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Abstract
We consider a single-product dynamic pricing
problem under a specific non-stationary setting,
where the underlying demand process grows over
time in expectation and also possibly in the level
of random fluctuation. The decision maker se-
quentially sets price in each time period and learns
the unknown demand model, with the goal of max-
imizing expected cumulative revenue over a time
horizon T . We prove matching upper and lower
bounds on regret and provide near-optimal pricing
policies. We show how the growth rate of random
fluctuation over time affects the best achievable
regret order and the near-optimal policy design.
In the analysis, we show that whether the seller
knows the length of time horizon T in advance or
not surprisingly render different optimal regret or-
ders. We then extend the demand model such that
the optimal price may vary with time and present
a novel and near-optimal policy for the extended
model. Finally, we consider an analogous non-
stationary setting in the canonical multi-armed
bandit problem, and points out that knowing or
not knowing the length of time horizon T render
the same optimal regret order, in contrast to the
non-stationary dynamic pricing problem.

1. Introduction
In a standard dynamic pricing problem, a merchant, not
knowing the demand model at the beginning, dynamically
chooses at each time period a price, observes a demand, and
collects revenue. Specifically, the price elasticity, that the
ratio of change in mean demand in response to a change
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in price, is not known a priori. The merchant dynamically
sets price to learn the price elasticity and to trigger revenue
collection, with the goal of maximizing the expected cumu-
lative revenue over a time horizon of T . Such a problem
has been extensively studied under convenient yet often vio-
lated assumptions on stationarity or stable scale. That is, if
given a fixed price over time, the random demand in each
period remains the same in distribution, or varies from time
to time within a fixed range of distributions in an adversarial
sense (stable scale). However, in many business settings,
the underlying demand for a product can be growing over
time, possibly due to growth of business scale, increasing
popularity, stronger advertisement, network effects, among
other reasons. For example, the demand typically presents
a growing trend for successful start-up companies offering
new services or products. The demand growth can also be
found for certain products sold on e-commerce platforms;
see (Glynn & Zheng, 2019). When the demand distribution
does not remain stationary or stable in scale over time, the
optimal dynamic pricing strategy and best achievable per-
formance analysis in the stationary or stable scale setting
may not be valid.

This paper considers a specific non-stationary growing set-
ting where the demand’s expectation and its level of random
fluctuation grow over time t at rates of tγ and tα respectively
for α, γ ≥ 0. We assume that the base-line demand model is
unknown, while the the growth rates γ and α are known. By
defining revenue regret as the expected optimal cumulative
revenue if the demand model is known a prior subtracted
by the expected cumulative revenue achieved by a feasi-
ble policy, we prove matching upper and lower bounds on
revenue regret, and provide new dynamic pricing policies
that are near-optimal (off by a logarithm order). We show
how different growth rates α in random fluctuation render
different designs of near-optimal pricing policies as well as
different best achievable regret orders. Furthermore, in our
analysis, we distinguish the cases on whether the merchant
knows the length of time horizon T in advance (fixed-time
scheme) or not (any-time scheme), and show that it leads
to different optimal regret orders. Lastly, we contrast the
dynamic pricing setting with a classical bandit setting in a
growing environment and illustrate the differences.
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1.1. Related Work

When the scale of the demand does not grow in the expec-
tation or in the level of random fluctuation (corresponding
to γ = 0 and α = 0), our problem becomes the standard
single-product dynamic pricing problem with an unknown
stationary demand model, in which the expected demand
depends linearly in price. Dynamic pricing with online learn-
ing has aroused great interest in revenue management and
resource allocation problems. For a comprehensive review,
readers may refer to den Boer (2015). Many works focus on
the trade-off between exploration (conducting price experi-
ments to acquire more information about the demand model)
and exploitation (leveraging current information to improve
revenue in each time period) in the basic or extended settings
of the dynamic pricing problem. A part of the representa-
tive works include Besbes & Zeevi (2009), Besbes & Zeevi
(2011), Broder & Rusmevichientong (2012), Harrison et al.
(2012), den Boer & Zwart (2014), Keskin & Zeevi (2014),
Qiang & Bayati (2016), Keskin & Zeevi (2017), Chen &
Gallego (2018), Nambiar et al. (2019), Bu et al. (2019),
(Li & Zheng, 2019), Ban & Keskin (2020) etc. Various
demand models, parametric or non-parametric, have been
considered in the literature. One particular relevant works
to ours is Keskin & Zeevi (2014). In Keskin & Zeevi (2014),
the authors give sufficient conditions for a policy to achieve
optimal regret order in the dynamic pricing problem under
the stationarity assumption, and extend it to the case of mul-
tiple products. One of our pricing policies generalizes theirs,
but we go beyond by demonstrating that this policy is opti-
mal only in the any-time scheme, but not in the fixed-time
scheme. In this paper, we adopt a simple parametric demand
model, and focus on the new features centered around the
growing environment, where both the expectation of the
demand and the level of random fluctuation can grow, at
possibly different rates.

Our work is also closely related to multi-armed bandit
(MAB) problems. Readers could refer to Lattimore &
Szepesvári (2019) and Slivkins et al. (2019) for compre-
hensive discussion about this field. Contextual bandit prob-
lem is a direct generalization of MAB, where the reward is
parameterized by a linear function with unknown parame-
ters and the action is characterized by contexts. A part of
the representative works include Auer et al. (2002), Dani
et al. (2008), Rusmevichientong & Tsitsiklis (2010), Filippi
et al. (2010), Abbasi-Yadkori et al. (2011), etc. Among
the vast amount of literature, Abbasi-Yadkori et al. (2011)
is particularly relevant to ours, where they give a strong
high probability inequality for least square estimation with
general contexts. However, their goal is to improve the con-
fidence region for standard contextual bandit problem where
the reward is bounded over the time, while in our case the
contexts are typically increasing and unbounded. Further,
we consider the effect of changing random fluctuation on

policy design, while standard literature does not.

Regarding online learning under non-stationarity, many
works consider bandit or pricing problems in a non-
stationary environment where the parameters change over
time within a compact set, see, e.g., Besbes & Zeevi (2011),
Besbes et al. (2014), Keskin & Zeevi (2017), Cheung et al.
(2018), Chen et al. (2019), Auer et al. (2019), etc. Their non-
stationarity describes turbulence of model parameters within
a given range, and the expected revenue in each period is
on the same scale over the entire time horizon. In reality,
their assumption means that the scale and range of demand
does not change. However, the demand of product over
time may present a structured growing pattern, rather than
changes with a fixed scale. We consider the non-stationarity
that stems from the growth of demand and therefore the
expected revenue in each period may be growing over time
without a pre-fixed range.

An important topic in online learning is transforming a
fixed-time policy to an any-time one such that the total time
periods T is not necessary to know in advance. Previous
literature typically focus on the fixed-time situation, and the
any-time case is either naturally included (see, e.g., Keskin
& Zeevi, 2014; Cheung et al., 2017) or can be obtained by
using methods such as Doubling Trick. Doubling Trick is
a well known technique in online learning, which can be
traced back to Auer et al. (1995). Besson & Kaufmann
(2018) gives a comprehensive discussion on how to apply
this trick for MAB problems to maintain the same regret
order. However, in this work we show that in certain cases of
our dynamic pricing problem, it is impossible to transform
an optimal fixed-time policy into an any-time one because
the optimal regret orders in the two situations do not match.
Therefore, doubling trick is of no use.

1.2. Our Contribution

Our contributions in this work are three-folds:

Structured Model: We study the dynamic pricing problem
under a demand model that flexibly capture the rates of
growth in the expected demand and the associated random
fluctuation respectively. The literature typically consider
stationary or stable scale scenarios, in the sense that the
demand scale is limited to a compact set without growth.
Our work accommodates the scenarios when the demand
range grows without a pre-selected bound, and to our knowl-
edge is the first to develop performance analysis and pricing
policy design facing growth both in the demand expectation
and the level of random fluctuation. The novel modeling
of the growing environment renders the discovery of two
somewhat surprising findings on how the best achievable
regret order depends on the growth rate of the random fluctu-
ation and a critical difference on whether the decision maker
knows the length of time horizon T in advance or not.



Learning and Earning in a Growing Environment

New Analysis: We provide analysis on best achievable per-
formances by proving best achievable regret orders. The
analysis and associated best achievable regret orders are
different between the fixed-time and any-time schemes. In
the non-stationary growing environment, we find that know-
ing the length of the time horizon T in advance or not may
lead to a significant difference in the best achievable regret
orders, and the difference only mitigates when the growth
rate of random fluctuation is small compared to the growth
rate of the expectation. In contrast, a growing environment
does not create such a difference for the MAB problems,
where the best achievable regret orders do not differentiate
between the fixed-time and any-time schemes.

Policy Design: We develop near-optimal (off by logarithm
order) pricing policies that match the best achievable perfor-
mances in terms of regret order. We demonstrate how the op-
timal policy designs change with respect to the growth rate
in demand expectation and the level of random fluctuation.
Intuitively, a larger growth rate of the random fluctuation im-
poses more difficulties in learning and therefore impedes the
best achievable revenue. Our optimal policy designs address
two issues uniquely aligned with the growing environment.
One is that there is no uniform upper bound on the range of
random demand. Second is that the convergence rates for
the estimators on different parameters can be different.

1.3. Structures and Notation

The paper is organized as follows. In Section 2, we formally
introduce our dynamic pricing problem, along with pricing
policies and regret definition. We state our main results in
Section 3, including matching lower and upper bounds in
both any-time and fixed-time cases, plus a generalization for
fixed-time case when the growth rate of random fluctuation is
relatively large. We compare in Section 4 the MAB problem
in a growing environment with the dynamic pricing problem
in Section 2. In Section 5, we conclude.

Throughout the paper, all the vectors are column vectors
unless otherwise specified. For eachm ∈ Z+, we use [m] to
denote the set {1, ...,m}. For any x ∈ Rd and any positive
semi-definite matrixA, we use ‖x‖A = (x>Ax)

1
2 to denote

the A-norm of x. When A is the identity matrix, we denote
‖x‖ = (x>x)

1
2 as the l2-norm. For any compact set Γ, we

denote ‖Γ‖ = supx∈Γ ‖x‖. The notation O(·), Ω(·) and
Θ(·) are used by hiding the constant factors.

2. Dynamic Pricing Problem
Model Description We consider a demand model in
which the demand in the t-th time period depends on the
price p through the following relation

dt(p) = tγ(a− bp) + εt. (1)

Here γ > 0 and the random fluctuation sequence {εt : t >
1} are independent and identically distributed (i.i.d.) tασ-
sub-Gaussian random variables with mean zero. The scale
tγ and tα means that the mean demand grows with time at a
polynomial rate γ, while the scale of the demand fluctuation
grows at rate α. We set θ = (a, b) ∈ Θ and assumes that
the range Θ = [amin, amax] × [bmin, bmax] is a compact
set in R2

+. In the learning problem, we assume that the
merchant knows α, γ, σ, and Θ, but does not know the true
demand model. Also, we suppose that the feasible price
p must live in [l, u] where u > l > 0. The assumption of
[l, u] is primarily for ease of demonstration and has also
appeared in literature, e.g., Keskin & Zeevi (2014), Bu et al.
(2019). It in essential assumes that the feasible/optimal
price is bounded within a positive range. In fact, as Θ is a
positive compact set, the assumption is implicit. We define
the revenue function in period t as rt(p) = pEεt [dt(p)] =
tγp(a − bp). For each t > 0, we use pt as the price set in
period t and dt as the realized demand in period t.

Pricing Policies LetHt be the vector of information avail-
able at the end of period t, i.e., Ht = (p1, d1, · · · , pt, dt).
Now we can formally define two classes of pricing policies:
any-time and fixed-time.

An any-time pricing policy is defined as an infinite sequence
of functions π = (π1, π2, · · · ), where πt : R2t−2 → [l, u]
is a measurable function which maps the information vector
Ht−1 to a feasible price in [l, u] for all t > 1.

A fixed-time pricing policy for T periods is defined as a
finite sequence of functions π = (π1, π2, · · · , πT ), where
πt : R2t−2 × Z+ → [l, u] is a measurable function which
maps the information vectorHt−1 and the total time periods
T to a feasible price in [l, u] for all 1 6 t 6 T .

The above definition of any-time pricing policy is consistent
with that in Keskin & Zeevi (2014) and Bu et al. (2019). A
fixed-time policy knows the total time periods T in advance,
while an any-time policy does not. Evidently, an any-time
policy generates a price pt adapted to Ht−1 in period t. An
any-time policy can be reduced to a fixed-time policy for T
periods by choosing its first T components, but extending a
fixed-time policy to an any-time one is non-trivial.

Regret For any pricing policy π, we let Pπθ and Eπθ be the
probability measure and expectation induced by π under
the parameter θ respectively. We define the regret Rπθ (T )
as the gap between the optimal revenue and the expected
revenue collected by policy π under the parameter θ within
T periods, i.e.,

Rπθ (T ) =

T∑
t=1

rt(p
∗
t )− Eπθ

[ T∑
t=1

rt(pt)
]
, (2)
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where p∗t is the optimal price, i.e., p∗t = a
2b , φt(θ). Here

we assume that for any θ ∈ Θ, the optimal price under θ is
an interior point of [l, u]. Otherwise, we can choose l and u
such that [ amin

2bmax
, amax

2bmin
] ⊂ [l, u]. In our basic setting, p∗t (or

φt(θ)) is stationary over the time. Let ∆t = 1
b (φt(θ)(a −

bφt(θ))− pt(a− bpt)) = (φt(θ)− pt)2. Then Rπθ (T ) can
be rewritten as

Rπθ (T ) = b

T∑
t=1

tγEπθ [∆t].

3. Main Results
We start by stating two lemmas that will be frequently refer-
enced in subsequent theorems. We first introduce Lemma
1, a generalized concentration inequality for arbitrary sub-
Gaussian random variables.

Lemma 1. Let X1, ..., Xn be mean zero independent sub-
Gaussian random variables with

E[exp(λXi)] 6 exp

(
λ2σ2

i

2

)
,∀λ ∈ R,

i.e., Xi is σi-sub-Gaussian for all i ∈ [n]. Then for all
δ > 0, we have

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > δ

)
6 2 exp

(
− δ2

2
∑n
i=1 σ

2
i

)
.

We then introduce Lemma 2 that characterizes asymptotic
behavior of the sum of sx.

Lemma 2. For any x > −1, let Sx,t =
∑t
s=1 s

x. We have

0 < Sx,t −
tx+1 − 1

x+ 1
6 max{1, tx},

where we define t0−1
0 = limx→0+

tx−1
x = log t.

From Lemma 2, for any fixed x > −1, we have

Sx,t =

{
Θ(tx+1), if x > −1,
Θ(log t), if x = −1.

3.1. Lower Bound

In this subsection, we establish the general regret lower
bound, i.e., the order of the best achievable regret, for all
possible pairs of growth parameters γ > 0 and α > 0.
Furthermore, we differentiate between fixed-time and any-
time regret lower bound. Typically in the dynamic pricing
literature, the proved regret lower bound is for fixed-time
policies, while we show that the fixed-time and any-time
scenarios may lead to different regret lower bounds. We
note that in the growing environment, the optimal expected
revenue given by

∑T
t=1 rt(p

∗
t ) is at the order of T γ+1.

Theorem 1. Fix α > 0 and γ > 0. Then under the demand
model (1):

• (Fixed-time regret lower bound)

– If α ∈ [0, γ + 1
2 ), then there exists an absolute

constant C > 0 such that for any pricing policy
π, supθ∈Θ{Rπθ (T )} > CT β , ∀T > 1, where

β = min

{
α+

1

2
,

(γ + 1)2

3γ − 2α+ 2

}
.

Specifically, β = α + 1
2 when α 6 γ

2 and β =
(γ+1)2

3γ−2α+2 when α ∈ (γ2 , γ + 1
2 ).

– If α > γ + 1
2 , then there exists an absolute con-

stant C > 0 such that for any pricing policy π,

sup
θ∈Θ
{Rπθ (T )} >

{
C Tγ+1

log T , if α = γ + 1
2 ,

CT γ+1, if α > γ + 1
2 ,

∀T > 2.

• (Any-time regret lower bound) If α ∈ [0, γ+ 1
2 ), then

there exists an absolute constant C > 0 such that for
any any-time pricing policy π,

lim sup
T

{
sup
θ∈Θ
{Rπθ (T )}/Tα+ 1

2

}
> C.

Note that all constants are independent of T , but depend on
α, γ, σ, and Θ. Theorem 1 gives a full characterization of
the optimal regret order for arbitrary α > 0 and γ > 0:

1. When the growth rate of random fluctuation is rela-
tively small, i.e., α 6 γ

2 , the optimal regret order only
depends on α. When the growth rate of random fluc-
tuation is relatively large, i.e., α ∈ (γ2 , γ + 1

2 ), the
optimal regret order is dependent on both α and γ and
is strictly smaller than α+ 1

2 . Note that the boundary
α = γ

2 indicates that the mean and the variance of the
demand grow over time at the same rate.

2. When the growth rate of random fluctuation is much
larger than that of mean demand, i.e., α > γ + 1

2 , a
sub-linear regret is inapproachable for any policy. That
α = γ + 1

2 is a critical boundary condition, since our
result shows that a sub-linear regret may be achievable,
but only by a marginal logarithm order.

Theorem 1 also illustrates that the best achievable regret
critically depends on whether the total time periods T is
known or not. Here we characterize the any-time regret
lower bound by stating that the fixed-time regret of any any-
time policy must be Ω(Tα+ 1

2 ) for infinitely many T , and the
constant is universal for all policies. The result on any-time
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regret lower bound implies that for α ∈ [0, γ+ 1
2 ), if an any-

time policy achieves a regret supθ∈Θ{Rπθ (T )} = O(T β)
for any T and some β, then we must have β > α + 1

2 .
Differently, the optimal fixed-time regret can achieve an
order smaller than α+ 1

2 when α > γ
2 .

Our proof of Theorem 1 utilizes van Tree inequality to
quantify the information retrieval as in Keskin & Zeevi
(2014). However, the intrinsic difference between known
and unknown T cases requires new proof techniques to
differentiate them, and the treatment of lower bound with
large random fluctuation in both settings require delicate
and novel splitting and estimation techniques. We estimate
the sum by splitting [1, T ] into [1, T0] and (T0, T ] (known
T ) or based on the power of 2 (unknown T ) such that the
magnitude of errors is carefully controlled. These split-
ting techniques were not used in the literature and could
potentially handle other non-stationary settings.

Theorem 1 indicates that, up to a logarithm factor, a sub-
linear regret is accessible only if α ∈ [0, γ + 1

2 ). Therefore,
in the remaining part of this section, we will present pric-
ing policies that match the lower bound (up to a logarithm
factor) in Theorem 1 when α ∈ [0, γ + 1

2 ).

3.2. Upper Bound: Any-time Pricing Policy

In this subsection, we will illustrate how to design an any-
time pricing policy that matches the lower bound stated in
the second part of Theorem 1. Equivalently, we will present
a pricing policy that, without knowing the total time periods
T in advance, achieves O(Tα+ 1

2 log T ) regret for arbitrary
T > 3. The exploration-exploitation trade-off in our policy
is enlightened by the optimal stationary pricing policy in
Keskin & Zeevi (2014).

Before proceeding to policy design, we introduce new nota-
tion and problem pre-processing. Let d̃t(p) = t−αdt(p) and
ε̃t = t−αεt. Therefore ε̃t becomes a σ-sub-Gaussian noise.
We rewrite the demand model using the scaled quantities

d̃t(p) = tγ−α(a− bp) + ε̃t. (3)

For any x > −1, we define

Px,t =

t∑
s=1

sxps, Qx,t =

t∑
s=1

sxp2
s.

We set p̄t =
P2γ−2α,t

S2γ−2α,t
as a weighted average of prices up to

time t. Assume Jt is invertible, then given information Ht,
the least square estimator θ̂t from (3) is J−1

t Dt, where

Jt =

t∑
s=1

[sγ−α sγ−αps]
>[sγ−α sγ−αps]

=

[
S2γ−2α,t P2γ−2α,t

P2γ−2α,t Q2γ−2α,t

]
(4)

and

Dt =

t∑
s=1

[sγ−α sγ−αps]
>d̃s. (5)

Let

ϑt = arg min
ϑ∈Θ
{‖ϑ− θ̂t‖} (6)

be the projected estimator. Further, let

Jt =

t∑
s=1

s2γ−2α(ps − p̄t)2

be the weighted variance of the prices up to time t. Its
normalized version J̃t = Jt/S2γ−2α,t can be regarded as
a measure of price deviance. We introduce Lemma 3 that
describes the relation between the information matrix and
price deviance.

Lemma 3. Let µmin(t) be the smallest eigenvalue of Jt.
Then µmin(t) > µJt, where µ = 2/(1 + 2u− l)2.

An implication of Lemma 3 for designing pricing policy
is that by controlling Jt not to be too small, we can lower
bound the rate of information acquisition. Building on the
observation, we show in Lemma 4 that the least square
estimation error decreases exponentially as a function of Jt.

Lemma 4. There exist finite positive constants ρ and k such
that, under any pricing policy π,

Pπθ (‖θ̂t − θ‖ > δ, Jt > m)

6 k(1 ∨ δ)S2γ−2α,t exp(−ρ(δ ∧ δ2)m)

for all δ,m, α, γ > 0 and t > 2.

Lemma 4 gives a precise characterization on how fast the
estimation error may converge as the information accumu-
lates. This leads to the following sufficient conditions for
pricing policies to achieve asymptotic near-optimality.

Theorem 2. Fix γ and α ∈ [0, γ + 1
2 ). Let κ0 and κ1 be

two positive constants and π be a pricing policy such that

• Jt > κ0

√
S2γ−2α,t

•
∑t
s=2 s

γ(φ(ϑs)− ps+1)2 6 κ1Sα− 1
2 ,t

for all t > 2, then there exists a positive constant C such
that

Rπθ (T ) 6 CTα+ 1
2 log T (7)

for all T > 3 and θ ∈ Θ, where C is only concerned with
α, γ, l, u, σ, κ0, κ1,Θ.
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The two conditions in Theorem 2 perfectly present the
exploration-exploitation trade-off. The first condition states
that the price deviance should present a sufficient growth
over time, which demonstrates the necessity of exploration.
While the second condition imposes that cumulative devia-
tion of the executed price from the myopic optimal should
not be too big, enforcing sufficient degree of exploitation.

Theorem 2 points out for near-optimal policies how the
magnitude of exploration (reflected by J̃t) and the magni-
tude of exploitation (reflected by the cumulative deviance)
change with different growth parameters α and γ. When γ
increases, J̃t should become smaller, while the cumulative
deviance should not change. In contrast, when α increases,
both J̃t and the cumulative deviance should become larger,
indicating that a faster growing random fluctuation requires
more exploration. Note that when α = γ = 0, the two con-
ditions in Theorem 2 coincide with the sufficient conditions
in Keskin & Zeevi (2014).

We next provide Algorithm 1 that satisfies the conditions
in Theorem 2. This policy is an any-time pricing policy.
In Algorithm 1, for any time period t > 2, we control the
price pt+1 close to the myopic optimal φ(ϑt), but mean-
while guarantee a small distance κt

α−γ
2 −

1
4 between pt+1

and p̄t. We have Corollary 1 that establishes the optimality
of Algorithm 1.

Algorithm 1 Any-time Pricing Policy
Input: threshold κ > 0
Initialize estimation ϑ0 ∈ Ω and price p = p0 ∈ [l, u].
for t = 0, 1, · · · do

if t = 0 then
Set pt+1 = φ(ϑ0).

else if t = 1 then
Set pt+1 such that pt+1 6= pt.

else
Let ϑt be the estimator in (6).
Set ξt = φ(ϑt)− p̄t.
if |ξt| < κt

α−γ
2 −

1
4 then

Set pt+1 = p̄t + κ · sgn(ξt)t
α−γ

2 −
1
4 .

else
Set pt+1 = φ(ϑt).

end if
end if

end for

Corollary 1. Fix γ and α ∈ [0, γ + 1
2 ). Then Algorithm 1

admits a regret supθ∈Θ{Rπθ (T )} = O(Tα+ 1
2 log T ) for all

T > 3.

3.3. Upper Bound: Fixed-time Pricing Policy

In this subsection, we will illustrate the design of a fixed-
time pricing policy that matches the lower bound stated in

the first part of Theorem 1 when the random fluctuation is
relatively large (α > γ

2 ). Equivalently, we will present a
pricing policy that, with knowing the total time periods T in

advance, achieves O(T
(γ+1)2

3γ−2α+2 log T ) regret for any fixed
T > 3. Recall that when α ∈ [0, γ2 ], the optimal fixed-time
regret order is α + 1

2 , which coincides with the optimal
any-time regret order. Thus, we only need to focus on large
random fluctuation cases, i.e., α ∈ (γ2 , γ + 1

2 ). We present
our fixed-time pricing policy in Algorithm 2.

Algorithm 2 Fixed-time Pricing Policy

Initialize λ = 1 + u2, η = γ+1
3γ−2α+2 < 1 and l 6 l0 <

u0 6 u. Set c ∈ (0, 1) and T0 = cT η < T .
for t = 0, · · · , T0 − 1 do

Set price as pt+1 = l0 ·1{t is even}+u0 ·1{t is odd}.
end for
for t = T0, · · · , T − 1 do

Let θ̂t = (λI + Jt)−1Dt be the (biased) least square
estimator, where Jt and Dt are defined in (4) and (5).
Define confidence set

Ct = {θ′ : ‖θ′ − θ̂t‖Jt 6 wt},

where wt is defined as

σ

√
2 log

(
1

2
Sγ,T (1 + S2γ−2α,t)

)
+ λ

1
2 ‖Θ‖. (8)

if Ct ∩Θ 6= ∅ then
Set (pt+1, ϑt) = arg maxp∈[l,u],θ′∈Ct∩Θ p(a− bp).

else
Set an arbitrary price pt+1 ∈ [l, u].

end if
end for

Rather than simultaneous exploration and exploitation
throughout the whole time horizon, our policy adopts pure
exploration at the beginning. In Algorithm 2, we first se-
lect a time window [1, T0] to conduct pure exploration. At
this stage, we alternately set prices as l0 and u0 to collect
demand observations as “offline data” for later steps. Note
that T0 is carefully designed such that T0 = Θ(T

γ+1
3γ−2α+2 ).

After time T0, we apply a canonical linear-UCB type al-
gorithm that fully captures the information obtained in the
pure-exploration stage. The design is built upon Lemma 5
that is initially proposed in Abbasi-Yadkori et al. (2011). A
similar idea of design has appeared in Bu et al. (2019), but
in their scenario the “offline data” is given and known, so
the merchant does not need to tune T0.

Lemma 5 (Confidence Ellipsoid). For any δ ∈ (0, 1), the
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following event happens w.p. at least 1− δ,

‖θ − θ̂t‖Jt 6 σ

√√√√2 log

(
det(Jt)

1
2 det(λI)−

1
2

δ

)
+

λ
1
2 ‖Θ‖, ∀t > 0.

Theorem 3 establishes the optimality of Algorithm 2.

Theorem 3. Fix γ and α ∈ [0, γ + 1
2 ). Then Algorithm

2 admits a regret supθ∈Θ{Rπθ (T )} = O(T
(γ+1)2

3γ−2α+2 log T )
for all T > 3.

We now add some insight on how we design Algorithm 2.
Firstly, traditional UCB fails because it cannot easily con-
trol the price deviation, and consequently, the information
matrix, at the beginning. In traditional UCB, the reward
in each time period is uniformly bounded, and the analysis
critically relies on such assumption. In our problem, the
analysis becomes ineffective. Second, the exploration phase
is enlightened by our proof of lower bound, where we split
[1, T ] to [1, T0] and (T0, T ], and only focus on estimating
the latter phase. Intuitively, this means that at the beginning
the loss is negligible to the regret order and we could seize
this opportunity to collect as much information as possible.

3.4. Upper Bound: Extension with Intercept Terms

Before ending this section, we consider extending our de-
mand model by adding an intercept term and investigating
the optimal regret order when variance is relatively large.
Specifically, we extend our model as

dt(p) = a0 + tγ(a− bp) + εt, (9)

where γ > 0 and {εt : t > 1} are i.i.d. random vari-
ables with εt be tασ-sub-Gaussian. Further, we assume that
θ = (a0, a, b) lies in a compact set Θ = [a0 min, a0 max]×
[amin, amax]× [bmin, bmax] ⊂ R3

+, and we denote

θ(0) = a0, θ(1) = a, θ(2) = b.

Compared to the original demand model (1), the extended
version (9) better calibrates the demand process especially
in the beginning. Note that the optimal price of (9) changes
over time. We will show that when α ∈ (γ2 , γ + 1

2 ), the
optimal regret order in Section 3.3 still holds in this scenario.

Let d̃t(p) = t−αdt(p) and ε̃t = t−αεt, we have

d̃t(p) = t−αa0 + tγ−α(a− bp) + ε̃t,

where ε̃t is σ-sub-Gaussian. Then the information matrix

can be written as

Jt =

t∑
s=1

[s−α sγ−α sγ−αps]
>[s−α sγ−α sγ−αps]

=

 S−2α,t Sγ−2α,t Pγ−2α,t

Sγ−2α,t S2γ−2α,t P2γ−2α,t

Pγ−2α,t P2γ−2α,t Q2γ−2α,t

 . (10)

In this scenario with three model parameters, the conver-
gence rates of estimated parameters are dramatically dif-
ferent from each other. This adds difficulty to the design
of a near-optimal policy. We now apply Algorithm 3, a
modification of Algorithm 2 and prove the same optimal
regret order.

Algorithm 3 Fixed-time Pricing Policy with an Intercept

Initialize λ = 1 + u2, η = γ+1
3γ−2α+2 < 1 and l 6 l0 <

u0 6 u. Set c ∈ (0, 1) and T0 = cT η < T .
for t = 0, · · · , T0 − 1 do

Set pt+1 = l0 · 1{t is even}+ u0 · 1{t is odd}
end for
for t = T0, · · · , T − 1 do

Let θ̂t = (λI + Jt)−1Dt be the (biased) least square
estimator, where Jt is defined in (10), and

Dt =

t∑
s=1

[s−α sγ−α sγ−αps]
>ds.

Define confidence set

Ct =
{
θ′ :

∣∣∣θ′(i)− θ̂t(i)∣∣∣ 6 ‖ei‖Jt−1wt,∀i
}
,

where wt is defined as

σ

√
2 log

(
1

2
Sγ,T (1 +

S−2α,t

λ
)

1
2 (1 + S2γ−2α,t)

)
+

λ
1
2 ‖Θ‖. (11)

if Ct ∩Θ 6= ∅ then
Set (pt+1, ϑt) = arg maxp∈[l,u],θ′∈Ct∩Θ p(a− bp).

else
Set an arbitrary price pt+1 ∈ [l, u].

end if
end for

To demonstrate the idea of our modification, we introduce
the following lemma on confidence region, which is more
delicate and is initially obtained in Abbasi-Yadkori et al.
(2011).

Lemma 6 (Confidence Interval for any direction). For any
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δ ∈ (0, 1), the following event happens w.p. at least 1− δ:

∀t > 0,∀x ∈ R3,

|x>θ − x>θ̂t| 6 ‖x‖Jt−1 ·σ
√√√√2 log

(
det(Jt)

1
2 det(λI)−

1
2

δ

)
+ λ

1
2 ‖Θ‖

 .

In Algorithm 3, we modify the typical ellipsoid confidence
region to a rectangle one such that rather than constructing a
confidence bound for all parameters jointly, each parameter
in θ is controlled separately. We have Theorem 4 that
characterizes the near-optimality of Algorithm 3.
Theorem 4. Fix γ and α ∈ [0, γ + 1

2 ). Then Algorithm

3 admits a regret supθ∈Θ{Rπθ (T )} = O(T
(γ+1)2

3γ−2α+2 log T )
for all T > 3.

The critical step in the proof of Theorem 4 is to establish
that det(JT0) = Θ(S−2α,tS

2
2γ−2α,t) when T0 = cT η and

T → +∞. In other words, we asymptotically bound the
growth rate of the information that is obtained at the end of
the pure exploration phase.

We note that our policy can be further extended to a more
complicated demand model that includes a steady sub-
model:

dt(p) = a0 − b0p+ tγ(a− bp) + εt,

where γ > 0, εt is tασ-sub-Gaussian, and θ = (a0, b0, a, b)
lies in a compact set Θ ∈ R4

+. In this case, the optimal re-
gret order in Section 3.3 still holds. The construction of the
confidence region is almost the same with Algorithm 3. The
only difference is thatJt becomes 4-dimension, and det(Jt)
is asymptotically approximated by Θ(S2

−2α,tS
2
2γ−2α,t), an

additional S−2α,t over Θ(S−2α,tS
2
2γ−2α,t). The proof pro-

cedure strictly follows our proof for Theorem 4, so we omit
it here.

As a final remark, we have not completed the any-time
policy design for (9), where the main difficulty is to control
the information acquisition. In this situation, Lemma 3
becomes invalid, and the proof for Theorem 2 cannot be
followed. Also, though pure exploration is useful when
the growth rate of random fluctuation is relatively large,
it may become useless for a near-optimal any-time policy.
Results in previous literature on contextual bandits cannot
be directly applied either because the reward in our problem
is unbounded over the time. We leave it for future work.

4. Comparison with MAB Setting
For a dynamic pricing problem in a growing environment,
we have shown that the form of optimal regret order is dif-
ferent depending on whether the growth rate of the random

fluctuation is relatively large compared to the growth of
the mean. We also have identified the difference in best
achievable regret between any-time and fixed-time cases. In
this section, we show that these differences do not emerge
in a multi-armed bandit problem for which the mean and
variance of the single-period reward grows over time.

Suppose that there are K arms {1, ...,K}, and the mean
reward of arm i grows with time, i.e.,

rt(i) = tγr(i) + εt,∀i ∈ [K]. (12)

Here γ > 0, {εt : t > 1} are i.i.d. random variables
with εt being tασ-sub-Gaussian, and r(i) ∈ [0, 1] for all
i ∈ [K]. Let θ = (r(1), ..., r(K)), r∗ = maxi∈[K] r(i)
and ∆t = r∗ − rt. Then for any policy π, the T -period
regret under policy π with true parameter θ can be naturally
defined as

Rπθ (T ) =

T∑
t=1

tγEπθ [∆t]. (13)

We first show that the lower bound of the MAB problem
above is Ω(

√
KTα+ 1

2 ) for general parameters α and γ. This
is very different from Theorem 1.

Theorem 5. Fix γ and α ∈ [0, γ + 1
2 ). Then there ex-

ists a constant C such that for any policy π, we have
supθ∈[0,1]K{Rπθ (T )} > C

√
KTα+ 1

2 for any T .

The proof of Theorem 5 is similar to the proof for canonical
MAB problem, where given any policy π, we construct two
“close” instances that cannot be told apart by π.

Now we show that the lower bound in Theorem 5 can be
achieved through Algorithm 4, an any-time pricing policy,
which is a variant of Successive Elimination Algorithm, see,
e.g., Even-Dar et al. (2006).

In Algorithm 4, we impose an order on the pulling of arms
in each round. This is because the reward increases with
time for general γ, and combining such constraint with
action elimination will help bound the total reward of the
pulled arm up to any given period easily. We note that
the confidence bound constructed in time period t does not
depend on the total periods T . Theorem 6 gives the near-
optimality of Algorithm 4. Note that the constant does not
depend on T or K. For simplicity, we leave how large T
should be to our proof in the supplementary material.

Theorem 6. Fix γ and α ∈ [0, γ+ 1
2 ). Then Algorithm 4 ad-

mits a regret supθ∈[0,1]K{Rπθ (T )} = O(
√
KTα+ 1

2 log T )
for all sufficiently large T .

Now we discuss on some explanations on the differences
presented in this paper. In dynamic pricing, why there is
difference between fixed-time and any-time situation? In
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Algorithm 4 Successive Elimination Algorithm
Let A = {1, ...,K} be the initial active set. Set t = 1.
repeat

for each arm i ∈ A do
Pull arm i and get reward rt. The order of pulling
are based on the index.
Construct a confidence interval C(i) = [xi, yi] asr :

∣∣∣∣∣∣
∑
s6t,As=i

sγ−2α(rs − sγr)√∑
s6t,As=i

s2γ−2α

∣∣∣∣∣∣ 6 wt

 ,

(14)

where wt = σ

√
2
(

1 + (γ+1−α)(γ+1)

α+ 1
2

)
log t.

t← t+ 1.
end for
for each arm i ∈ A do

if ∃j ∈ A : yi 6 xj then
A ← A \ {i}.

end if
end for

until t > T

general, why there is difference between dynamic pricing
and MAB? One point is that regret in dynamic pricing is
in the form of L2 loss, which is a higher order compared
to L1 loss, so the regret order can be potentially smaller.
This is exactly what happens in the case with large random
fluctuation. Another point is as follows. When random
fluctuation is large, it may be better to learn the model than
simply conducting learning-while-doing at early stages. In
early stages, the random fluctuation has not grown too large
and the reward loss is relatively small, so one can acquire
more information with less cost. However, to achieve this, a
delicate tuning of the length of the learning phase is required,
and this requires the knowledge of T in advance.

5. Conclusion and Future Work
In this work, we consider the problem of dynamic pricing
in a specific non-stationary growing environment, where
the mean and the level of random fluctuation in the demand
process increase over time at possibly different rates. We
construct new frameworks to prove best achievable per-
formance in terms of regret and design new near-optimal
policies. We show that the magnitudes of mean growth and
random fluctuation growth, as well as their relative growth
rate, significantly impact the best achievable performance
and policy design. In our analysis, we demonstrate the in-
trinsic gap in optimal regret orders between the fixed-time
scheme and the any-time scheme, differentiated by whether
the decision maker knows the length of time horizon T in

advance or not.

There is future theory work in line, that generalizes the de-
mand model to accommodate more features that improve ap-
plicability, including multiple products and a broader range
for price elasticity modeling. A further consideration is to
include settings when the growth rates are also unknown and
need to be learned from historical observations. Another fu-
ture work is to integrate the structured non-stationarity and
generic non-stationarity depending on various application
needs.
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