Supplementary material for the paper: 'Linear Convergence of Randomized Primal-Dual Coordinate Method for Large-scale Linear Constrained Convex Programming"

First of all, we have the following observations:
In algorithm RPDC, the indices $i(k), k=0,1,2, \ldots$ are random variables. After k iterations, RPDC method generates a random output $\left(u^{k+1}, p^{k+1}\right)$. Recall the definition of filtration \mathcal{F}_{k} which is generated by the random variable $i(0), i(1), \ldots, i(k)$, i.e.,

$$
\mathcal{F}_{k} \stackrel{\text { def }}{=}\{i(0), i(1), \ldots, i(k)\}, \mathcal{F}_{k} \subset \mathcal{F}_{k+1}
$$

Additionally, $\mathcal{F}=\left(\mathcal{F}_{k}\right)_{k \in \mathbb{N}}, \mathbb{E}_{\mathcal{F}_{k+1}}=\mathbb{E}\left(\cdot \mid \mathcal{F}_{k}\right)$ is the conditional expectation w.r.t. \mathcal{F}_{k} and the conditional expectation in term of $i(k)$ given $i(0), i(1), \ldots, i(k-1)$ as $\mathbb{E}_{i(k)}$.
Knowing $\mathcal{F}_{k-1}=\{i(0), i(1), \ldots, i(k-1)\}$, we have:

$$
\begin{gather*}
\mathbb{E}_{i(k)}\left\langle\nabla_{i(k)} G\left(u^{k}\right),\left(u^{k}-u\right)_{i(k)}\right\rangle=\frac{1}{N}\left\langle\nabla G\left(u^{k}\right), u^{k}-u\right\rangle \geq \frac{1}{N}\left[G\left(u^{k}\right)-G(u)\right] \tag{A.1}\\
\mathbb{E}_{i(k)}\left[J_{i(k)}\left(u_{i(k)}^{k}\right)-J_{i(k)}\left(u_{i(k)}\right)\right]=\frac{1}{N}\left[J\left(u^{k}\right)-J(u)\right] \tag{A.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathbb{E}_{i(k)}\left\langle q^{k}, A_{i(k)}\left(u^{k}-u\right)_{i(k)}\right\rangle=\frac{1}{N}\left\langle q^{k}, A\left(u^{k}-u\right)\right\rangle \tag{A.3}
\end{equation*}
$$

Secondly, reconsidering the point $T\left(w^{k}\right)=\left(T_{u}\left(w^{k}\right), T_{p}\left(w^{k}\right)\right)$ generated by one deterministic iteration of APP-AL (Cohen \& Zhu, 1984) for given w^{k},

$$
\begin{aligned}
& \mathbf{A P P}-\mathbf{A L} \\
& \left\{\begin{array}{l}
T_{u}\left(w^{k}\right)=\arg \min _{u \in \mathbf{U}}\left\langle\nabla G\left(u^{k}\right), u\right\rangle+J(u)+\left\langle q^{k}, A u\right\rangle+\frac{1}{\epsilon} D\left(u, u^{k}\right) ; \\
T_{p}\left(w^{k}\right)=p^{k}+\gamma\left[A T_{u}\left(w^{k}\right)-b\right]
\end{array}\right.
\end{aligned}
$$

with $q^{k}=p^{k}+\gamma\left(A u^{k}-b\right)$, we have the following observations. The convex combination of u^{k} and $T_{u}\left(w^{k}\right)$ provides the expected value of u^{k+1} as following.

$$
\begin{equation*}
\mathbb{E}_{i(k)} u^{k+1}=\frac{1}{N} T_{u}\left(w^{k}\right)+\left(1-\frac{1}{N}\right) u^{k} \tag{A.4}
\end{equation*}
$$

or

$$
\begin{equation*}
T_{u}\left(w^{k}\right)=N \mathbb{E}_{i(k)} u^{k+1}-(N-1) u^{k} \tag{A.5}
\end{equation*}
$$

Moreover, the point $T\left(w^{k}\right)$ satisfies that: for any $(u, p) \in \mathbf{U} \times \mathbf{R}^{m}$,

$$
\left\{\begin{align*}
&\left\langle\nabla G\left(u^{k}\right), u-T_{u}\left(w^{k}\right)\right\rangle+J(u)-J\left(T_{u}\left(w^{k}\right)\right)+\left\langle q^{k}, A\left(u-T_{u}\left(w^{k}\right)\right)\right\rangle \tag{A.6}\\
&+\frac{1}{\epsilon}\left\langle\nabla K\left(T_{u}\left(w^{k}\right)\right)-\nabla K\left(u^{k}\right), u-T_{u}\left(w^{k}\right)\right\rangle \geq 0 \\
& \gamma\left[A T_{u}\left(w^{k}\right)-b\right]=T_{p}\left(w^{k}\right)-p^{k}
\end{align*}\right.
$$

1. Proof of Lemma 1

Proof. Take $w^{\prime}=w^{*}$ in (9), we have that

$$
\begin{align*}
\Lambda\left(w, w^{*}\right)= & D\left(u^{*}, u\right)+\frac{\epsilon}{2 N \rho}\left\|p-p^{*}\right\|^{2}+\frac{\epsilon(N-1)}{N}\left[L(u, p)-L\left(u^{*}, p^{*}\right)\right]+\frac{\epsilon(N-2) \gamma}{2 N}\|A u-b\|^{2} \\
= & D\left(u^{*}, u\right)+\frac{\epsilon}{2 N \rho}\left\|p-p^{*}\right\|^{2}+\frac{\epsilon(N-1)}{N}\left[L\left(u, p^{*}\right)-L\left(u^{*}, p^{*}\right)\right]+\frac{\epsilon(N-1)}{N}\left\langle p-p^{*}, A u-b\right\rangle \\
& +\frac{\epsilon(N-2) \gamma}{2 N}\|A u-b\|^{2} . \tag{A.7}
\end{align*}
$$

(i) Since $L\left(u, p^{*}\right)-L\left(u^{*}, p^{*}\right) \geq 0$ and $\frac{1}{2 \gamma}\left\|p-p^{*}\right\|^{2}+\frac{\gamma}{2}\|A u-b\|^{2}+\left\langle p-p^{*}, A u-b\right\rangle \geq 0$, (A.7) follows that

$$
\Lambda\left(w, w^{*}\right) \geq D\left(u^{*}, u\right)+\frac{\epsilon}{2 N \rho}\left\|p-p^{*}\right\|^{2}-\frac{\epsilon(N-1)}{2 N \gamma}\left\|p-p^{*}\right\|^{2}-\frac{\epsilon \gamma}{2 N}\|A u-b\|^{2}
$$

From Assumption 2, we have $D\left(u^{*}, u\right) \geq \frac{\beta}{2}\left\|u-u^{*}\right\|^{2}$. Together with the fact $A u^{*}=b$ and $\rho<\frac{2 \gamma}{2 N-1}$, above inequality follows that

$$
\Lambda\left(w, w^{*}\right) \geq d_{1}\left\|w-w^{*}\right\|^{2}
$$

with $d_{1}=\min \left\{\frac{1}{2 N}\left[N \beta-\epsilon \gamma \lambda_{\max }\left(A^{\top} A\right)\right], \frac{\epsilon}{4 N \gamma}\right\}$.
(ii) By Young's inequality, (A.7) follows that

$$
\begin{aligned}
\Lambda\left(w, w^{*}\right) \leq & D\left(u^{*}, u\right)+\frac{\epsilon}{2 N \rho}\left\|p-p^{*}\right\|^{2}+\frac{\epsilon(N-1)}{N}\left[L\left(u, p^{*}\right)-L\left(u^{*}, p^{*}\right)\right] \\
& +\frac{\epsilon(N-1)}{N}\left[\frac{1}{2 \gamma}\left\|p-p^{*}\right\|^{2}+\frac{\gamma}{2}\|A u-b\|^{2}\right]+\frac{\epsilon(N-2) \gamma}{2 N}\|A u-b\|^{2}
\end{aligned}
$$

From Assumption 2, we have $D\left(u^{*}, u\right) \leq \frac{B}{2}\left\|u-u^{*}\right\|^{2}$. Together with the fact $A u^{*}=b$ and $2 \gamma>(2 N-1) \rho$, above inequality follows that

$$
\Lambda\left(w, w^{*}\right) \leq d_{2}\left\|w-w^{*}\right\|^{2}+\frac{\epsilon(N-1)}{N}\left[L\left(u, p^{*}\right)-L\left(u^{*}, p^{*}\right)\right]
$$

with $d_{2}=\max \left\{\frac{(4 N-3) \epsilon}{(4 N-2) N \rho}, \frac{N B+\epsilon(2 N-3) \gamma \lambda_{\max }\left(A^{\top} A\right)}{2 N}\right\}$.
(iii) By the definition of $\Lambda\left(w, w^{\prime}\right)$, we have

$$
\begin{align*}
\Lambda\left(w, w^{\prime}\right) & \geq \frac{\epsilon(N-1)}{N}\left[L(u, p)-L\left(u^{*}, p^{*}\right)\right]+\frac{\epsilon(N-2) \gamma}{2 N}\|A u-b\|^{2} \\
& =\frac{\epsilon(N-1)}{N}\left[L(u, p)-L\left(u, p^{*}\right)\right]+\frac{\epsilon(N-1)}{N}\left[L\left(u, p^{*}\right)-L\left(u^{*}, p^{*}\right)\right]+\frac{\epsilon(N-2) \gamma}{2 N}\|A u-b\|^{2} \\
& \geq \frac{\epsilon(N-1)}{N}\left[L(u, p)-L\left(u, p^{*}\right)\right]+\frac{\epsilon(N-2) \gamma}{2 N}\|A u-b\|^{2} \\
& =\frac{\epsilon(N-1)}{N}\left\langle p-p^{*}, A u-b\right\rangle+\frac{\epsilon(N-2) \gamma}{2 N}\|A u-b\|^{2} \\
& \geq-d_{3}\left\|p-p^{*}\right\|^{2} \tag{A.8}
\end{align*}
$$

with $d_{3}=\frac{\epsilon(N-1)^{2}}{2 \gamma N(N-2)}$.

2. Proof of Lemma 2

Proof. Step 1: Estimate $\frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, q^{k}\right)-L\left(u, q^{k}\right)\right]$;
For all $u \in \mathbf{U}$, the unique solution u^{k+1} of the primal problem of RPDC is characterized by the following variational inequality:

$$
\begin{array}{r}
\left\langle\nabla_{i(k)} G\left(u^{k}\right),\left(u^{k+1}-u\right)_{i(k)}\right\rangle+J_{i(k)}\left(u_{i(k)}^{k+1}\right)-J_{i(k)}\left(u_{i(k)}\right)+\left\langle q^{k}, A_{i(k)}\left(u^{k+1}-u\right)_{i(k)}\right\rangle \\
+\frac{1}{\epsilon}\left\langle\nabla K\left(u^{k+1}\right)-\nabla K\left(u^{k}\right), u^{k+1}-u\right\rangle \leq 0
\end{array}
$$

which follows that

$$
\begin{align*}
\left\langle\nabla_{i(k)} G\left(u^{k}\right),\left(u^{k}-u-\left(u^{k}-u^{k+1}\right)\right)_{i(k)}\right\rangle+J_{i(k)}\left(u_{i(k)}^{k}\right)-J_{i(k)}\left(u_{i(k)}\right)-\left(J_{i(k)}\left(u_{i(k)}^{k}\right)-J_{i(k)}\left(u_{i(k)}^{k+1}\right)\right) \\
+\left\langle q^{k}, A_{i(k)}\left(u^{k}-u-\left(u^{k}-u^{k+1}\right)\right)_{i(k)}\right\rangle+\frac{1}{\epsilon}\left\langle\nabla K\left(u^{k+1}\right)-\nabla K\left(u^{k}\right), u^{k+1}-u\right\rangle \leq 0 \tag{A.9}
\end{align*}
$$

Observing that for any separable mapping $\psi(u)=\sum_{i=1}^{N} \psi_{i}\left(u_{i}\right)$, we have $\psi_{i(k)}\left(u_{i(k)}^{k}\right)-\psi_{i(k)}\left(u_{i(k)}^{k+1}\right)=\psi\left(u^{k}\right)-\psi\left(u^{k+1}\right)$. Therefore, (A.9) follows that

$$
\begin{align*}
& \left\langle\nabla_{i(k)} G\left(u^{k}\right),\left(u^{k}-u\right)_{i(k)}\right\rangle+J_{i(k)}\left(u_{i(k)}^{k}\right)-J_{i(k)}\left(u_{i(k)}\right)+\left\langle q^{k}, A_{i(k)}\left(u^{k}-u\right)_{i(k)}\right\rangle \\
\leq & \left\langle\nabla G\left(u^{k}\right), u^{k}-u^{k+1}\right\rangle+J\left(u^{k}\right)-J\left(u^{k+1}\right)+\left\langle q^{k}, A\left(u^{k}-u^{k+1}\right)\right\rangle \\
& +\frac{1}{\epsilon}\left\langle\nabla K\left(u^{k+1}\right)-\nabla K\left(u^{k}\right), u-u^{k+1}\right\rangle \tag{A.10}
\end{align*}
$$

Taking expectation with respect to $i(k)$ on both side of (A.10), together the condition expectation (A.1)-(A.3), we get

$$
\begin{align*}
\frac{1}{N}\left[L\left(u^{k}, q^{k}\right)-L\left(u, q^{k}\right)\right] \leq & \mathbb{E}_{i(k)}\left\{\left\langle\nabla G\left(u^{k}\right), u^{k}-u^{k+1}\right\rangle+J\left(u^{k}\right)-J\left(u^{k+1}\right)\right. \\
& \left.+\left\langle q^{k}, A\left(u^{k}-u^{k+1}\right)\right\rangle+\frac{1}{\epsilon}\left\langle\nabla K\left(u^{k+1}\right)-\nabla K\left(u^{k}\right), u-u^{k+1}\right\rangle\right\} \tag{A.11}
\end{align*}
$$

or

$$
\begin{align*}
\frac{1}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, q^{k}\right)-L\left(u, q^{k}\right)\right] \leq & \mathbb{E}_{i(k)}\{\underbrace{\left\langle\nabla G\left(u^{k}\right), u^{k}-u^{k+1}\right\rangle}_{\mathfrak{a}_{1}}+J\left(u^{k}\right)-J\left(u^{k+1}\right) \\
& +\left\langle q^{k}, A\left(u^{k}-u^{k+1}\right)\right\rangle+\frac{1}{N}\left[L\left(u^{k+1}, q^{k}\right)-L\left(u^{k}, q^{k}\right)\right] \\
& +\underbrace{\frac{1}{\epsilon}\left\langle\nabla K\left(u^{k+1}\right)-\nabla K\left(u^{k}\right), u-u^{k+1}\right\rangle}_{\mathfrak{a}_{2}}\} . \tag{A.12}
\end{align*}
$$

By the gradient Lipschitz of G, term \mathfrak{a}_{1} in (A.12) is bounded by

$$
\begin{equation*}
\mathfrak{a}_{1}=\left\langle\nabla G\left(u^{k}\right), u^{k}-u^{k+1}\right\rangle \leq G\left(u^{k}\right)-G\left(u^{k+1}\right)+\frac{B_{G}}{2}\left\|u^{k}-u^{k+1}\right\|^{2} \tag{A.13}
\end{equation*}
$$

The simple algebraic operation and Assumption 2 follows that

$$
\begin{align*}
\mathfrak{a}_{2}=\frac{1}{\epsilon}\left\langle\nabla K\left(u^{k+1}\right)-\nabla K\left(u^{k}\right), u-u^{k+1}\right\rangle & =\frac{1}{\epsilon}\left[D\left(u, u^{k}\right)-D\left(u, u^{k+1}\right)-D\left(u^{k+1}, u^{k}\right)\right] \\
& \leq \frac{1}{\epsilon}\left[D\left(u, u^{k}\right)-D\left(u, u^{k+1}\right)\right]-\frac{\beta}{2 \epsilon}\left\|u^{k}-u^{k+1}\right\|^{2} \tag{A.14}
\end{align*}
$$

Combining (A.12)-(A.14), we obtain that

$$
\begin{align*}
\frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, q^{k}\right)-L\left(u, q^{k}\right)\right] \leq & {\left[D\left(u, u^{k}\right)-\mathbb{E}_{i(k)} D\left(u, u^{k+1}\right)\right]+\mathbb{E}_{i(k)}\{\frac{\epsilon(N-1)}{N} \underbrace{\left[L\left(u^{k}, q^{k}\right)-L\left(u^{k+1}, q^{k}\right)\right]}_{\mathfrak{a}_{3}}} \\
& \left.-\frac{\beta-\epsilon B_{G}}{2}\left\|u^{k}-u^{k+1}\right\|^{2}\right\} \tag{A.15}
\end{align*}
$$

Since $p^{k+1}=p^{k}+\rho\left(A u^{k+1}-b\right)$ and $q^{k}=p^{k}+\gamma\left(A u^{k}-b\right)$, term \mathfrak{a}_{3} in (A.15) follows that

$$
\begin{align*}
\mathfrak{a}_{3}= & L\left(u^{k}, q^{k}\right)-L\left(u^{k+1}, q^{k}\right) \\
= & L\left(u^{k}, p^{k}\right)-L\left(u^{k+1}, p^{k+1}\right)+\left\langle q^{k}-p^{k}, A u^{k}-b\right\rangle+\left\langle p^{k+1}-q^{k}, A u^{k+1}-b\right\rangle \\
= & L\left(u^{k}, p^{k}\right)-L\left(u^{k+1}, p^{k+1}\right)+\gamma\left\|A u^{k}-b\right\|^{2}+\rho\left\|A u^{k+1}-b\right\|^{2}-\gamma\left\langle A u^{k}-b, A u^{k+1}-b\right\rangle \\
= & L\left(u^{k}, p^{k}\right)-L\left(u^{k+1}, p^{k+1}\right)+\frac{\gamma}{2}\left\|A u^{k}-b\right\|^{2}+\left(\rho-\frac{\gamma}{2}\right)\left\|A u^{k+1}-b\right\|^{2}+\frac{\gamma}{2}\left\|A\left(u^{k}-u^{k+1}\right)\right\|^{2} \\
\leq & L\left(u^{k}, p^{k}\right)-L\left(u^{k+1}, p^{k+1}\right)+\frac{\gamma}{2}\left\|A u^{k}-b\right\|^{2}+\left(\rho-\frac{\gamma}{2}\right)\left\|A u^{k+1}-b\right\|^{2} \\
& +\frac{\gamma \lambda_{\max }\left(A^{\top} A\right)}{2}\left\|u^{k}-u^{k+1}\right\|^{2} . \tag{A.16}
\end{align*}
$$

Combining (A.15)-(A.16), we have that

$$
\begin{align*}
\frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, q^{k}\right)-L\left(u, q^{k}\right)\right] \leq & {\left[D\left(u, u^{k}\right)-\mathbb{E}_{i(k)} D\left(u, u^{k+1}\right)\right]+\mathbb{E}_{i(k)}\left\{\frac{\epsilon(N-1)}{N}\left[L\left(u^{k}, p^{k}\right)-L\left(u^{k+1}, p^{k+1}\right)\right]\right.} \\
& -\frac{\beta-\epsilon\left[B_{G}+\frac{N-1}{N} \gamma \lambda_{\max }\left(A^{\top} A\right)\right]}{2}\left\|u^{k}-u^{k+1}\right\|^{2}+\frac{\epsilon \gamma(N-1)}{2 N}\left\|A u^{k}-b\right\|^{2} \\
& \left.+\frac{\epsilon(2 \rho-\gamma)(N-1)}{2 N}\left\|A u^{k+1}-b\right\|^{2}\right\} \tag{A.17}
\end{align*}
$$

Step 2: Estimate $\frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, p\right)-L\left(u^{k+1}, q^{k}\right)\right]$

$$
\begin{align*}
L\left(u^{k+1}, p\right)-L\left(u^{k+1}, q^{k}\right)= & \left\langle p-q^{k}, A u^{k+1}-b\right\rangle \\
= & \frac{1}{\rho}\left\langle p-p^{k}, p^{k+1}-p^{k}\right\rangle-\gamma\left\langle A u^{k}-b, A u^{k+1}-b\right\rangle \\
= & \frac{1}{2 \rho}\left[\left\|p-p^{k}\right\|^{2}-\left\|p-p^{k+1}\right\|^{2}+\left\|p^{k}-p^{k+1}\right\|^{2}\right]-\gamma\left\langle A u^{k}-b, A u^{k+1}-b\right\rangle \\
= & \frac{1}{2 \rho}\left[\left\|p-p^{k}\right\|^{2}-\left\|p-p^{k+1}\right\|^{2}+\left\|p^{k}-p^{k+1}\right\|^{2}\right]+\frac{\gamma}{2}\left\|A\left(u^{k}-u^{k+1}\right)\right\|^{2} \\
& -\frac{\gamma}{2}\left\|A u^{k}-b\right\|^{2}-\frac{\gamma}{2}\left\|A u^{k+1}-b\right\|^{2} \\
= & \frac{1}{2 \rho}\left[\left\|p-p^{k}\right\|^{2}-\left\|p-p^{k+1}\right\|^{2}\right]+\frac{\gamma}{2}\left\|A\left(u^{k}-u^{k+1}\right)\right\|^{2} \\
& -\frac{\gamma}{2}\left\|A u^{k}-b\right\|^{2}+\frac{\rho-\gamma}{2}\left\|A u^{k+1}-b\right\|^{2} \quad\left(\operatorname{since} p^{k+1}=p^{k}+\rho\left(A u^{k+1}-b\right) .\right) \\
\leq & \frac{1}{2 \rho}\left[\left\|p-p^{k}\right\|^{2}-\left\|p-p^{k+1}\right\|^{2}\right]+\frac{\gamma \lambda_{\max }\left(A^{\top} A\right)}{2}\left\|u^{k}-u^{k+1}\right\|^{2} \\
& -\frac{\gamma}{2}\left\|A u^{k}-b\right\|^{2}+\frac{\rho-\gamma}{2}\left\|A u^{k+1}-b\right\|^{2} \tag{A.18}
\end{align*}
$$

Multiply $\frac{\epsilon}{N}$ on both side of above inequality, we obtain that: $\forall p \in \mathbf{R}^{m}$

$$
\begin{align*}
\frac{\epsilon}{N}\left[L\left(u^{k+1}, p\right)-L\left(u^{k+1}, q^{k}\right)\right] \leq & \frac{\epsilon}{2 N \rho}\left[\left\|p-p^{k}\right\|^{2}-\left\|p-p^{k+1}\right\|^{2}\right]+\frac{\epsilon \frac{1}{N} \gamma \lambda_{\max }\left(A^{\top} A\right)}{2}\left\|u^{k}-u^{k+1}\right\|^{2} \\
& -\frac{\epsilon \gamma}{2 N}\left\|A u^{k}-b\right\|^{2}+\frac{\epsilon(\rho-\gamma)}{2 N}\left\|A u^{k+1}-b\right\|^{2} \tag{A.19}
\end{align*}
$$

Taking expectation with respect to $i(k)$ on both side of inequality (A.19), we have

$$
\begin{align*}
\frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, p\right)-L\left(u^{k+1}, q^{k}\right)\right] \leq & \frac{\epsilon}{2 N \rho}\left[\left\|p-p^{k}\right\|^{2}-\mathbb{E}_{i(k)}\left\|p-p^{k+1}\right\|^{2}\right]+\frac{\epsilon \frac{1}{N} \gamma \lambda_{\max }\left(A^{\top} A\right)}{2} \mathbb{E}_{i(k)}\left\|u^{k}-u^{k+1}\right\|^{2} \\
& -\frac{\epsilon \gamma}{2 N}\left\|A u^{k}-b\right\|^{2}+\frac{\epsilon(\rho-\gamma)}{2 N} \mathbb{E}_{i(k)}\left\|A u^{k+1}-b\right\|^{2} \tag{A.20}
\end{align*}
$$

Step 3: Estimate the variance of $\Lambda\left(w^{k}, w\right)$.
Summing inequalities (A.17) and (A.20), with $d_{4}=\frac{\min \left\{\frac{\beta-\epsilon\left[B_{G}+\gamma \lambda_{\max }\left(A^{\top} A\right)\right]}{2}, \frac{\epsilon[2 \gamma-(2 N-1) \rho]}{2 N}\right\}}{\max \left\{N^{2}+2 \gamma^{2}\left(N^{2}+2\right) \lambda_{\max }\left(A^{\top} A\right), 4 \gamma^{2}\right\}}$, we have that

$$
\begin{align*}
& \Lambda\left(w^{k}, w\right)-\mathbb{E}_{i(k)} \Lambda\left(w^{k+1}, w\right) \\
\geq & \mathbb{E}_{i(k)}\left\{\frac{\epsilon}{N}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right]+\frac{\beta-\epsilon\left[B_{G}+\gamma \lambda_{\max }\left(A^{\top} A\right)\right]}{2}\left\|u^{k}-u^{k+1}\right\|^{2}+\frac{\epsilon[2 \gamma-(2 N-1) \rho]}{2 N}\left\|A u^{k+1}-b\right\|^{2}\right\} \\
\geq & \mathbb{E}_{i(k)}\left\{\frac{\epsilon}{N}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right]+d_{4}\left[\left(N^{2}+2 \gamma^{2}\left(N^{2}+2\right) \lambda_{\max }\left(A^{\top} A\right)\right)\left\|u^{k}-u^{k+1}\right\|^{2}+4 \gamma^{2}\left\|A u^{k+1}-b\right\|^{2}\right]\right\} \\
\geq & \mathbb{E}_{i(k)}\left\{\frac{\epsilon}{N}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right]+d_{4}\left[\left(1+2 \gamma^{2} \lambda_{\max }\left(A^{\top} A\right)\right) N^{2}\left\|u^{k}-u^{k+1}\right\|^{2}+4 \gamma^{2}\left[\left\|A\left(u^{k}-u^{k+1}\right)\right\|^{2}+\left\|A u^{k+1}-b\right\|^{2}\right]\right]\right\} \\
\geq & \mathbb{E}_{i(k)}\left\{\frac{\epsilon}{N}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right]+d_{4}\left[\left(1+2 \gamma^{2} \lambda_{\max }\left(A^{\top} A\right)\right) N^{2}\left\|u^{k}-u^{k+1}\right\|^{2}+2 \gamma^{2}\left\|A u^{k}-b\right\|^{2}\right]\right\} \\
= & \frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right]+d_{4}\left[\left(1+2 \gamma^{2} \lambda_{\max }\left(A^{\top} A\right)\right) N^{2} \mathbb{E}_{i(k)}\left\|u^{k}-u^{k+1}\right\|^{2}+2 \gamma^{2}\left\|A u^{k}-b\right\|^{2}\right] \tag{A.21}
\end{align*}
$$

By Jensen's inequality, (A.21) follows that

$$
\begin{align*}
\Lambda\left(w^{k}, w\right)-\mathbb{E}_{i(k)} \Lambda\left(w^{k+1}, w\right) \geq & \frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right] \\
& +d_{4}\left[\left(1+2 \gamma^{2} \lambda_{\max }\left(A^{\top} A\right)\right) N^{2}\left\|u^{k}-\mathbb{E}_{i(k)} u^{k+1}\right\|^{2}+2 \gamma^{2}\left\|A u^{k}-b\right\|^{2}\right](\mathrm{A} \tag{A.22}
\end{align*}
$$

Since $\mathbb{E}_{i(k)} u^{k+1}-u^{k}=\frac{1}{N}\left[T_{u}\left(w^{k}\right)-u^{k}\right]$ in (A.4), (A.22) yields that

$$
\begin{align*}
\Lambda\left(w^{k}, w\right)-\mathbb{E}_{i(k)} \Lambda\left(w^{k+1}, w\right) \geq & \frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right] \\
& +d_{4}\left[\left(1+2 \gamma^{2} \lambda_{\max }\left(A^{\top} A\right)\right)\left\|u^{k}-T_{u}\left(w^{k}\right)\right\|^{2}+2 \gamma^{2}\left\|A u^{k}-b\right\|^{2}\right] \tag{A.23}
\end{align*}
$$

Since $\lambda_{\max }\left(A^{\top} A\right)\left\|u^{k}-T_{u}\left(w^{k}\right)\right\|^{2} \geq\left\|A\left[u^{k}-T_{u}\left(w^{k}\right)\right]\right\|^{2}$ and $T_{p}\left(w^{k}\right)-p^{k}=\gamma\left[A T_{u}\left(w^{k}\right)-b\right]$, (A.23) follows that

$$
\begin{aligned}
\Lambda\left(w^{k}, w\right)-\mathbb{E}_{i(k)} \Lambda\left(w^{k+1}, w\right) \geq & \frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right] \\
& +d_{4}\left[\left\|u^{k}-T_{u}\left(w^{k}\right)\right\|^{2}+2 \gamma^{2}\left\|A\left[u^{k}-T_{u}\left(w^{k}\right)\right]\right\|^{2}+2 \gamma^{2}\left\|A u^{k}-b\right\|^{2}\right] \\
\geq & \frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right]+d_{4}\left[\left\|u^{k}-T_{u}\left(w^{k}\right)\right\|^{2}+\gamma^{2}\left\|A T_{u}\left(w^{k}\right)-b\right\|^{2}\right] \\
\geq & \frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right]+d_{4}\left\|w^{k}-T\left(w^{k}\right)\right\|^{2} .
\end{aligned}
$$

Then we have the result of Lemma 2.

3. Proof of Theorem 1 (Almost surely convergence)

Proof.

(i) Take $w=w^{*}$ in Lemma 2, we have

$$
\begin{equation*}
\Lambda\left(w^{k}, w^{*}\right) \geq \mathbb{E}_{i(k)} \Lambda\left(w^{k+1}, w^{*}\right)+\frac{\epsilon}{N} \mathbb{E}_{i(k)}\left[L\left(u^{k+1}, p^{*}\right)-L\left(u^{*}, q^{k}\right)\right]+d_{4}\left\|w^{k}-T\left(w^{k}\right)\right\|^{2} \tag{A.24}
\end{equation*}
$$

Observe that $L\left(u^{k+1}, p^{*}\right)-L\left(u^{*}, q^{k}\right) \geq 0$. From statement (i) of Lemma 1, we have that $\Lambda\left(w^{k}, w^{*}\right)$ is nonnegative. By the Robbins-Siegmund Lemma (Robbins \& Siegmund, 1971), we obtain that $\lim _{k \rightarrow+\infty} \Lambda\left(w^{k}, w^{*}\right)$ almost surely exists, $\sum_{k=0}^{+\infty}\left\|w^{k}-T\left(w^{k}\right)\right\|^{2}<+\infty$ a.s..
(ii) Since $\lim _{k \rightarrow+\infty} \Lambda\left(w^{k}, w^{*}\right)$ almost surely exists, thus $\Lambda\left(w^{k}, w^{*}\right)$ is almost surely bounded. Thanks statement (i) of Lemma 1 , it implies the sequences $\left\{w^{k}\right\}$ is almost surely bounded.
(iii) From statement (i) we have that

$$
\lim _{k \rightarrow \infty}\left\|w^{k}-T\left(w^{k}\right)\right\|=0 \quad \text { a.s.. }
$$

By variational inequality system (A.6), we have that any cluster point of a realization sequence generated by RPDC almost surely is a saddle point of Lagrangian for (P).

4. Proof of Theorem 2 (Expected primal suboptimality and expected feasibility)

Proof.
(i) Let $h\left(w, w^{\prime}\right)=\Lambda\left(w, w^{\prime}\right)+\frac{d_{3}}{d_{1}} \Lambda\left(w, w^{*}\right)$. By statement (i) and (iii) in Lemma 1, we have $h\left(w, w^{\prime}\right) \geq 0$. From Lemma 2, we obtain that

$$
\mathbb{E}_{i(k)} \frac{\epsilon}{N}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right] \leq \Lambda\left(w^{k}, w\right)-\mathbb{E}_{i(k)} \Lambda\left(w^{k+1}, w\right)
$$

Taking expectation with respect to $\mathcal{F}_{t}, t>k$ for above inequality, we obtain that

$$
\begin{equation*}
\frac{\epsilon}{N} \mathbb{E}_{\mathcal{F}_{t}}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right] \leq \mathbb{E}_{\mathcal{F}_{t}}\left[\Lambda\left(w^{k}, w\right)-\Lambda\left(w^{k+1}, w\right)\right] \tag{A.25}
\end{equation*}
$$

Take $w=w^{*}$ in (A.25), we obtain

$$
\begin{equation*}
0 \leq \mathbb{E}_{\mathcal{F}_{t}}\left[\Lambda\left(w^{k}, w^{*}\right)-\Lambda\left(w^{k+1}, w^{*}\right)\right] \tag{A.26}
\end{equation*}
$$

By the combination of (A.25) and (A.26), it follows

$$
\begin{equation*}
\frac{\epsilon}{N} \mathbb{E}_{\mathcal{F}_{t}}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right] \leq \mathbb{E}_{\mathcal{F}_{t}}\left[h\left(w^{k}, w\right)-h\left(w^{k+1}, w\right)\right] \tag{A.27}
\end{equation*}
$$

From the definition of \bar{u}_{t} and \bar{p}_{t}, we have $\bar{u}_{t} \in \mathbf{U}$ and $\bar{p}_{t} \in \mathbf{R}^{m}$. From the convexity of set $\mathbf{U}, \mathbf{R}^{m}$ and the function $L\left(u^{\prime}, p\right)-L\left(u, p^{\prime}\right)$ is convex in u^{\prime} and linear in p^{\prime}, for all $u \in \mathbf{U}$ and $p \in \mathbf{R}^{m}$, we have that

$$
\begin{equation*}
\mathbb{E}_{\mathcal{F}_{t}}\left[L\left(\bar{u}_{t}, p\right)-L\left(u, \bar{p}_{t}\right)\right] \leq \mathbb{E}_{\mathcal{F}_{t}} \frac{1}{t+1} \sum_{k=0}^{t}\left[L\left(u^{k+1}, p\right)-L\left(u, q^{k}\right)\right] \leq \frac{N h\left(w^{0}, w\right)}{\epsilon(t+1)} \tag{A.28}
\end{equation*}
$$

(ii) If $\mathbb{E}_{\mathcal{F}_{t}}\left\|A \bar{u}_{t}-b\right\|=0$, statement (ii) is obviously. Otherwise, $\mathbb{E}_{\mathcal{F}_{t}}\left\|A \bar{u}_{t}-b\right\| \neq 0$ i.e., there is set \mathbb{W} such that $\mathbb{P}\left\{\omega \in \mathbb{W} \mid\left\|A \bar{u}_{t}-b\right\| \neq 0\right\}>0$. Let \hat{p} be a random vector:

$$
\hat{p}(\omega)=\left\{\begin{array}{cc}
0 & \omega \notin \mathbb{W} \tag{A.29}\\
\frac{M\left(A \bar{u}_{t}-b\right)}{\left\|A \bar{u}_{t}-b\right\|} & \omega \in \mathbb{W}
\end{array}\right.
$$

Noted that for $\omega \notin \mathbb{W}$, we have $\hat{p}(\omega)=0$ and $\left\|A \bar{u}_{t}-b\right\|=0$. Thus

$$
\begin{equation*}
\left\langle\hat{p}(\omega), A \bar{u}_{t}-b\right\rangle=M\left\|A \bar{u}_{t}-b\right\|=0 \tag{A.30}
\end{equation*}
$$

Otherwise, for $\omega \in \mathbb{W}$, we have that

$$
\begin{equation*}
\left\langle\hat{p}(\omega), A \bar{u}_{t}-b\right\rangle=M\left\|A \bar{u}_{t}-b\right\| . \tag{A.31}
\end{equation*}
$$

Together (A.30) and (A.31), we have

$$
\begin{equation*}
\left\langle\hat{p}, A \bar{u}_{t}-b\right\rangle=M\left\|A \bar{u}_{t}-b\right\| \tag{A.32}
\end{equation*}
$$

Moreover, since $A u^{*}=b$, we have

$$
\begin{equation*}
L\left(\bar{u}_{t}, \hat{p}\right)-L\left(u^{*}, \bar{p}_{t}\right)=F\left(\bar{u}_{t}\right)+\left\langle\hat{p}, A \bar{u}_{t}-b\right\rangle-F\left(u^{*}\right)=F\left(\bar{u}_{t}\right)-F\left(u^{*}\right)+M\left\|A \bar{u}_{t}-b\right\| . \tag{A.33}
\end{equation*}
$$

Moreover, by taking $u=\bar{u}_{t}$ in the right hand side of saddle point inequality, we have

$$
\begin{equation*}
F\left(\bar{u}_{t}\right)-F\left(u^{*}\right) \geq-\left\langle p^{*}, A \bar{u}_{t}-b\right\rangle \geq-\left\|p^{*}\right\|\left\|A \bar{u}_{t}-b\right\| \tag{A.34}
\end{equation*}
$$

Combine (A.33) and (A.34), we have that

$$
\left\|A \bar{u}_{t}-b\right\| \leq \frac{L\left(\bar{u}_{t}, \hat{p}\right)-L\left(u^{*}, \bar{p}_{t}\right)}{\left(M-\left\|p^{*}\right\|\right)}
$$

Take expectation on both side of above inequality, we have that

$$
\begin{align*}
\mathbb{E}_{\mathcal{F}_{t}}\left\|A \bar{u}_{t}-b\right\| \leq \frac{\mathbb{E}_{\mathcal{F}_{t}}\left[L\left(\bar{u}_{t}, \hat{p}\right)-L\left(u^{*}, \bar{p}_{t}\right)\right]}{\left(M-\left\|p^{*}\right\|\right)} & \leq \mathbb{E}_{\mathcal{F}_{t}} \frac{N h\left(w^{0},\left(u^{*}, \hat{p}\right)\right)}{\left(M-\left\|p^{*}\right\|\right) \epsilon(t+1)} \tag{i}\\
& \leq \mathbb{E}_{\mathcal{F}_{t}} \frac{N d_{5}}{\left(M-\left\|p^{*}\right\|\right) \epsilon(t+1)}
\end{align*}
$$

where $d_{5}=\sup _{\|p\|<M} h\left(w^{0},\left(u^{*}, p\right)\right)$.
(iii) Again from (A.33), (A.34) and statement (ii), statement (iii) is coming.

5. Proof of Lemma 3

Proof.

(i) This statement directly follows from the definition of $\phi\left(w, w^{*}\right)$ and statement (i) in Lemma 1.
(ii) This statement directly follows from the definition of $\phi\left(w, w^{*}\right)$ and statement (ii) in Lemma 1.
(iii) By the definition of $\phi\left(w, w^{*}\right)$, we have that.

$$
\begin{aligned}
& \phi\left(w^{k}, w^{*}\right)-\mathbb{E}_{i(k)} \phi\left(w^{k+1}, w^{*}\right) \\
= & \Lambda\left(w^{k}, w^{*}\right)-\mathbb{E}_{i(k)}\left\{\Lambda\left(w^{k+1}, w^{*}\right)+\frac{\epsilon}{N}\left[L\left(u^{k}, p^{*}\right)-L\left(u^{*}, p^{*}\right)\right]-\frac{\epsilon}{N}\left[L\left(u^{k+1}, p^{*}\right)-L\left(u^{*}, p^{*}\right)\right]\right\} \\
\geq & \Lambda\left(w^{k}, w^{*}\right)-\mathbb{E}_{i(k)}\left\{\Lambda\left(w^{k+1}, w^{*}\right)+\frac{\epsilon}{N}\left[L\left(u^{k}, p^{*}\right)-L\left(u^{*}, p^{*}\right)\right]-\frac{\epsilon}{N}\left[L\left(u^{k+1}, p^{*}\right)-L\left(u^{*}, q^{k}\right)\right]\right\}
\end{aligned}
$$

(by the definition of saddle point.)

$$
\geq d_{4}\left[\left\|w^{k}-T\left(w^{k}\right)\right\|^{2}+\frac{\epsilon}{N}\left[L\left(u^{k}, p^{*}\right)-L\left(u^{*}, p^{*}\right)\right]\right.
$$

6. Proof of Theorem 3 (Global strong metric subregularity of $H(w)$ implies linear convergence of RPDC)

Proof. Considering the reference point $T\left(w^{k}\right)$ associated with given point w^{k}, we have that

$$
\left\{\begin{array}{l}
0 \in \nabla G\left(u^{k}\right)+\partial J\left(T_{u}\left(w^{k}\right)\right)+A^{\top} q^{k}+\frac{1}{\epsilon}\left[\nabla K\left(T_{u}\left(w^{k}\right)\right)-\nabla K\left(u^{k}\right)\right]+\mathcal{N}_{\mathbf{U}}\left(T_{u}\left(w^{k}\right)\right) \tag{A.36}\\
0=b-A T_{u}\left(w^{k}\right)+\frac{1}{\gamma}\left[T_{p}\left(w^{k}\right)-p^{k}\right]
\end{array}\right.
$$

Thus

$$
v\left(T\left(w^{k}\right)\right)=\binom{\nabla G\left(T_{u}\left(w^{k}\right)\right)-\nabla G\left(u^{k}\right)+A^{\top}\left(T_{p}\left(w^{k}\right)-q^{k}\right)+\frac{1}{\epsilon}\left[\nabla K\left(u^{k}\right)-\nabla K\left(T_{u}\left(w^{k}\right)\right)\right]}{\frac{1}{\gamma}\left[p^{k}-T_{p}\left(w^{k}\right)\right]} \in H\left(T\left(w^{k}\right)\right) .
$$

From Assumption 1 and 2, there is $\delta>0$ such that

$$
\begin{equation*}
\left\|v\left(T\left(w^{k}\right)\right)\right\|^{2} \leq \delta\left\|w^{k}-T\left(w^{k}\right)\right\|^{2} \tag{A.37}
\end{equation*}
$$

Since $H(w)$ is global strong metric subregular at w^{*} for 0 , then

$$
\begin{equation*}
\left\|T\left(w^{k}\right)-w^{*}\right\| \leq \mathfrak{c} \operatorname{dist}\left(0, H\left(T\left(w^{k}\right)\right)\right) \leq \mathfrak{c}\left\|v\left(T\left(w^{k}\right)\right)\right\| \leq \mathfrak{c} \sqrt{\delta}\left\|w^{k}-T\left(w^{k}\right)\right\| \tag{A.38}
\end{equation*}
$$

Since $\left\|w^{k}-w^{*}\right\| \leq\left\|T\left(w^{k}\right)-w^{*}\right\|+\left\|w^{k}-T\left(w^{k}\right)\right\|$, we have

$$
\begin{equation*}
\left\|w^{k}-w^{*}\right\| \leq(\mathfrak{c} \sqrt{\delta}+1)\left\|w^{k}-T\left(w^{k}\right)\right\| \tag{A.39}
\end{equation*}
$$

From statement (iii) of Lemma 3, we have that

$$
\begin{align*}
\phi\left(w^{k}, w^{*}\right)-\mathbb{E}_{i(k)} \phi\left(w^{k+1}, w^{*}\right) & \geq d_{4}\left\|w^{k}-T\left(w^{k}\right)\right\|^{2}+\frac{\epsilon}{N}\left[L\left(u^{k}, p^{*}\right)-L\left(u^{*}, p^{*}\right)\right] \\
& \geq \frac{d_{4}}{(\mathfrak{c} \sqrt{\delta}+1)^{2}}\left\|w^{k}-w^{*}\right\|^{2}+\frac{\epsilon}{N}\left[L\left(u^{k}, p^{*}\right)-L\left(u^{*}, p^{*}\right)\right] \tag{A.39}\\
& \geq \delta^{\prime}\left\{d_{2}\left\|w^{k}-w^{*}\right\|^{2}+\epsilon\left[L\left(u^{k}, p^{*}\right)-L\left(u^{*}, p^{*}\right)\right]\right\} \\
& \geq \delta^{\prime} \phi\left(w^{k}, w^{*}\right) . \tag{A.40}
\end{align*}
$$

where $\delta^{\prime}=\min \left\{\frac{d_{4}}{\max \left\{d_{2}(\mathfrak{c} \sqrt{\delta}+1)^{2}, d_{4}+1\right\}}, \frac{1}{N+1}\right\}<1$. It follows that

$$
\begin{equation*}
\mathbb{E}_{i(k)} \phi\left(w^{k+1}, w^{*}\right) \leq \alpha \phi\left(w^{k}, w^{*}\right) \tag{A.41}
\end{equation*}
$$

where $\alpha=1-\delta^{\prime} \in(0,1)$. Taking expectation with respect to \mathcal{F}_{k+1} for above inequality, we obtain that

$$
\begin{equation*}
\mathbb{E}_{\mathcal{F}_{k+1}} \phi\left(w^{k+1}, w^{*}\right) \leq \alpha^{k+1} \phi\left(w^{0}, w^{*}\right) \tag{A.42}
\end{equation*}
$$

7. Proof of Corollary 1 (\mathbf{R}-linear rate of the sequence $\left\{\mathbb{E}_{\mathcal{F}_{k}} w^{k}\right\}$)

Proof. By statement (i) in Lemma 3, we have that $\phi\left(w, w^{*}\right) \geq d_{1}\left\|w-w^{*}\right\|^{2}$. By Theorem 3, we have that

$$
\mathbb{E}_{\mathcal{F}_{k}} \phi\left(w^{k}, w^{*}\right) \leq \alpha^{k} \phi\left(w^{0}, w^{*}\right)
$$

Then we have that

$$
\mathbb{E}_{\mathcal{F}_{k}}\left\|w^{k}-w^{*}\right\|^{2} \leq \frac{\alpha^{k} \phi\left(w^{0}, w^{*}\right)}{d_{1}}
$$

By convexity of $\|\cdot\|^{2}$ and Jensen's inequality, we obtain that

$$
\left\|\mathbb{E}_{\mathcal{F}_{k}} w^{k}-w^{*}\right\| \leq \hat{M}(\sqrt{\alpha})^{k} \quad \text { with } \hat{M}=\sqrt{\frac{\phi\left(w^{0}, w^{*}\right)}{d_{1}}}
$$

This shows that the sequence $\left\{\mathbb{E}_{\mathcal{F}_{k}} w^{k}\right\}$ converges to the desired saddle point w^{*} at R -linear rate; i.e.,

$$
\lim _{k \rightarrow \infty} \sup \sqrt[k]{\left\|\mathbb{E}_{\mathcal{F}_{k}} w^{k}-w^{*}\right\|}=\sqrt{\alpha}<1
$$

8. Proof of Proposition 1

Proof. By the piecewise linear of $H(w)$ and Zheng and Ng (Zheng $\& \mathrm{Ng}, 2014$), we have that $H(w)$ is global metric subregular at w^{*} for 0 . Since Q is positive-definite, then problem (SVM) has unique solution u^{*}. Hence, to show $H(w)$ is global strongly metric subregular, we need to prove uniqueness of the Lagrangian multiplier for (SVM). Suppose their are two multipliers p and p^{\prime}, thus we have

$$
\left\{\begin{array}{l}
0 \in Q u^{*}-\mathbf{1}_{n}+p y+\mathcal{N}_{[0, c]^{n}}\left(u^{*}\right) \\
0 \in Q u^{*}-\mathbf{1}_{n}+p^{\prime} y+\mathcal{N}_{[0, c]^{n}}\left(u^{*}\right)
\end{array}\right.
$$

Since there exists at least one component u_{i}^{*} of optimal solution u^{*} satisfies $0<u_{i}^{*}<c$, then $\xi_{i}=\mathcal{N}_{[0, c]}\left(u_{i}^{*}\right)=0$. Thus, we have that

$$
\left\{\begin{array}{l}
Q_{i} u^{*}-1+y_{i} p=0 \tag{A.43}\\
Q_{i} u^{*}-1+y_{i} p^{\prime}=0
\end{array}\right.
$$

We conclude that $p=p^{\prime}$. Therefore $H(w)$ is global strongly metric subregular.

9. Proof of Proposition 2

Proof. By the piecewise linear of $H(w)$ and Zheng and Ng (Zheng \& $\mathrm{Ng}, 2014$), we have that $H(w)$ is global metric subregular at w^{*} for 0 . Since Σ is positive-definite, then problem (MLP) has unique solution u^{*}. Hence, to show $H(w)$ is global strongly metric subregular, we need to prove uniqueness of the Lagrangian multiplier for (MLP). Suppose their are two pare of multipliers $\left(p_{1}, p_{2}\right)$ and $\left(p_{1}^{\prime}, p_{2}^{\prime}\right)$, thus we have

$$
\left\{\begin{array}{l}
0 \in \Sigma u^{*}+\lambda \partial\left\|u^{*}\right\|_{1}+p_{1} \mu+p_{2} \mathbf{1}_{n} \\
0 \in \Sigma u^{*}+\lambda \partial\left\|u^{*}\right\|_{1}+p_{1}^{\prime} \mu+p_{2}^{\prime} \mathbf{1}_{n}
\end{array}\right.
$$

Since $u_{i}^{*} \neq 0, u_{j}^{*} \neq 0$, thus $\xi_{i}=\partial\left|u_{i}^{*}\right|$ and $\xi_{j}=\partial\left|u_{j}^{*}\right|$ are single valued and we have

$$
\begin{align*}
& \left\{\begin{array}{l}
\Sigma_{i} u^{*}+\lambda \xi_{i}+\mu_{i} p_{1}+p_{2}=0 \\
\Sigma_{i} u^{*}+\lambda \xi_{i}+\mu_{i} p_{1}^{\prime}+p_{2}^{\prime}=0
\end{array}\right. \tag{A.44}\\
& \left\{\begin{array}{l}
\Sigma_{j} u^{*}+\lambda \xi_{j}+\mu_{j} p_{1}+p_{2}=0 \\
\Sigma_{j} u^{*}+\lambda \xi_{j}+\mu_{j} p_{1}^{\prime}+p_{2}^{\prime}=0
\end{array}\right. \tag{A.45}
\end{align*}
$$

It follows that

$$
\left\{\begin{array}{l}
\mu_{i}\left(p_{1}-p_{1}^{\prime}\right)+p_{2}-p_{2}^{\prime}=0 \tag{A.46}\\
\mu_{j}\left(p_{1}-p_{1}^{\prime}\right)+p_{2}-p_{2}^{\prime}=0
\end{array}\right.
$$

Since $\mu_{i} \neq \mu_{j}$, we conclude that $p_{1}=p_{1}^{\prime}$ and $p_{2}=p_{2}^{\prime}$. Therefore $H(w)$ is global strongly metric subregular.

References

Cohen, G. and Zhu, D. Decomposition and coordination methods in large scale optimization problems: The nondifferentiable case and the use of augmented lagrangians. Adv. in Large Scale Systems, 1:203-266, 1984.

Robbins, H. and Siegmund, D. A convergence theorem for non negative almost supermartingales and some applications. In Optimizing methods in statistics, pp. 233-257. Elsevier, 1971.

Zheng, X. Y. and Ng, K. F. Metric subregularity of piecewise linear multifunctions and applications to piecewise linear multiobjective optimization. SIAM Journal on Optimization, 24(1):154-174, 2014.

