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Abstract

We propose a transductive Laplacian-regularized
inference for few-shot tasks. Given any feature
embedding learned from the base classes, we
minimize a quadratic binary-assignment function
containing two terms: (1) a unary term assign-
ing query samples to the nearest class prototype,
and (2) a pairwise Laplacian term encouraging
nearby query samples to have consistent label as-
signments. Our transductive inference does not
re-train the base model, and can be viewed as a
graph clustering of the query set, subject to super-
vision constraints from the support set. We derive
a computationally efficient bound optimizer of a
relaxation of our function, which computes inde-
pendent (parallel) updates for each query sample,
while guaranteeing convergence. Following a sim-
ple cross-entropy training on the base classes, and
without complex meta-learning strategies, we con-
ducted comprehensive experiments over five few-
shot learning benchmarks. Our LaplacianShot
consistently outperforms state-of-the-art methods
by significant margins across different models,
settings, and data sets. Furthermore, our trans-
ductive inference is very fast, with computational
times that are close to inductive inference, and
can be used for large-scale few-shot tasks.

1. Introduction
Deep learning models have achieved human-level perfor-
mances in various tasks. The success of these models rely
considerably on exhaustive learning from large-scale labeled
data sets. Nevertheless, they still have difficulty general-
izing to novel classes unseen during training, given only
a few labeled instances for these new classes. In contrast,
humans can learn new tasks easily from a handful of ex-
amples, by leveraging prior experience and related context.

1ÉTS Montreal, Canada. Correspondence to: Imtiaz Masud
Ziko <imtiaz-masud.ziko.1@etsmtl.ca>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Few-shot learning (Fei-Fei et al., 2006; Miller et al., 2000;
Vinyals et al., 2016) has emerged as an appealing paradigm
to bridge this gap. Under standard few-shot learning scenar-
ios, a model is first trained on substantial labeled data over
an initial set of classes, often referred to as the base classes.
Then, supervision for novel classes, which are unseen during
base training, is limited to just one or few labeled exam-
ples per class. The model is evaluated over few-shot tasks,
each one supervised by a few labeled examples per novel
class (the support set) and containing unlabeled samples for
evaluation (the query set).

The problem has recently received substantial research in-
terests, with a large body of work based on complex meta-
learning and episodic-training strategies. The meta-learning
setting uses the base training data to create a set of few-shot
tasks (or episodes), with support and query samples that
simulate generalization difficulties during test times, and
train the model to generalize well on these artificial tasks.
For example, (Vinyals et al., 2016) introduced matching
network, which employs an attention mechanism to pre-
dict the unknown query samples as a linear combination
of the support labels, while using episodic training and
memory architectures. Prototypical networks (Snell et al.,
2017) maintain a single prototype representation for each
class in the embedding space, and minimize the negative
log-probability of the query features with episodic training.
Ravi & Larochelle (2017) viewed optimization as a model
for few-shot learning, and used an LSTM meta-learner to
update classifier parameters. Finn et al. (2017) proposed
MAML, a meta-learning strategy that attempts to make a
model “easy” to fine-tune. These widely adopted works
were recently followed by an abundant meta-learning litera-
ture, for instance, (Sung et al., 2018; Oreshkin et al., 2018;
Mishra et al., 2018; Rusu et al., 2019; Liu et al., 2019b; Hou
et al., 2019; Ye et al., 2020), among many others.

Several recent studies explored transductive inference for
few-shot tasks, e.g., (Liu et al., 2019b; Hou et al., 2019;
Dhillon et al., 2020; Hu et al., 2020; Kim et al., 2019;
Qiao et al., 2019), among others. Given a few-shot task
at test time, transductive inference performs class predic-
tions jointly for all the unlabeled query samples of the task,
rather than one sample at a time as in inductive inference.
For instance, TPN (Liu et al., 2019b) used label propaga-
tion (Zhou et al., 2004) along with episodic training and a
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specific network architecture, so as to learn how to prop-
agate labels from labeled to unlabeled samples. CAN-T
(Hou et al., 2019) is another meta-learning based transduc-
tive method, which uses attention mechanisms to propagate
labels to unlabeled query samples. The transductive fine-
tuning method by (Dhillon et al., 2020) re-train the network
by minimizing an additional entropy loss, which encour-
ages peaked (confident) class predictions at unlabeled query
points, in conjunction with a standard cross-entropy loss
defined on the labeled support set.

Transductive few-shot methods typically perform better than
their inductive counterparts. However, this may come at the
price of a much heavier computational complexity during
inference. For example, the entropy fine-tuning in (Dhillon
et al., 2020) re-trains the network, performing gradient up-
dates over all the parameters during inference. Also, the
label propagation in (Liu et al., 2019b) requires a matrix
inversion, which has a computational overhead that is cubic
with respect to the number of query samples. This may
be an impediment for deployment for large-scale few-shot
tasks.

We propose a transductive Laplacian-regularized inference
for few-shot tasks. Given any feature embedding learned
from the base data, our method minimizes a quadratic
binary-assignment function integrating two types of poten-
tials: (1) unary potentials assigning query samples to the
nearest class prototype, and (2) pairwise potentials favor-
ing consistent label assignments for nearby query samples.
Our transductive inference can be viewed as a graph clus-
tering of the query set, subject to supervision constraints
from the support set, and does not re-train the base model.
Following a relaxation of our function, we derive a compu-
tationally efficient bound optimizer, which computes inde-
pendent (parallel) label-assignment updates for each query
point, with guaranteed convergence. We conducted compre-
hensive experiments on five few-shot learning benchmarks,
with different levels of difficulties. Using a simple cross-
entropy training on the base classes, and without complex
meta-learning strategies, our LaplacianShot outperforms
state-of-the-art methods by significant margins, consistently
providing improvements across different settings, data sets,
and training models. Furthermore, our transductive infer-
ence is very fast, with computational times that are close to
inductive inference, and can be used for large-scale tasks.

2. Laplacian Regularized Few-Shot Learning
2.1. Proposed Formulation

In the few-shot setting, we are given a labeled support set
Xs =

⋃C
c=1 Xcs with C test classes, where each novel class c

has |Xcs | labeled examples, for instance, |Xcs | = 1 for 1-shot
and |Xcs | = 5 for 5-shot. The objective of few-shot learn-

ing is, therefore, to accurately classify unlabeled unseen
query sample set Xq =

⋃C
c=1 Xcq from these C test classes.

This setting is referred to as the |Xcs |-shot C-way few-shot
learning.

Let fθ denotes the embedding function of a deep convolu-
tional neural network, with parameters θ and xq = fθ(zq) ∈
RM encoding the features of a given data point zq . Embed-
ding fθ is learned from a labeled training set Xbase, with
base classes that are different from the few-shot classes of
Xs and Xq. In our work, parameters θ are learned through
a basic network training with the standard cross-entropy
loss defined over Xbase, without resorting to any complex
episodic-training or meta-learning strategy. For each query
feature point xq in a few-shot task, we define a latent bi-
nary assignment vector yq = [yq,1, . . . , yq,C ]t ∈ {0, 1}C ,
which is within the C-dimensional probability simplex
∇C = {y ∈ [0, 1]C | 1ty = 1}: binary yq,c is equal
to 1 if xq belongs to class c, and equal to 0 otherwise. t is
used as the transpose operator. Let Y denotes the N × C
matrix whose rows are formed by yq, where N is the num-
ber of query points in Xq. We propose a transductive few-
shot inference, which minimizes a Laplacian-regularization
objective for few-shot tasks w.r.t assignment variables Y,
subject to simplex and integer constraints yq ∈ ∇C and
yq ∈ {0, 1}C , ∀q:

E(Y) = N (Y) +
λ

2
L(Y) (1)

N (Y) =

N∑
q=1

C∑
c=1

yq,cd(xq −mc)

L(Y) =
1

2

∑
q,p

w(xq,xp)‖yq − yp‖2

In (1), the first term N (Y) is minimized globally when
each query point is assigned to the class of the nearest
prototype mc from the support set, using a distance metric
d(xq,mc), such as the Euclidean distance. In the 1-shot
setting, prototype mc is the support example of class c,
whereas in multi-shot, mc can be the mean of the support
examples. In fact, mc can be further rectified by integrating
information from the query features, as we will detail later
in our experiments.

The second term L(Y) is the well-known Laplacian regular-
izer, which can be equivalently written as tr(YtLY), where
L is the Laplacian matrix1 corresponding to affinity matrix
W = [w(xq,xp)], and tr denotes the trace operator. Pair-
wise potential w(xq,xp) evaluates the similarity between
feature vectors xq and xp, and can be computed using some
kernel function. The Laplacian term encourages nearby

1The Laplacian matrix corresponding to affinity matrix W =
[w(xq,xp)] is L = D−W, with D the diagonal matrix whose
diagonal elements are given by: Dq =

∑
p w(xq,xp).
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Algorithm 1 Proposed Algorithm for LaplacianShot
Input: Xs, Xq, λ, fθ
Output: Labels ∈ {1, .., C}N for Xq
Get prototypes mc.
Compute aq using (8a) ∀xq ∈ Xq.
Initialize i = 1.
Initialize yiq =

exp(−aq)
1t exp(−aq)

.
repeat

Compute yi+1
q using (12)

yiq ← yi+1
q .

Y = [yiq]; ∀q.
i = i+ 1.

until Bi(Y) in (7) does not change
lq = arg max

c
yq; ∀yq ∈ Y.

Labels = {lq}Nq=1

points (xq, xp) in the feature space to have the same latent
label assignment, thereby regularizing predictions at query
samples for few-shot tasks. As we will show later in our
comprehensive experiments, the pairwise Laplacian term
complements the unary potentials in N (Y), substantially
increasing the predictive performance of few-shot learning
across different networks, and various benchmark datasets
with different levels of difficulty.

More generally, Laplacian regularization is widely used
in the contexts of graph clustering (Von Luxburg, 2007;
Shi & Malik, 2000; Ziko et al., 2018; Wang & Carreira-
Perpinán, 2014) and semi-supervised learning (Weston et al.,
2012; Belkin et al., 2006). For instance, popular spectral
graph clustering techniques (Von Luxburg, 2007; Shi & Ma-
lik, 2000) optimize the Laplacian term subject to partition-
balance constraints. In this connection, our transductive
inference can be viewed as a graph clustering of the query
set, subject to supervision constraints from the support set.

Regularization parameter λ controls the trade-off between
the two terms. It is worth noting that the recent nearest-
prototype classification in (Wang et al., 2019) corresponds
to the particular case of λ = 0 of our model in (1). It
assigns a query sample xq to the label of the closest support
prototype in the feature space, thereby minimizing N (Y):

yq,c∗ = 1 if c∗ = arg min
c∈{1,...,C}

d(xq,mc) (2)

2.2. Optimization

In this section, we propose an efficient bound-optimization
technique for solving a relaxed version of our objective
in (1), which guarantees convergence, while computing in-
dependent closed-form updates for each query sample in
few-shot tasks. It is well known that minimizing pairwise
functions over binary variables is NP-hard (Tian et al., 2014),

and a standard approach in the context of clustering algo-
rithms is to relax the integer constraints, for instance, using
a convex (Wang & Carreira-Perpinán, 2014) or a concave
relaxation (Ziko et al., 2018). In fact, by relaxing integer
constraints yq ∈ {0, 1}C , our objective in (1) becomes a
convex quadratic problem. However, this would require
solving for the N × C assignment variables all together,
with additional projections steps for handling the simplex
constraints. In this work, we use a concave relaxation of
the Laplacian-regularized objective in (1), which, as we will
later show, yields fast independent and closed-form updates
for each assignment variable, with convergence guarantee.
Furthermore, it enables us to draw interesting connections
between Laplacian regularization and attention mechanisms
in few-shot learning (Vinyals et al., 2016).

It is easy to verify that, for binary (integer) simplex variables,
the Laplacian term in (1) can be written as follows, after
some simple manipulations:

L(Y) =
∑
q

Dq −
∑
q,p

w(xq,xp)y
t
qyp (3)

where Dq =
∑
p w(xq,xp) denotes the degree of query

sample xq. By relaxing integer constraints yq ∈ {0, 1}C ,
the expression in Eq. (3) can be viewed as a concave relax-
ation2 for Laplacian term L(Y) when symmetric affinity
matrix W = [w(xq,xp)] is positive semi-definite. As we
will see in the next paragraph, concavity is important to
derive an efficient bound optimizer for our model, with
independent and closed-form updates for each query sam-
ple. Notice that the first term in relaxation (3) is a constant
independent of the soft (relaxed) assignment variables.

We further augment relaxation (3) with a convex negative-
entropy barrier function ytq logyq, which avoids expensive
projection steps and Lagrangian-dual inner iterations for the
simplex constraints of each query point. Such a barrier3

removes the need for extra dual variables for constraints
yq ≥ 0 by restricting the domain of each assignment vari-
able to non-negative values, and yields closed-form updates
for the dual variables of constraints 1tyq = 1. Notice
that this barrier function is null at the vertices of the sim-
plex. Putting all together, and omitting the additive constant∑
qDq in (3), we minimize the following concave-convex

relaxation of our objective in (1) w.r.t soft assignment vari-
ables Y, subject to simplex constraints yq ∈ ∇C ,∀q:

R(Y) = Yt logY +N (Y) +
λ

2
L̃(Y) (4)

2Equality (3) holds in for points on the vertices of the simplex,
i.e., yq ∈ {0, 1}C , but is an approximation for points within the
simplex (soft assignments), i.e., yq ∈]0, 1[C .

3Note that entropy-like barriers are known in the context of
Bregman-proximal optimization (Yuan et al., 2017), and have
well-known computational benefits when dealing with simplex
constraints.
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where L̃(Y) = −
∑
q,p w(xq,xp)y

t
qyp.

Bound optimization: In the following, we detail an
iterative bound-optimization solution for relaxation (4).
Bound optimization, often referred to as MM (Majorize-
Minimization) framework (Lange et al., 2000; Zhang et al.,
2007), is a general optimization principle4. At each iteration,
it updates the variable as the minimum of a surrogate func-
tion, i.e., an upper bound on the original objective, which
is tight at the current iteration. This guarantees that the
original objective does not increase at each iteration.

Re-arranging the soft assignment matrix Y in vector form
Y = [yq] ∈ RNC , relaxation L̃(Y) can be written conve-
niently in the following form:

L̃(Y) = −
∑
q,p

w(xq,xp)y
t
qyp = YtΨY (5)

with Ψ = −W⊗I, where⊗ denotes the Kronecker product
and I is the N ×N identity matrix. Note that Ψ is negative
semi-definite for a positive semi-definite W. Therefore,
YtΨY is a concave function, and the first-order approxima-
tion of (5) at a current solution Yi (i is the iteration index)
gives the following tight upper bound on L̃(Y):

L̃(Y) = YtΨY ≤ (Yi)tΨYi + 2 (ΨYi)t(Y−Yi) (6)

Therefore, using unary potentials N (Y) and the negative
entropy barrier in conjunction with the upper bound in (6),
we obtain the following surrogate function Bi(Y) for relax-
ationR(Y) at current solution Yi:

R(Y) ≤ Bi(Y)
c
=

N∑
q=1

ytq(log(yq) + aq − λbiq) (7)

where c
= means equality up to an additive constant5 that is

independent of variable Y, and aq and biq are the following
C-dimensional vectors:

aq = [aq,1, . . . , aq,C ]t; aq,c = d(xq,mc) (8a)

biq = [biq,1, . . . , b
i
q,C ]t; biq,c =

∑
p

w(xq,xp)y
i
p,c (8b)

It is straightforward to verify that upper bound Bi(Y) is
tight at the current iteration, i.e., Bi(Yi) = R(Yi). This

4The general MM principle is widely used in machine learn-
ing in various problems as it enables to replace a difficult opti-
mization problem with a sequence of easier sub-problems (Zhang
et al., 2007). Examples of well-known bound optimizers include
expectation-maximization (EM) algorithms, the concave-convex
procedure (CCCP) (Yuille & Rangarajan, 2001) and submodular-
supermodular procedures (SSP) (Narasimhan & Bilmes, 2005),
among many others.

5The additive constant in Bi(Y) is a term that depends only on
Yi. This term comes from the Laplacian upper bound in (6).

can be seen easily from the first-order approximation in
(6). We iteratively optimize the surrogate function at each
iteration i:

Yi+1 = arg min
Y

Bi(Y) (9)

Because of upper-bound condition R(Y) ≤ Bi(Y),∀Y,
tightness condition Bi(Yi) = R(Yi) at the current solu-
tion, and the fact that Bi(Yi+1) ≤ Bi(Yi) due to minimiza-
tion (9), it is easy to verify that updates (9) guarantee that
relaxationR(Y) does not increase at each iteration:

R(Yi+1) ≤ Bi(Yi+1) ≤ Bi(Yi) = R(Yi)

Closed-form solutions of the surrogate functions: No-
tice that Bi(Y) is a sum of independent functions of each
assignment variable. Therefore, we can solve (9) for each
yq independently, while satisfying the simplex constraint:

min
yq∈∇C

ytq(log(yq) + aq − λbiq), ∀q (10)

The negative entropy barrier term ytq logyq in (10) restricts
yq to be non-negative, removing the need of extra dual vari-
ables for the constraints yq > 0. Also, simplex constraint
1tyq = 1 is affine. Thus, the solution of the following
Karush-Kuhn-Tucker (KKT) condition provide the mini-
mum of (10):

logyq + aq − λbiq + β1 = 0 (11)

with β the Lagrange multiplier for the simplex constraint.
This provides, for each q, closed-form solutions for both the
primal and dual variables, yielding the following indepen-
dent updates of the assignment variables:

yi+1
q =

exp(−aiq + λbiq)

1t exp(−aiq + λbiq)
∀ q (12)

2.3. Proposed Algorithm

The overall proposed algorithm is simplified in Algorithm
1. Once the network function fθ is learned using the base
dataset Xbase, our algorithm proceeds with the extracted
features xq. Before the iterative bound updates, each soft
assignment y1

q is initialized as a softmax probability of aq,
which is based on the distances to prototypes mc. The itera-
tive bound optimization is guaranteed to converge, typically
less than 15 iterations in our experiments (Figure 2). Also
the independent point-wise bound updates yield a parallel
structure of the algorithm, which makes it very efficient (and
convenient for large-scale few-shot tasks). We refer to our
method as LaplacianShot in the experiments.

Link to attention mechanisms: Our Laplacian-regularized
model has interesting connection to the popular attention
mechanism in (Vaswani et al., 2017). In fact, MatchingNet
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Table 1. Average accuracy (in %) in miniImageNet and tieredImageNet. The best results are reported in bold font.

miniImageNet tieredImageNet
Methods Network 1-shot 5-shot 1-shot 5-shot
MAML (Finn et al., 2017) ResNet-18 49.61 ± 0.92 65.72 ± 0.77 - -
Chen (Chen et al., 2019) ResNet-18 51.87 ± 0.77 75.68 ± 0.63 - -
RelationNet (Sung et al., 2018) ResNet-18 52.48 ± 0.86 69.83 ± 0.68 - -
MatchingNet (Vinyals et al., 2016) ResNet-18 52.91 ± 0.88 68.88 ± 0.69 - -
ProtoNet (Snell et al., 2017) ResNet-18 54.16 ± 0.82 73.68 ± 0.65 - -
Gidaris (Gidaris & Komodakis, 2018) ResNet-15 55.45 ± 0.89 70.13 ± 0.68 - -
SNAIL (Mishra et al., 2018) ResNet-15 55.71 ± 0.99 68.88 ± 0.92 - -
AdaCNN (Munkhdalai et al., 2018) ResNet-15 56.88 ± 0.62 71.94 ± 0.57 - -
TADAM (Oreshkin et al., 2018) ResNet-15 58.50 ± 0.30 76.70 ± 0.30 - -
CAML (Jiang et al., 2019) ResNet-12 59.23 ± 0.99 72.35 ± 0.71 - -
TPN (Liu et al., 2019b) ResNet-12 59.46 75.64 - -
TEAM (Qiao et al., 2019) ResNet-18 60.07 75.90 - -
MTL (Sun et al., 2019) ResNet-18 61.20 ± 1.80 75.50 ± 0.80 - -
VariationalFSL (Zhang et al., 2019) ResNet-18 61.23 ± 0.26 77.69 ± 0.17 - -
Transductive tuning (Dhillon et al., 2020) ResNet-12 62.35 ± 0.66 74.53 ± 0.54 - -
MetaoptNet (Lee et al., 2019) ResNet-18 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
SimpleShot (Wang et al., 2019) ResNet-18 63.10 ± 0.20 79.92 ± 0.14 69.68 ± 0.22 84.56 ± 0.16
CAN+T (Hou et al., 2019) ResNet-12 67.19 ± 0.55 80.64 ± 0.35 73.21 ± 0.58 84.93 ± 0.38
LaplacianShot (ours) ResNet-18 72.11 ± 0.19 82.31 ± 0.14 78.98 ± 0.21 86.39 ± 0.16
Qiao (Qiao et al., 2018) WRN 59.60 ± 0.41 73.74 ± 0.19 - -
LEO (Rusu et al., 2019) WRN 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09
ProtoNet (Snell et al., 2017) WRN 62.60 ± 0.20 79.97 ± 0.14 - -
CC+rot (Gidaris et al., 2019) WRN 62.93 ± 0.45 79.87 ± 0.33 70.53 ± 0.51 84.98 ± 0.36
MatchingNet (Vinyals et al., 2016) WRN 64.03 ± 0.20 76.32 ± 0.16 - -
FEAT (Ye et al., 2020) WRN 65.10 ± 0.20 81.11 ± 0.14 70.41 ± 0.23 84.38 ± 0.16
Transductive tuning (Dhillon et al., 2020) WRN 65.73 ± 0.68 78.40 ± 0.52 73.34 ± 0.71 85.50 ± 0.50
SimpleShot (Wang et al., 2019) WRN 65.87± 0.20 82.09 ± 0.14 70.90 ± 0.22 85.76 ± 0.15
SIB (Hu et al., 2020) WRN 70.0 ± 0.6 79.2 ± 0.4 - -
BD-CSPN (Liu et al., 2019a) WRN 70.31 ± 0.93 81.89 ± 0.60 78.74 ± 0.95 86.92 ± 0.63
LaplacianShot (ours) WRN 74.86 ± 0.19 84.13 ± 0.14 80.18 ± 0.21 87.56± 0.15
SimpleShot (Wang et al., 2019) MobileNet 61.55 ± 0.20 77.70 ± 0.15 69.50 ± 0.22 84.91 ± 0.15
LaplacianShot (ours) MobileNet 70.27 ± 0.19 80.10 ± 0.15 79.13 ± 0.21 86.75 ± 0.15
SimpleShot (Wang et al., 2019) DenseNet 65.77 ± 0.19 82.23 ± 0.13 71.20 ± 0.22 86.33 ± 0.15
LaplacianShot (ours) DenseNet 75.57 ± 0.19 84.72 ± 0.13 80.30 ± 0.22 87.93 ± 0.15

(Vinyals et al., 2016) predicted the labels of the query sam-
ples xq as a linear combination of the support labels. The ex-
pression of biq,c that we obtained in (8b), which stems from
our bound optimizer and the concave relaxation of the Lapla-
cian, also takes the form of a combination of labels at each it-
eration i in our model: biq,c =

∑
p w(xq,xp)y

i
p,c. However,

there are important differences with (Vinyals et al., 2016):
First, the attention in our formulation is non-parametric as
it considers only the feature relationships among the query
samples in Xq, not the support examples. Second, unlike
our approach, the attention mechanism in (Vinyals et al.,
2016) is employed during training for learning embedding
function fθ with a meta-learning approach.

3. Experiments
In this section, we describe our experimental setup. An
implementation of our LaplacianShot is publicly available6.

6https://github.com/imtiazziko/LaplacianShot

3.1. Datasets

We used five benchmarks for few-shot classification:
miniImageNet, tieredImageNet, CUB, cross-domain CUB
(with base training on miniImageNet) and iNat.

The miniImageNet benchmark is a subset of the larger
ILSVRC-12 dataset (Russakovsky et al., 2015). It has a
total of 60,000 color images with 100 classes, where each
class has 600 images of size 84 × 84, following (Vinyals
et al., 2016). We use the standard split of 64 base, 16 vali-
dation and 20 test classes (Ravi & Larochelle, 2017; Wang
et al., 2019). The tieredImageNet benchmark (Ren et al.,
2018) is also a subset of ILSVRC-12 dataset but with 608
classes instead. We follow standard splits with 351 base,
97 validation and 160 test classes for the experiments. The
images are also resized to 84× 84 pixels. CUB-200-2011
(Wah et al., 2011) is a fine-grained image classification
dataset. We follow (Chen et al., 2019) for few-shot classi-
fication on CUB, which splits into 100 base, 50 validation
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Table 2. Results for CUB and cross-domain results on miniImagenet→ CUB.

Methods Network CUB miniImagenet→ CUB
1-shot 5-shot 1-shot 5-shot

MatchingNet (Vinyals et al., 2016) ResNet-18 73.49 84.45 - 53.07
MAML (Finn et al., 2017) ResNet-18 68.42 83.47 - 51.34
ProtoNet (Snell et al., 2017) ResNet-18 72.99 86.64 - 62.02
RelationNet (Sung et al., 2018) ResNet-18 68.58 84.05 - 57.71
Chen (Chen et al., 2019) ResNet-18 67.02 83.58 - 65.57
SimpleShot (Wang et al., 2019) ResNet-18 70.28 86.37 48.56 65.63

LaplacianShot(ours) ResNet-18 80.96 88.68 55.46 66.33

Table 3. Average accuracy (in %) in iNat benchmark for SimpleShot (Wang et al., 2019) and the proposed LaplacianShot. The best results
are reported in bold font. Note that, for iNat, we do not utilize the rectified prototypes. [The best reported result of (Wertheimer &
Hariharan, 2019) with ResNet50 is: Per Class: 46.04%, Mean: 51.25%.]

Methods Network UN L2 CL2
Per Class Mean Per Class Mean Per Class Mean

SimpleShot ResNet-18 55.80 58.56 57.15 59.56 56.35 58.63
LaplacianShot ResNet-18 62.80 66.40 58.72 61.14 58.49 60.81
SimpleShot ResNet-50 58.45 61.07 59.68 61.99 58.83 60.98
LaplacianShot ResNet-50 65.96 69.13 61.40 63.66 61.08 63.18
SimpleShot WRN 62.44 65.08 64.26 66.25 63.03 65.17
LaplacianShot WRN 71.55 74.97 65.78 67.82 65.32 67.43

and 50 test classes for the experiments. The images are
also resized to 84 × 84 pixels, as in miniImageNet. The
iNat benchmark, introduced recently for few-shot classifica-
tion in (Wertheimer & Hariharan, 2019), contains images of
1,135 animal species. It introduces a more challenging few-
shot scenario, with different numbers of support examples
per class, which simulates more realistic class-imbalance
scenarios, and with semantically related classes that are
not easily separable. Following (Wertheimer & Hariharan,
2019), the dataset is split into 908 base classes and 227 test
classes, with images of size 84× 84.

3.2. Evaluation Protocol

In the case of miniImageNet, CUB and tieredImageNet,
we evaluate 10,000 five-way 1-shot and five-way 5-shot
classification tasks, randomly sampled from the test classes,
following standard few-shot evaluation settings (Wang et al.,
2019; Rusu et al., 2019). This means that, for each of
the five-way few-shot tasks, C = 5 classes are randomly
selected, with |Xcs | = 1 (1-shot) and |Xcs | = 5 (5-shot) ex-
amples selected per class, to serve as support set Xs. Query
set Xq contains 15 images per class. Therefore, the evalua-
tion is performed over N = 75 query images per task. The
average accuracy of these 10,000 few shot tasks are reported
along with the 95% confidence interval. For the iNat bench-
mark, the number of support examples |Xcs | per class varies.
We performed 227-way multi-shot evaluation, and report
the top-1 accuracy averaged over the test images per class

(Per Class in Table 3), as well as the average over all test
images (Mean in Table 3), following the same procedure as
in (Wertheimer & Hariharan, 2019; Wang et al., 2019).

3.3. Network Models

We evaluate LaplacianShot on four different backbone net-
work models to learn feature extractor fθ:

ResNet-18/50 is based on the deep residual network archi-
tecture (He et al., 2016), where the first two down-sampling
layers are removed, setting the stride to 1 in the first convolu-
tional layer and removing the first max-pool layer. The first
convolutional layer is used with a kernel of size 3×3 instead
of 7×7. ResNet-18 has 8 basic residual blocks, and ResNet-
50 has 16 bottleneck blocks. For all the networks, the dimen-
sion of the extracted features is 512. MobileNet (Howard
et al., 2017) was initially proposed as a light-weight con-
volutional network for mobile-vision applications. In our
setting, we remove the first two down-sampling operations,
which results in a feature embedding of size 1024. WRN
(Zagoruyko & Komodakis, 2016) widens the residual blocks
by adding more convolutional layers and feature planes. In
our case, we used 28 convolutional layers, with a widen-
ing factor of 10 and an extracted-feature dimension of 640.
Finally, we used the standard 121-layer DenseNet (Huang
et al., 2017), omitting the first two down-sampling layers
and setting the stride to 1. We changed the kernel size of
the first convolutional layer to 3× 3. The extracted feature
vector is of dimension 1024.
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Figure 1. We tune regularization parameter λ over values ranging from 0.1 to 1.5. In the above plots, we show the impact of choosing λ
on both validation and test accuracies. The values of λ based on the best validation accuracies correspond to good accuracies in the test
classes. The results are shown for different networks on miniImageNet dataset, for both 1-shot (top row) and 5-shot (bottom row).

Figure 2. Convergence of Algorithm 1: Bounds Bi(Y) vs. iteration numbers for features from different networks. Here, the plots are
produced by setting λ = 1.0, for a single 5-way 5 shot task from the miniImageNet test set.

3.4. Implementation Details

Network model training: We trained the network models
using the standard cross-entropy loss on the base classes,
with a label-smoothing (Szegedy et al., 2016) parameter
set to 0.1. Note that the base training did not involve any
meta-learning or episodic-training strategy. We used the
SGD optimizer to train the models, with mini-batch size set
to 256 for all the networks, except for WRN and DenseNet,
where we used mini-batch sizes of 128 and 100, respectively.
We used two 16GB P100 GPUs for network training with
base classes. For this base training, we used the data aug-
mentation procedure of (He et al., 2016), along with color
jitter, similarly to (Chen et al., 2019). For miniImageNet,
CUB and tieredImageNet, we used early stopping by eval-
uating the the nearest-prototype classification accuracy on
the validation classes, with L2 normalized features.

Prototype estimation and feature transformation: Dur-
ing the inference on test classes, SimpleShot (Wang et al.,
2019) performs the following feature transformations: L2
normalization, xq := xq/‖xq‖2 and CL2, which computes
the mean of the base class features x̄ = 1

|Xbase|
∑

x∈Xbase
x

and centers the extracted features as xq := xq − x̄, which
is followed by an L2 normalization. We report the results
in Table 1 and 2 with CL2 normalized features. In Table 3
for the iNat dataset, we provide the results with both nor-
malized and unnormalized (UN) features for a comparative
analysis. We reproduced the results of SimpleShot with our
trained network models. In the 1-shot setting, prototype mc

is just the support example xq ∈ Xcs of class c, whereas in
multi-shot, mc is the simple mean of the support examples
of class c. Another option is to use rectified prototypes, i.e.,
a weighted combination of features from both the support
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examples in Xcs and query samples in Xcq, which are initially
predicted as belonging to class c using Eq. (2):

m̃c =
1

|Xcs |+ |Xcq|
∑

xp∈{Xc
s ,Xc

q }

exp(cos(xp,mc))∑C
c=1 exp(cos(xp,mc))

xp,

where cos denotes the cosine similarity. And, for a given
few-shot task, we compute the cross-domain shift ∆ as
the difference between the mean of features within the
support set and the mean of features within the query set:
∆ = 1

|Xs|
∑

xp∈Xs
xp − 1

|Xq|
∑

xq∈Xq
xq. Then, we rectify

each query point xp ∈ Xq in the few-shot task as follows:
xp = xp + ∆. This shift correction is similar to the pro-
totype rectification in (Liu et al., 2019a). Note that our
LaplacianShot model in Eq. (1) is agnostic to the way of
estimating the prototypes: It can be used either with the
standard prototypes (mc) or with the rectified ones (m̃c).
We report the results of LaplacianShot with the rectified pro-
totypes in Table 1 and 2, for miniImagenet, tieredImagenet
and CUB. We do not report the results with the rectified
prototypes in Table 3 for iNat, as rectification drastically
worsen the performance.

For W, we used the k-nearest neighbor affinities as follows:
w(xq,xp) = 1 if xp is within the k nearest neighbor of
xq, and w(xq,xp) = 0 otherwise. In our experiments, k is
simply chosen from three typical values (3, 5 or 10) tuned
over 500 few-shot tasks from the base training classes (i.e.,
we did not use test data for choosing k). We used k = 3
for miniImageNet, CUB and tieredImageNet and k = 10
for iNat benchmark. Regularization parameter λ is chosen
based on the validation class accuracy for miniImageNet,
CUB and tieredImageNet. This will be discussed in more
details in section 3.6. For the iNat experiments, we simply
fix λ = 1.0, as there is no validation set for this benchmark.

3.5. Results

We evaluated LaplacianShot over five different bench-
marks, with different scenarios and difficulties: Generic
image classification, fine-grained image classification, cross-
domain adaptation, and imbalanced class distributions.
We report the results of LaplacianShot for miniImageNet,
tieredImageNet, CUB and iNat datasets, in Tables 1, 2 and
3, along with comparisons with state-of-the-art methods.

Generic image classification: Table 1 reports the results of
generic image classification for the standard miniImageNet
and tieredImageNet few-shot benchmarks. We can clearly
observe that LaplacianShot outperforms state-of-the-art
methods by large margins, with gains that are consistent
across different settings and network models. It is worth
mentioning that, for challenging scenarios, e.g., 1-shot with
low-capacity models, LaplacianShot outperforms complex
meta-learning methods by more than 9%. For instance,
compared to well-known MAML (Finn et al., 2017) and

ProtoNet (Snell et al., 2017), and to the recent MetaoptNet
(Lee et al., 2019), LaplacianShot brings improvements of
nearly 22%, 17%, and 9%, respectively, under the same
evaluation conditions. Furthermore, it outperforms the very
recent transductive approaches in (Dhillon et al., 2020; Liu
et al., 2019a;b) by significant margins. With better learned
features with WRN and DenseNet, LaplacianShot brings sig-
nificant performance boosts, yielding state-of-the art results
in few-shot classification, without meta-learning.

Fine-grained image classification: Table 2 reports the re-
sults of fine-grained few-shot classification on CUB, with
Resnet-18 network. LaplacianShot outperforms the best
performing method in this setting by a 7% margin.

Cross-domain (mini-ImageNet→ CUB): We perform the
very interesting few-shot experiment, with a cross-domain
scenario, following the setting in (Chen et al., 2019). We
used the ResNet-18 model trained on the miniImagenet base
classes, while evaluation is performed on CUB few-shot
tasks, with 50 test classes. Table 2 (rightmost column)
reports the results. In this cross-domain setting, and consis-
tently with the standard settings, LaplacianShot outperforms
complex meta-learning methods by substantial margins.

Imbalanced class distribution: Table 3 reports the results
for the more challenging, class-imbalanced iNat benchmark,
with different numbers of support examples per class and,
also, with high visual similarities between the different
classes, making class separation difficult. To our knowledge,
only (Wertheimer & Hariharan, 2019; Wang et al., 2019)
report performances on this benchmark, and SimpleShot
(Wang et al., 2019) represents the state-of-the-art. We com-
pared with SimpleShot using unnormalized extracted fea-
tures (UN), L2 and CL2 normalized features. Our Laplacian
regularization yields significant improvements, regardless
of the network model and feature normalization. However,
unlike SimpleShot, our method reaches its best performance
with the unnormalized features. Note that, for iNat, we
did not use the rectified prototypes. These results clearly
highlight the benefit Laplacian regularization brings in chal-
lenging class-imbalance scenarios.

3.6. Ablation Study

Choosing the Value of λ: In LaplacianShot, we need to
choose the value of regularization parameter λ, which con-
trols the trade-off between the nearest-prototype classifier
term aq and Laplacian regularizer biq . We tuned this param-
eter using the validation classes by sampling 500 few-shot
tasks. LaplacianShot is used in each few-shot task with the
following values of λ: [0.1, 0.3, 0.5, 0.7, 0.8, 1.0, 1.2, 1.5].
The best λ corresponding to the best average 1-shot and
5-shot accuracy over validation classes/data is selected for
inference over the test classes/data. To examine experi-
mentally whether the chosen values of λ based on the best
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Table 4. Ablation study on the effect of each term corresponding to nearest prototypeN (Y), Laplacian L(Y) and rectified prototype m̃c.
Results are reported with ResNet-18 network. Note that, the Laplacian regularization L(Y) improve the results consistently.

mini-ImageNet tiered-ImageNet CUB
N (Y) L(Y) m̃c 1-shot 5-shot 1-shot 5-shot 1shot 5-shot

3 7 7 63.10 79.92 69.68 84.56 70.28 86.37
3 3 7 66.20 80.75 72.89 85.25 74.46 86.86
3 7 3 69.74 82.01 76.73 85.74 78.76 88.55
3 3 3 72.11 82.31 78.98 86.39 80.96 88.68

Table 5. Average inference time (in seconds) for the 5-shot tasks
in miniImagenet dataset.

Methods inference time

SimpleShot (Wang et al., 2019) 0.009
Transductive tuning (Dhillon et al., 2020) 20.7
LaplacianShot (ours) 0.012

validation accuracies correspond to good accuracies in the
test classes, we plotted both the validation and test class ac-
curacies vs. different values of λ for miniImageNet (Figure
1). The results are intuitive, with a consistent trend in both
1-shot and 5-shot settings. Particularly, for 1-shot tasks,
λ = 0.7 provides the best results in both validation and test
accuracies. In 5-shot tasks, the best test results are obtained
mostly with λ = 0.1, while the best validation accuracies
were reached with higher values of λ. Nevertheless, we re-
port the results of LaplacianShot with the values of λ chosen
based on the best validation accuracies.

Effects of Laplacian regularization: We conducted an ab-
lation study on the effect of each term in our model, i.e.,
nearest-prototype classifier N (Y) and Laplacian regular-
izer L(Y). We also examined the effect of using prototype
rectification, i.e., m̃c instead of mc. Table 4 reports the
results, using the ResNet-18 network. The first row corre-
sponds to the prediction of the nearest neighbor classifier
(λ = 0), and the second shows the effect of adding Lapla-
cian regularization. In the 1-shot case, the latter boosts the
performances by at least 3%. Prototype rectification (third
and fourth rows) also boosts the performances. Again, in
this case, the improvement that the Laplacian term brings is
significant, particularly in the 1-shot case (2 to 3%).

Convergence of transductive LaplacianShot inference:
The proposed algorithm belongs to the family of bound op-
timizers or MM algorithms. In fact, the MM principle can
be viewed as a generalization of expectation-maximization
(EM). Therefore, in general, MM algorithms inherit the
monotonicity and convergence properties of EM algorithms
(Vaida, 2005), which are well-studied in the literature. In
fact, Theorem 3 in (Vaida, 2005) states a simple condition
for convergence of the general MM procedure, which is al-
most always satisfied in practice: The surrogate function has
a unique global minimum. In Fig. 2, we plotted surrogates

Bi(Y), up to a constant, i.e., Eq. (7), as functions of the iter-
ation numbers, for different networks. One can see that the
value of Bi(Y) decreases monotonically at each iteration,
and converges, typically, within less than 15 iterations.

Inference time: We computed the average inference time
required for each 5-shot task. Table 5 reports these infer-
ence times for miniImageNet with the WRN network. The
purpose of this is to check whether there exist a significant
computational overhead added by our Laplacian-regularized
transductive inference, in comparison to inductive inference.
Note that the computational complexity of the proposed
inference is O(NkC) for a few-shot task, where k is the
neighborhood size for affinity matrix W. The inference
time per few-shot task for LaplacianShot is close to induc-
tive SimpleShot run-time (LaplacianShot is only 1-order of
magnitude slower), and is 3-order-of-magnitude faster than
the transductive fine-tuning in (Dhillon et al., 2020).

4. Conclusion
Without meta-learning, we provide state-of-the-art results,
outperforming significantly a large number of sophisticated
few-shot learning methods, in all benchmarks. Our trans-
ductive inference is a simple constrained graph clustering
of the query features. It can be used in conjunction with any
base-class training model, consistently yielding improve-
ments. Our results are in line with several recent baselines
(Dhillon et al., 2020; Chen et al., 2019; Wang et al., 2019)
that reported competitive performances, without resorting
to complex meta-learning strategies. This recent line of sim-
ple methods emphasizes the limitations of current few-shot
benchmarks, and questions the viability of a large body of
convoluted few-shot learning techniques in the recent lit-
erature. As pointed out in Fig. 1 in (Dhillon et al., 2020),
the progress made by an abundant recent few-shot literature,
mostly based on meta-learning, may be illusory. Classical
and simple regularizers, such as the entropy in (Dhillon
et al., 2020) or our Laplacian term, well-established in semi-
supervised learning and clustering, achieve outstanding per-
formances. We do not claim to hold the ultimate solution for
few-shot learning, but we believe that our model-agnostic
transductive inference should be used as a strong baseline
for future few-shot learning research.
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Oreshkin, B., López, P. R., and Lacoste, A. Tadam: Task de-
pendent adaptive metric for improved few-shot learning.
In Neural Information Processing Systems (NeurIPS),
2018.

Qiao, L., Shi, Y., Li, J., Wang, Y., Huang, T., and Tian,
Y. Transductive episodic-wise adaptive metric for few-
shot learning. In International Conference on Computer
Vision (ICCV), 2019.

Qiao, S., Liu, C., Shen, W., and Yuille, A. L. Few-shot
image recognition by predicting parameters from activa-
tions. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.



Laplacian Regularized Few-Shot Learning

Ravi, S. and Larochelle, H. Optimization as a model for few-
shot learning. In International Conference on Learning
Representations (ICLR), 2017.

Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K.,
Tenenbaum, J. B., Larochelle, H., and Zemel, R. S. Meta-
learning for semi-supervised few-shot classification. In
International Conference on Learning Representations
ICLR, 2018.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu,
R., Osindero, S., and Hadsell, R. Meta-learning with
latent embedding optimization. In International Confer-
ence on Learning Representations (ICLR), 2019.

Shi, J. and Malik, J. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, 2000.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In Neural Information Processing
Systems (NeurIPS), 2017.

Sun, Q., Liu, Y., Chua, T., and Schiele, B. Meta-transfer
learning for few-shot learning. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and
Hospedales, T. M. Learning to compare: Relation net-
work for few-shot learning. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In Conference on Computer Vision and Pattern
Recognition, 2016.

Tian, F., Gao, B., Cui, Q., Chen, E., and Liu, T.-Y. Learn-
ing deep representations for graph clustering. In AAAI
Conference on Artificial Intelligence, 2014.

Vaida, F. Parameter convergence for em and mm algorithms.
Statistica Sinica, 15:831–840, 2005.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, u., and Polosukhin, I. Attention
is all you need. In Neural Information Processing Systems
(NeurIPS), 2017.

Vinyals, O., Blundell, C., Lillicrap, T. P., Kavukcuoglu, K.,
and Wierstra, D. Matching networks for one shot learning.
In Neural Information Processing Systems (NeurIPS),
2016.

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and computing, 17(4):395–416, 2007.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. 2011.

Wang, W. and Carreira-Perpinán, M. A. The lapla-
cian k-modes algorithm for clustering. Preprint
arXiv:1406.3895, 2014.

Wang, Y., Chao, W.-L., Weinberger, K. Q., and
van der Maaten, L. Simpleshot: Revisiting nearest-
neighbor classification for few-shot learning. Preprint
arXiv:1911.04623, 2019.

Wertheimer, D. and Hariharan, B. Few-shot learning with
localization in realistic settings. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019.

Weston, J., Ratle, F., Mobahi, H., and Collobert, R. Deep
learning via semi-supervised embedding. In Neural net-
works: Tricks of the trade, pp. 639–655. Springer, 2012.

Ye, H.-J., Hu, H., Zhan, D.-C., and Sha, F. Few-shot learning
via embedding adaptation with set-to-set functions. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Yuan, J., Yin, K., Bai, Y., Feng, X., and Tai, X. Bregman-
proximal augmented lagrangian approach to multiphase
image segmentation. In Scale Space and Variational
Methods in Computer Vision (SSVM), 2017.

Yuille, A. L. and Rangarajan, A. The concave-convex proce-
dure (CCCP). In Neural Information Processing Systems
(NeurIPS), 2001.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
In British Machine Vision Conference (BMVC), 2016.

Zhang, J., Zhao, C., Ni, B., Xu, M., and Yang, X. Varia-
tional few-shot learning. In International Conference on
Computer Vision (ICCV), 2019.

Zhang, Z., Kwok, J. T., and Yeung, D.-Y. Surrogate max-
imization/minimization algorithms and extensions. Ma-
chine Learning, 69:1–33, 2007.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and
Schölkopf, B. Learning with local and global consistency.
In Neural Information Processing Systems (NeurIPS),
2004.

Ziko, I., Granger, E., and Ben Ayed, I. Scalable lapla-
cian k-modes. In Neural Information Processing Systems
(NeurIPS), 2018.


