also see the trade-off between robustness and
sample complexity for our generalized algorithms suggested
in Section 6.
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Figure 3. Sample complexity upper bounds as a function of the
lowest possible mean of outlier arms, our upper bounds are smaller.

7.3. Anytime Performance

In this section, we examine the anytime empirical error
rate of ROAILUCB, ROAIElim, random sampling and
RR/WRR (Zhuang et al., 2017). Similar to Section 7.2, we
generate 100 normal arm means fromN (0.3, 0.0752) and 5
outlier means from Unif(0.8, 1). We draw rewards of each
arm from a Bernoulli distribution with respect to its mean.
We use Bernoulli distributions here as algorithms in Zhuang
et al. (2017) only apply to arms with a strictly bounded
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distribution. In order to simulate a run, we randomly draw
means according to these two distributions and then draw
rewards from these arms with fixed means till the end of the
run. Under this setting, both our threshold (median-MAD)
and the threshold in Zhuang et al. (2017) (mean-standard
deviation) will lie in [0.525, 0.8] with high probability. We
filter out instances where the outlier sets (with respect to
both thresholds) do not match the ground truth. The av-
eraged minimum gap min{|yi − θ|} is 0.062 according to
our threshold, and 0.063 according to theirs. In Fig. 4, we
plot the fraction of times any algorithm fails to identify the
correct set of outlier arms. We notice that ROAILUCB re-
quires about 5x fewer samples than RR/WRR for the same
error rate. Notice that RR is essentially random sampling
with their threshold, and hence we use our threshold in the
algorithm labeled Random. The empirical performance of
RR/WRR is worse than Random.
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Figure 4. Fraction of times the outlier set is misidentified on syn-
thetic data.

We also compare the performance of all algorithms on the
real-world Wine Quality dataset (Sathe & Aggarwal, 2016),
which is widely used to compare outlier detection algo-
rithms. This dataset contains 129 wines, each having 13
features. 10 of these wines are labeled as outliers in the
dataset. To obtain a 1d representation of each wine, we
projected data points on the first principal component and
then rescaled them to [0, 1]. We deleted 6 values closest to
the threshold in this 1d representation so that the outlier set
is the same according to both definitions. The 123 means
thus obtained are plotted in Fig. 5(a) with the top-5 outliers
in orange. We simulate each arm as a Bernoulli distribution.
As in the previous experiment, ROAILUCB greatly outper-
form other algorithms, and RR/WRR is worse than random
sampling.

The fact that ROAIElim performs similar to random sam-
pling in terms of the anytime error rate is not new (Jamieson
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Figure 5. (a) 1d means obtained from the Wine Quality dataset (b)
Fraction of times the outlier set is misidentified on this dataset.

et al., 2014), elimination-style algorithms are very conserva-
tive initially. Fig. 1(b) does show that ROAIElim outper-
forms random sampling in terms of the empirical stopping
time.

8. Conclusion
This paper studies robust outlier arm identification problem,
a pure exploration problem with instance-adaptive identifi-
cation target in the multi-armed bandit setting. We propose
two algorithms ROAIElim and ROAILUCB, and theoreti-
cally derive their correctness and sample complexity upper
bounds. We also provide a matching, up to log factors, worst
case lower bound, indicating our upper bounds are gener-
ally tight. We conduct experiments to show our algorithms
are both robust and about 5x sample efficient compared to
state-of-the-art.

We leave open several questions. First, the sample complex-
ity of our algorithms is large when ∆θ

∗ is small. We propose
a heuristic to partially address this issue if an upper bound
on the contamination ε is known in Section 6. Another po-
tential approach is to add an error tolerance to allow arms
close the threshold being misclassified, but that adds another
user-specific parameter. We also leave open the problem of
obtaining a tight instance dependent lower bound. Our cur-
rent lower bound, even though instance-dependent, works
only in the worst case, and we reduce the problem to top-n1

arm identification in the general case.
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