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Abstract

This review focuses on dynamic causal analysis of functional magnetic resonance (fMRI)
data to infer brain connectivity from a time series analysis and dynamical systems per-
spective. Causal influence is expressed in the Wiener-Akaike-Granger-Schweder (WAGS)
tradition and dynamical systems are treated in a state space modeling framework. The
nature of the fMRI signal is reviewed with emphasis on the involved neuronal, physiologi-
cal and physical processes and their modeling as dynamical systems. In this context, two
streams of development in modeling causal brain connectivity using fMRI are discussed:
time series approaches to causality in a discrete time tradition and dynamic systems and
control theory approaches in a continuous time tradition. This review closes with discussion
of ongoing work and future perspectives on the integration of the two approaches.
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1. Introduction

Understanding how interactions between brain structures support the performance of spe-
cific cognitive tasks or perceptual and motor processes is a prominent goal in cognitive
neuroscience. Neuroimaging methods, such as Electroencephalography (EEG), Magnetoen-
cephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) are employed
more and more to address questions of functional connectivity, inter-region coupling and
networked computation that go beyond the ‘where’ and ‘when’ of task-related activity
(Friston, 2002; Horwitz et al., 2000; McIntosh, 2004; Salmelin and Kujala, 2006; Valdes-
Sosa et al., 2005a). A network perspective onto the parallel and distributed processing
in the brain - even on the large scale accessible by neuroimaging methods - is a promis-
ing approach to enlarge our understanding of perceptual, cognitive and motor functions.
Functional Magnetic Resonance Imaging (fMRI) in particular is increasingly used not only
to localize structures involved in cognitive and perceptual processes but also to study the
connectivity in large-scale brain networks that support these functions.
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Generally a distinction is made between three types of brain connectivity. Anatomical
connectivity refers to the physical presence of an axonal projection from one brain area
to another. Identification of large axon bundles connecting remote regions in the brain
has recently become possible non-invasively in vivo by diffusion weighted Magnetic res-
onance imaging (DWMRI) and fiber tractography analysis (Johansen-Berg and Behrens,
2009; Jones, 2010). Functional connectivity refers to the correlation structure (or more
generally: any order of statistical dependency) in the data such that brain areas can be
grouped into interacting networks. Finally, effective connectivity modeling moves beyond
statistical dependency to measures of directed influence and causality within the networks
constrained by further assumptions (Friston, 1994).
Recently, effective connectivity techniques that make use of the temporal dynamics in

the fMRI signal and employ time series analysis and systems identification theory have
become popular. Within this class of techniques two separate developments have been
most used: Granger causality analysis (GCA; Goebel et al., 2003; Roebroeck et al., 2005;
Valdes-Sosa, 2004) and Dynamic Causal Modeling (DCM; Friston et al., 2003). Despite
the common goal, there seem to be differences between the two methods. Whereas GCA
explicitly models temporal precedence and uses the concept of Granger causality (or G-
causality) mostly formulated in a discrete time-series analysis framework, DCM employs a
biophysically motivated generative model formulated in a continuous time dynamic system
framework. In this chapter we will give a general causal time-series analysis perspective
onto both developments from what we have called the Wiener-Akaike-Granger-Schweder
(WAGS) influence formalism (Valdes-Sosa et al., in press).
Effective connectivity modeling of neuroimaging data entails the estimation of multivari-

ate mathematical models that benefits from a state space formulation, as we will discuss
below. Statistical inference on estimated parameters that quantify the directed influence
between brain structures, either individually or in groups (model comparison) then provides
information on directed connectivity. In such models, brain structures are defined from at
least two viewpoints. From a structural viewpoint they correspond to a set of “nodes” that
comprise a graph, the purpose of causal discovery being the identification of active links in
the graph. The structural model contains i) a selection of the structures in the brain that
are assumed to be of importance in the cognitive process or task under investigation, ii)
the possible interactions between those structures and iii) the possible effects of exogenous
inputs onto the network. The exogenous inputs may be under control of the experimenter
and often have the form of a simple indicator function that can represent, for instance, the
presence or absence of a visual stimulus in the subject’s view. From a dynamical viewpoint
brain structures are represented by states or variables that describe time varying neural
activity within a time-series model of the measured fMRI time-series data. The functional
form of the model equations can embed assumptions on signal dynamics, temporal prece-
dence or physiological processes from which signals originate.
We start this review by focusing on the nature of the fMRI signal in some detail in

section 2, separating the treatment into neuronal, physiological and physical processes. In
section 3 we review two important formal concepts: causal influence in the Wiener-Akaike-
Granger-Schweder tradition and the state space modeling framework, with some emphasis
on the relations between discrete and continuous time series models. Building on this
discussion, section 4 reviews time series modeling of causality in fMRI data. The review
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proceeds somewhat chronologically, discussing and comparing the two separate streams of
development (GCA and DCM) that have recently begun to be integrated. Finally, section
5 summarizes and discusses the main topics in general dynamic state space models of brain
connectivity and provides an outlook on future developments.

2. The fMRI Signal

The fMRI signal reflects the activity within neuronal populations non-invasively with excel-
lent spatial resolution (millimeters down to hundreds of micrometers at high field strength),
good temporal resolution (seconds down to hundreds of milliseconds) and whole-brain cov-
erage of the human or animal brain (Logothetis, 2008). Although fMRI is possible with a
few different techniques, the Blood Oxygenation Level Dependent (BOLD) contrast mech-
anism is employed in the great majority of cases. In short, the BOLD fMRI signal is
sensitive to changes in blood oxygenation, blood flow and blood volume that result from
oxidative glucose metabolism which, in turn, is needed to fuel local neuronal activity (Bux-
ton et al., 2004). This is why fMRI is usually classified as a ‘metabolic’ or ‘hemodynamic’
neuroimaging modality. Its superior spatial resolution, in particular, distinguishes it from
other functional brain imaging modalities used in humans, such as EEG, MEG and Positron
Emission Tomography (PET). Although its temporal resolution is far superior to PET (an-
other ‘metabolic’ neuroimaging modality) it is still an order of magnitude below that of
EEG and MEG, resulting in a relatively sparse sampling of fast neuronal processes, as we
will discuss below. The final fMRI signal arises from a complex chain of processes that we
can classify into neuronal, physiological and physical processes (Uludag et al., 2005), each of
which contain some crucial parameters and variables and have been modeled in various ways
as illustrated in Figure 1. We will discuss each of the three classes of processes to explain
the intricacies involved in trying to model this causal chain of events with the ultimate goal
of estimating neuronal activity and interactions from the measured fMRI signal.
On the neuronal level, it is important to realize that fMRI reflects certain aspects of

neuronal functioning more than others. A wealth of processes are continuously in operation
at the microscopic level (i.e. in any single neuron), including maintaining a resting poten-
tial, post-synaptic conduction and integration (spatial and temporal) of graded excitatory
and inhibitory post synaptic potentials (EPSPs and IPSPs) arriving at the dendrites, sub-
threshold dynamic (possibly oscillatory) potential changes, spike generation at the axon
hillock, propagation of spikes by continuous regeneration of the action potential along the
axon, and release of neurotransmitter substances into the synaptic cleft at arrival of an
action potential at the synaptic terminal. There are many different types of neurons in the
mammalian brain that express these processes in different degrees and ways. In addition,
there are other cells, such as glia cells, that perform important processes, some of them
possibly directly relevant to computation or signaling. As explained below, the fMRI signal
is sensitive to the local oxidative metabolism in the brain. This means that, indirectly, it
mainly reflects the most energy consuming of the neuronal processes. In primates, post-
synaptic processes account for the great majority (about 75%) of the metabolic costs of
neuronal signaling events (Attwell and Iadecola, 2002). Indeed, the greater sensitivity of
fMRI to post-synaptic activity, rather than axon generation and propagation (‘spiking’),
has been experimentally verified. For instance, in a simultaneous invasive electrophysiology
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Figure 1: The neuronal, physiological and physical processes (top row) and variables and
parameters involved (middle row) in the complex causal chain of events that leads
to the formation of the fMRI signal. The bottom row lists some mathematical
models of the sub-processes that play a role in the analysis and modeling of fMRI
signals. See main text for further explanation.
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and fMRI measurement in the primate, Logothetis and colleagues (Logothetis et al., 2001)
found the fMRI signal to be more correlated to the mean Local Field Potential (LFP) of
the electrophysiological signal, known to reflect post-synaptic graded potentials, than to
high-frequency and multi-unit activity, known to reflect spiking. In another study it was
shown that, by suppressing action potentials while keeping LFP responses intact by inject-
ing a serotonin agonist, the fMRI response remained intact, again suggesting that LFP is
a better predictor for fMRI activity (Rauch et al., 2008). These results confirmed earlier
results obtained on the cerebellum of rats (Thomsen et al., 2004).
Neuronal activity, dynamics and computation can be modeled at a different levels of ab-

straction, including the macroscopic (whole brain areas), mesoscopic (sub-areas to cortical
columns) and microscopic level (individual neurons or groups of these). The levels most rele-
vant to modeling fMRI signals are at the macro- and mesoscopic levels. Macroscopic models
used to represent considerable expanses of gray matter tissue or sub-cortical structures as
Regions Of Interest (ROIs) prominently include single variable deterministic (Friston et al.,
2003) or stochastic (autoregressive; Penny et al., 2005; Roebroeck et al., 2005; Valdes-Sosa
et al., 2005b) exponential activity decay models. Although the simplicity of such models
entail a large degree of abstraction in representing neuronal activity dynamics, their modest
complexity is generally well matched to the limited temporal resolution available in fMRI.
Nonetheless, more complex multi-state neuronal dynamics models have been investigated
in the context of fMRI signal generation. These include the 2 state variable Wilson-Cowan
model (Marreiros et al., 2008), with one excitatory and one inhibitory sub-population per
ROI and the 3 state variable Jansen-Rit model with a pyramidal excitatory output popula-
tion and an inhibitory and excitatory interneuron population, particularly in the modeling
of simultaneously acquired fMRI and EEG (Valdes-Sosa et al., 2009).
The physiology and physics of the fMRI signal is most easily explained by starting with

the physics. We will give a brief overview here and refer to more dedicated overviews
(Haacke et al., 1999; Uludag et al., 2005) for extended treatment. The hallmark of Mag-
netic Resonance (MR) spectroscopy and imaging is the use of the resonance frequency of
magnetized nuclei possessing a magnetic moment, mostly protons (hydrogen nuclei, 1H),
called ‘spins’. Radiofrequency antennas (RF coils) can measure signal from ensembles of
spins that resonate in phase at the moment of measurement. The first important physical
factor in MR is the main magnetic field strength (B0), which determines both the resonance
frequency (directly proportional to field-strength) and the baseline signal-to-noise ratio of
the signal, since higher fields make a larger proportion of spins in the tissue available for
measurement. The most used field strengths for fMRI research in humans range from 1,5T
(Tesla) to 7T. The second important physical factor – containing several crucial parameters
– is the MR pulse-sequence that determines the magnetization preparation of the sample
and the way the signal is subsequently acquired. The pulse sequence is essentially a series
of radiofrequency pulses, linear magnetic gradient pulses and signal acquisition (readout)
events (Bernstein et al., 2004; Haacke et al., 1999). An important variable in a BOLD fMRI
pulse sequence is whether it is a gradient-echo (GRE) sequence or a spin-echo (SE) sequence,
which determines the granularity of the vascular processes that are reflected in the signal, as
explained later this section. These effects are further modulated by the echo-time (time to
echo; TE) and repetition time (time to repeat; TR) that are usually set by the end-user of
the pulse sequence. Finally, an important variable within the pulse sequence is the type of
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spatial encoding that is employed. Spatial encoding can primarily be achieved with gradient
pulses and it embodies the essence of ‘Imaging’ in MRI. It is only with spatial encoding
that signal can be localized to certain ‘voxels’ (volume elements) in the tissue. A strength
of fMRI as a neuroimaging technique is that an adjustable trade-off is available to the user
between spatial resolution, spatial coverage, temporal resolution and signal-to-noise ratio
(SNR) of the acquired data. For instance, although fMRI can achieve excellent spatial res-
olution at good SNR and reasonable temporal resolution, one can choose to sacrifice some
spatial resolution to gain a better temporal resolution for any given study. Note, however,
that this concerns the resolution and SNR of the data acquisition. As explained below, the
physiology of fMRI can put fundamental limitations on the nominal resolution and SNR
that is achieved in relation to the neuronal processes of interest.
On the physiological level, the main variables that mediate the BOLD contrast in fMRI

are cerebral blood flow (CBF), cerebral blood volume (CBV) and the cerebral metabolic
rate of oxygen (CMRO2) which all change the oxygen saturation of the blood (as usefully
quantified by the concentration of deoxygenated hemoglobin). The BOLD contrast is made
possible by the fact that oxygenation of the blood changes its magnetic susceptibility, which
has an effect on the MR signal as measured in GRE and SE sequences. More precisely,
oxygenated and deoxygenated hemoglobin (oxy-Hb and deoxy-Hb) have different magnetic
properties, the former being diamagnetic and the latter paramagnetic. As a consequence,
deoxygenated blood creates local microscopic magnetic field gradients, such that local spin
ensembles dephase, which is reflected in a lower MR signal. Conversely oxygenation of blood
above baseline lowers the concentration of deoxy-Hb, which decreases local spin dephasing
and results in a higher MR signal. This means that fMRI is directly sensitive to the relative
amount of oxy- and deoxy Hb and to the fraction of cerebral tissue that is occupied by blood
(the CBV), which are controlled by local neurovascular coupling processes. Neurovascular
processes, in turn, are tightly coupled to neurometabolic processes controlling the rate of
oxidative glucose metabolism (the CMRO2) that is needed to fuel neural activity.
Naively one might expect local neuronal activity to quickly increase CMRO2 and increase

the local concentration of deoxy-Hb, leading to a lowering of the MR signal. However, this
transient increase in deoxy-Hb or the initial dip in the fMRI signal is not consistently
observed and, thus, there is a debate whether this signal is robust, elusive or simply not
existent (Buxton, 2001; Ugurbil et al., 2003; Uludag, 2010). Instead, early experiments
showed that the dynamics of blood flow and blood volume, the hemodynamics, lead to a
robust BOLD signal increase. Neuronal activity is quickly followed by a large CBF increase
that serves the continued functioning of neurons by clearing metabolic by-products (such
as CO2) and supplying glucose and oxy-Hb. This CBF response is an overcompensating
response, supplying much more oxy-Hb to the local blood system than has been metabolized.
As a consequence, within 1-2 seconds, the oxygenation of the blood increases and the
MR signal increases. The increased flow also induces a ‘ballooning’ of the blood vessels,
increasing CBV, the proportion of volume taken up by blood, further increasing the signal.
A mathematical characterization of the hemodynamic processes in BOLD fMRI at 1.5-3T

has been given in the biophysical balloon model (Buxton et al., 2004, 1998), schematized
in Figure 2A. A simplification of the full balloon model has become important in causal
models of brain connectivity (Friston et al., 2000). In this simplified model, the dependence
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Figure 2: A: Simplified causal chain of hemodynamic events as modeled by the balloon
model. Grey arrows show how variable increases (decreases) tend to relate to each
other. The dynamic changes after a brief pulse of neuronal activity are plotted for
CBF (in red), CBV (in purple), deoxyHb (in green) and BOLD signal (in blue).
B: A more abstract representation of the hemodynamic response function as a
set of linear basis functions acting as convolution kernels (arbitrary amplitude
scaling). Solid line: canonical two-gamma HRF; Dotted line: time derivative;
Dashed line: dispersion derivative.

of fractional fMRI signal change ΔSS , on normalized cerebral blood flow f , normalized
cerebral blood volume v and normalized deoxyhemoglobin content q is modeled as:
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The term E0 is the resting oxygen extraction fraction, V0 is the resting blood volume
fraction, τ0 is the mean transit time of the venous compartment, α is the stiffness component
of the model balloon and {k1, k2, k3} are calibration parameters. The main simplifications
of this model with respect to a more complete balloon model (Buxton et al., 2004) are a
one-to-one coupling of flow and volume in (2), thus neglecting the actual balloon effect, and
a perfect coupling between flow and metabolism in (3). Friston et al. (2000) augment this
model with a putative relation between the a neuronal activity variable z, a flow-inducing
signal s, and the normalized cerebral blood flow f . They propose the following relations
in which neuronal activity z causes an increase in a vasodilatory signal that is subject to
autoregulatory feedback:

ṡt = zt −
1

τs
st −

1

τf 2
(ft − 1) (4)
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ḟt = st (5)

Here τs is the signal decay time constant, τf is the time-constant of the feedback autoregula-
tory mechanism1, and f is the flow normalized to baseline flow. The physiological interpre-
tation of the autoregulatory mechanism is unspecified, leaving us with a neuronal activity
variable z that is measured in units of s−2. The physiology of the hemodynamics contained
in differential equations (2) to (5), on the other hand, is more readily interpretable, and
when integrated for a brief neuronal input pulse shows the behavior as described above
(Figure 2A, upper panel). This simulation highlights a few crucial features. First, the
hemodynamic response to a brief neural activity event is sluggish and delayed, entailing
that the fMRI BOLD signal is a delayed and low-pass filtered version of underlying neu-
ronal activity. More than the distorting effects of hemodynamic processes on the temporal
structure of fMRI signals per se, it is the difference in hemodynamics in different parts of
the brain that forms a severe confound for dynamic brain connectivity models. Particu-
larly, the delay imposed upon fMRI signals with respect to the underlying neural activity
is known to vary between subjects and between different brain regions of the same sub-
ject (Aguirre et al., 1998; Saad et al., 2001). Second, although CBF, CBV and deoxyHb
changes range in the tens of percents, the BOLD signal change at 1.5T or 3T is in the range
of 0.5-2%. Nevertheless, the SNR of BOLD fMRI in general is very good in comparison to
electrophysiological techniques like EEG and MEG.
Although the balloon model and its variations have played an important role in describing

the transient features of the fMRI response and inferring neuronal activity, simplified ways
of representing the BOLD signal responses are very often used. Most prominent among
these is a linear finite impulse response (FIR) convolution with a suitable kernel. The
most used single convolution kernel characterizing the ‘canonical’ hemodynamic reponse is
formed by a superposition of two gamma functions (Glover, 1999), the first characterizing
the initial signal increase, the second the later negative undershoot (Figure 2B, solid line):

h (t) = m1t
τ1e(−l1t) − cm2tτ2e(−l2t)

mi = max
(
tτie(−lit)

) (6)

With times-to-peak in seconds τ1 = 6, τ2 = 16, scale parameters li (typically equal to 1)
and a relative amplitude of undershoot to peak of c = 1/6.
Often, the canonical two-gamma HRF kernel is augmented with one or two additional

orthogonalized convolution kernels: a temporal derivative and a dispersion derivative. To-
gether the convolution kernels form a flexible basis function expansion of possible HRF
shapes, with the temporal derivative of the canonical accounting for variation in the re-
sponse delay and the dispersion derivative accounting for variations in temporal response
width (Henson et al., 2002; Liao et al., 2002). Thus, the linear basis function representation
is a more abstract characterization of the HRF (i.e. further away from the physiology) that
still captures the possible variations in responses.
It is an interesting property of hemodynamic processes that, although they are charac-

terized by a large overcompensating reaction to neuronal activity, their effects are highly

1. Note that we have reparametrized the equation here in terms of τf
2 to make τf a proper time constant

in units of seconds
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local. The locality of the hemodynamic reponse to neuronal activity limits the actual spa-
tial resolution of fMRI. The path blood inflow in the brain is from large arteries through
arterioles into capillaries where exchange with neuronal tissue takes place at a microscopic
level. Blood outflow takes place via venules into the larger veins. The main regulators of
blood flow are the arterioles that are surrounded by smooth muscle, although arteries and
capillaries are also thought to be involved in blood flow regulation (Attwell et al., 2010).
Different hemodynamic parameters have different spatial resolutions. While CBV and CBF
changes in all compartments but mostly venules, oxygenation changes mostly in the venules
and veins. Thus, the achievable spatial resolution with fMRI is limited by its specificity to
the smaller arterioles and venules and microscopic capillaries supplying the tissue, rather
than the larger supplying arteries draining veins. The larger vessels have a larger domain
of supply or extraction and, as a consequence, their signal is blurred and mislocalized with
respect to active tissue. Here, physiology and physics interact in an important way. It can
be shown theoretically – by the effects of thermal motion of spin diffusion over time and
the distance of the spins to deoxy-Hb – that the origin of the BOLD signal in SE sequences
at high main field strengths (larger than 3T) is much more specific to the microscopic vas-
culature than to the larger arteries and veins. This does not hold for GRE sequences or
SE sequences at lower field strengths. The cost of this greater specificity and higher effec-
tive spatial resolution is that SE-BOLD has a lower intrinsic SNR than GRE-BOLD. The
balloon model equations above are specific to GRE-BOLD at 1.5T and 3T and have been
extended to reflect diffusion effects for higher field strengths (Uludag et al., 2009).
In summary, fMRI is an indirect measure of neuronal and synaptic activity. The phys-

iological quantities directly determining signal contrast in BOLD fMRI are hemodynamic
quantities such as cerebral blood flow and volume and oxygen metabolism. fMRI can achieve
a excellent spatial resolution (millimeters down to hundreds of micrometers at high field
strength) with good temporal resolution (seconds down to hundreds of milliseconds). The
potential to resolve neuronal population interactions at a high spatial resolution is what
drives attempts at causal time series modeling of fMRI data. However, the significant as-
pects of fMRI that pose challenges for such attempts are i) the enormous dimensionality of
the data that contains hundreds of thousands of channels (voxels) ii) the temporal convo-
lution of neuronal events by sluggish hemodynamics that can differ between remote parts
of the brain and iii) the relatively sparse temporal sampling of the signal.

3. Causality and state-space models

The inference of causal influence relations from statistical analysis of observed data has two
dominant approaches. The first approach is in the tradition of Granger causality or G-
causality, which has its signature in improved predictability of one time series by another.
The second approach is based on graphical models and the notion of intervention (Glymour,
2003), which has been formalized using a Bayesian probabilistic framework termed causal
calculus or do-calculus (Pearl, 2009). Interestingly, recent work has combined of the two
approaches in a third line of work, termed Dynamic Structural Systems (White and Lu,
2010). The focus here will be on the first approach, initially firmly rooted in econometrics
and time-series analysis. We will discuss this tradition in a very general form, acknowledging
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early contributions fromWiener, Akaike, Granger and Schweder and will follow (Valdes-Sosa
et al., in press) in refering to the crucial concept as WAGS influence.

3.1. Wiener-Akaike-Granger-Schweder (WAGS) influence

The crucial premise of the WAGS statistical causal modeling tradition is that a cause must
precede and increase the predictability of its effect. In other words: a variable X2 influences
another variable X1 if the prediction of X1 improves when we use past values of X2, given
that all other relevant information (importantly: the past of X1 itself) is taken into account.
This type of reasoning can be traced back at least to Hume and is particularly popular in
analyzing dynamical data measured as time series. In a formal framework it was originally
proposed (in an abstract form) byWiener (Wiener, 1956), and then introduced into practical
data analysis and popularized by Granger (Granger, 1969). A point stressed by Granger is
that increased predictability is a necessary but not sufficient condition for a causal relation
between time series. In fact, Granger distinguished true causal relations – only to be inferred
in the presence of knowledge of the state of the whole universe – from “prima facie” causal
relations that we refer to as “influence” in agreement with other authors (Commenges and
Gegout-Petit, 2009). Almost simultaneous with Grangers work, Akaike (Akaike, 1968), and
Schweder (Schweder, 1970) introduced similar concepts of influence, prompting (Valdes-Sosa
et al., in press) to coin the term WAGS influence (for Wiener-Akaike-Granger-Schweder).
This is a generalization of a proposal by placeAalen (Aalen, 1987; Aalen and Frigessi, 2007)
who was among the first to point out the connections between Granger’s and Schweder’s
influence concepts. Within this framework we can define several general types of WAGS
influence, which are applicable to both Markovian and non-Markovian processes, in discrete
or continuous time.
For three vector time series X1 (t) , X2 (t) , X3 (t) we wish to know if time series X1 (t) is
influenced by time series X2 (t) conditional on X3 (t). Here X3 (t) can be considered any
set of relevant time series to be controlled for. Let X [a, b] = {X (t) , t ∈ [a, b]} denote the
history of a time series in the discrete or continuous time interval [a, b] The first categorical
distinction is based on what part of the present or future of X1 (t) can be predicted by the
past or present of X2 (τ2) τ2 ≤ t. This leads to the following classification (Florens, 2003;
Florens and Fougere, 1996):

1. If X2 (τ2) : τ2 < t , can influence any future value of X1 (t) it is a global influence.

2. If X2 (τ2) : τ2 < t , can influence X1 (t) at time t it is a local influence.

3. If X2 (τ2) : τ2 = t , can influence X1 (t) it is a contemporaneous influence.

A second distinction is based on predicting the whole probability distribution (strong
influence) or only given moments (weak influence). Since the most natural formal definition
is one of independence, every influence type amounts to the negation of an independence
statement. The two classifications give rise to six types of independence and corresponding
influence as set out in Table 1.
To illustrate, X1 (t) is strongly, conditionally, and globally independent of X2 (t)
given X3 (t), if

P (X1(∞, t]|X1(t,−∞], X2(t,−∞], X3(t,−∞]) = P (X1(∞, t]|X1(t,−∞], X3(t,−∞])
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Table 1: Types of Influence defined by absence of the corresponding independence relations.
See text for acronym definitions.

Strong
(Probability Distribution)

Weak
(Expectation)

Global
( All horizons)

By absence of
strong, conditional, global
independence:
X2 (t)SCGi X1 (t)||X3 (t)

By absence of
weak, conditional, global
independence:
X2 (t)WCGi X1 (t)||X3 (t)

Local
(Immediate future)

By absence of
strong, conditional, local
independence:
X2 (t)SCLi X1 (t)||X3 (t)

By absence of
weak, conditional, local in-
dependence:
X2 (t)WCLi X1 (t)||X3 (t)

Contemporaneous By absence of
strong, conditional, con-
temporaneous indepen-
dence:
X2 (t)SCCi X1 (t)||X3 (t)

By absence of
weak, conditional, con-
temporaneous indepen-
dence:
X2 (t)WCCi X1 (t)||X3 (t)

That is: the probability distribution of the future values of X1 does not depend on the past
of X2, given that the influence of the past of both X1 and X3 has been taken into account.
When this condition does not hold we say X2 (t) strongly, conditionally, and globally
influences (SCGi) X1 (t) given X3 (t). Here we use a convention for intervals [a,b) which
indicates that the left endpoint is included but not the right and that b precedes a. Note that
the whole future of Xt is included (hence the term “global”). And the whole past of all time
series is considered. This means these definitions accommodate non-Markovian processes
(for Markovian processes, we only consider the previous time point). Furthermore, these
definitions do not depend on an assumption of linearity or any given functional relationship
between time series. Note also that this definition is appropriate for point processes, discrete
and continuous time series, even for categorical (qualitative valued) time series. The only
problem with this formulation is that it calls on the whole probability distribution and
therefore its practical assessment requires the use of measures such as mutual information
that estimate the probability densities nonparametrically.
As an alternative, weak concepts of influence can be defined based on expectations.

Consider weak conditional local independence in discrete time, which is defined:

E [X1 [t+Δt]|X1[t,−∞] , X2[t,−∞], X3[t,−∞]] = E [X1 [t+Δt]|X1[t,−∞], X3[t,−∞]]
(7)

When this condition does not hold we say X2 weakly, conditionally and locally in-
fluences (WCLi) X1 given X3. To make the implementation this definition insightful,

75



Roebroeck Seth Valdes-Sosa

consider a discrete first-order vector auto-regressive (VAR) model for X = [X1X2X3]:

X [t+Δt] = AX [t] + e [t+Δt] (8)

For this case E [X[t+Δt]|X[t,−∞]] = AX [t], and analyzing influence reduces to finding
which of the autoregressive coefficients are zero. Thus, many proposed operational tests of
WAGS influence, particularly in fMRI analysis, have been formulated as tests of discrete
autoregressive coefficients, although not always of order 1. Within the same model one can
operationalize weak conditional instantaneous independence in discrete time as zero
off-diagonal entries in the co-variance matrix of the innovations e[t]:

Σe = cov [X [t+Δt] |X [t,−∞]] = E
[
X [t+Δt]X ′ [t+Δt] |X [t,−∞]

]

In comparison weak conditional local independence in continuous time is defined:

E [Y1[t]|Y1(t,−∞], Y2(t,−∞], Y3(t,−∞]] = E [Y1[t]|Y1(t,−∞], Y3(t,−∞]] (9)

Now consider a first-order stochastic differential equation (SDE) model for Y = [Y1Y2Y3]:

dY = BY dt+ dω (10)

Then, since ω is a Wiener process with zero-mean white Gaussian noise as a derivative,
E [Y [t]|Y (t,−∞]] = B Y (t)and analysing influence amounts to estimating the parameters
B of the SDE. However, if one were to observe a discretely sampled versionX[k] = Y (kΔt)
at sampling interval Δtand model this with the discrete autoregressive model above, this
would be inadequate to estimate the SDE parameters for large Δt, since the exact relations
between continuous and discrete system matrices are known to be:

A = eBΔt = I+
∞∑

i=1

Δti

i! B
i

Σe =
∫ t+Δt
t eBs

∑
ω e
Bsds

(11)

The power series expansion of the matrix exponential in the first line shows A to be a
weighted sum of successive matrix powers Biof the continuous time system matrix. Thus,
the Awill contain contributions from direct (in B) and indirect (in i steps inBi) causal links
between the modeled areas. The contribution of the more indirect links is progressively
down-weighted with the number of causal steps from one area to another and is smaller
when the sampling interval Δt is smaller. This makes clear that multivariate discrete
signal models have some undesirable properties for coarsely sampled signals (i.e. a large
Δt with respect to the system dynamics), such as fMRI data. Critically, entirely ruling
out indirect influences is not actually achieved merely by employing a multivariate discrete
model. Furthermore, estimated WAGS influence (particularly the relative contribution of
indirect links) is dependent on the employed sampling interval. However, the discrete system
matrix still represents the presence and direction of influence, possibly mediated through
other regions.
When the goal is to estimate WAGS influence for discrete data starting from a continuous

time model, one has to model explicitly the mapping to discrete time. Mapping continu-
ous time predictions to discrete samples is a well known topic in engineering and can be
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solved by explicit integration over discrete time steps as performed in (11) above. Although
this defines the mapping from continuous to discrete parameters, it does not solve the re-
verse assignment of estimating continuous model parameters from discrete data. Doing so
requires a solution to the aliasing problem (Mccrorie, 2003) in continuous stochastic sys-
tem identification by setting sufficient conditions on the matrix logarithm function to make
Babove identifiable (uniquely defined) in terms of A. Interesting in this regard is a line
of work initiated by Bergstrom (Bergstrom, 1966, 1984) and Phillips (Phillips, 1973, 1974)
studying the estimation of continuous time Autoregressive models (McCrorie, 2002), and
continuous time Autoregressive Moving Average Models (Chambers and Thornton, 2009)
from discrete data. This work rests on the observation that the lag zero covariance matrix
Σewill show contemporaneous covariance even if the continuous covariance matrix Σω is
diagonal. In other words, the discrete noise becomes correlated over the discrete time-series
because the random fluctuations are aggregated over time. Rather than considering this a
disadvantage, this approach tries to use both lag information (the AR part) and zero-lag
covariance information to identify the underlying continuous linear model.
Notwithstanding the desirability of a continuous time model for consistent inference on

WAGS influence, there are a few invariances of discrete VAR models, or more generally
discrete Vector Autoregressive Moving Average (VARMA) models that allow their carefully
qualified usage in estimating causal influence. The VAR formulation of WAGS influence
has the property of invariance under invertible linear filtering. More precisely, a general
measure of influence remains unchanged if channels are each pre-multiplied with different
invertible lag operators (Geweke, 1982). However, in practice the order of the estimated
VAR model would need to be sufficient to accommodate these operators. Beyond invert-
ible linear filtering, a VARMA formulation has further invariances. Solo (2006) showed
that causality in a VARMA model is preserved under sampling and additive noise. More
precisely, if both local and contemporaneous influence is considered (as defined above) the
VARMA measure is preserved under sampling and under the addition of independent but
colored noise to the different channels. Finally, Amendola et al. (2010) shows the class of
VARMA models to be closed under aggregation operations, which include both sampling
and time-window averaging.

3.2. State-space models

A general state-space model for a continuous vector time-series y (t)can be formulated with
the set of equations:

ẋ (t) = f (x (t) , v (t) ,Θ) + ω (t)
y (t) = g (x (t) , v (t) ,Θ) + ε (t)

(12)

This expresses the observed time-series y (t)as a function of the state variables x (t), which
are possibly hidden (i.e. unobserved) and observed exogenous inputs v (t), which are pos-
sibly under control. All parameters in the model are grouped into Θ. Note that some
generality is sacrificed from the start since fand gdo not depend on t (The model is au-
tonomous and generates stationary processes) or on ω (t) or ε (t), that is: noise enters only
additively. The first set of equations, the transition equations or state equations, describe
the evolution of the dynamic system over time in terms of stochastic differential equations
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(SDEs, though technically only when ω (t) = Σẇ (t) with w (t) a Wiener process), capturing
relations among the hidden state variables x (t) themselves and the influence of exogenous
inputs v (t). The second set of equations, the observation equations or measurement equa-
tions, describe how the measurement variables y (t) are obtained from the instantaneous
values of the hidden state variables x (t) and the inputs v (t). In fMRI experiments the
exogenous inputs v (t) mostly reflect experimental control and often have the form of a sim-
ple indicator function that can represent, for instance, the presence or absence of a visual
stimulus. The vector-functions fand g can generally be non-linear.
The state-space formalism allows representation of a very large class of stochastic pro-

cesses. Specifically, it allows representation of both so-called ‘black-box ’ models, in which
parameters are treated as means to adjust the fit to the data without reflecting physically
meaningful quantities, and ‘grey-box ’ models, in which the adjustable parameters do have
a physical or physiological (in the case of the brain) interpretation. A prominent example
of a black-box model in econometric time-series analysis and systems identification is the
(discrete) Vector Autoregressive Moving Average model with exogenous inputs (VARMAX
model) defined as (Ljung, 1999; Reinsel, 1997):

F (B) yt = G (B) vt + L (B) et ⇔∑p
i=0 Fiyt−i =

∑s
j=0Gjvt−j +

∑q
k=0 Lket−k

(13)

Here, the backshift operator B is defined, for any ηt as B
iηt = ηt−i and F , G and L are

polynomials in the backshift operator, such that e.g. F (B) =
∑p
i=0 FiB

i and p, s and q are
the dynamic orders of the VARMAX(p,s,q) model. The minimal constraints on (13) to make
it identifiable are F0 = L0 = I, which yields the standard VARMAX representation. The
VARMAX model and its various reductions (by use of only one or two of the polynomials,
e.g. VAR, VARX or VARMA models) have played a large role in time-series prediction and
WAGS influence modeling. Thus, in the context of state space models it is important to
consider that the VARMAX model form can be equivalently formulated in a discrete linear
state space form:

xk+1 = Axk +Bvk +Kek
yk = Cxk +Dvk + ek

(14)

In turn the discrete linear state space form can be explicitly accommodated by the contin-
uous general state-space framework in (12) when we define:

f (x (t) , v (t) ,Θ) ' Fx (t) +Gv (t)
g (x (t) , v (t) ,Θ) ' Hx (t) +Dv (t)

ω (t) = K̃ε (t)

Θ =
{
F,G,H,D, K̃,Σe

} (15)

Again, the exact relations between the discrete and continuous state space parameter ma-
trices can be derived analytically by explicit integration over time (Ljung, 1999). And, as
discussed above, wherever discrete data is used to model continuous influence relations the
problems of temporal aggregation and aliasing have to be taken into account.
Although analytic solutions for the discretely sampled continuous linear systems exist, the

discretization of the nonlinear stochastic model (12) does not have a unique global solution.
However, physiological models of neuronal population dynamics and hemodynamics are
formulated in continuous time and are mostly nonlinear while fMRI data is inherently
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discrete with low sampling frequencies. Therefore, it is the discretization of the nonlinear
dynamical stochastic models that is especially relevant to causal analysis of fMRI data.
A local linearization approach was proposed by (Ozaki, 1992) as bridge between discrete
time series models and nonlinear continuous dynamical systems model. Considering the
nonlinear state equation without exogenous input:

ẋ (t) = f (x (t)) + ω (t) . (16)

The essential assumption in local linearization (LL) of this nonlinear system is to consider

the Jacobian matrix J (l,m) = ∂fl(X)
∂Xm

as constant over the time period [t+Δt, t]. This
Jacobian plays the same role as the autoregressive matrix in the linear systems above.
Integration over this interval gives the solution:

xk+1 = xk + J
−1(eJΔt − I) f (xk) + ek+1 (17)

where I is the identity matrix. Note integration should not be computed this way since
it is numerically unstable, especially when the Jacobian is poorly conditioned. A list of
robust and fast procedures is reviewed in (Valdes-Sosa et al., 2009). This solution is locally
linear but crucially it changes with the state at the beginning of each integration interval;
this is how it accommodates nonlinearity (i.e., a state-dependent autoregression matrix).
As above, the discretized noise shows instantaneous correlations due to the aggregation of
ongoing dynamics within the span of a sampling period. Once again, this highlights the
underlying mechanism for problems with temporal sub-sampling and aggregation for some
discrete time models of WAGS influence.

4. Dynamic causality in fMRI connectivity analysis

Two streams of developments have recently emerged that make use of the temporal dy-
namics in the fMRI signal to analyse directed influence (effective connectivity): Granger
causality analysis (GCA; Goebel et al., 2003; Roebroeck et al., 2005; Valdes-Sosa, 2004) in
the tradition of time series analysis and WAGS influence on the one hand, and Dynamic
Causal Modeling (DCM; Friston et al., 2003) in the tradition of system control on the other
hand. As we will discuss in the final section, these approaches have recently started devel-
oping into an integrated single direction. However, initially each was focused on separate
issues that pose challenges for the estimation of causal influence from fMRI data. Whereas
DCM is formulated as an explicit grey box state space model to account for the temporal
convolution of neuronal events by sluggish hemodynamics, GCA analysis has been mostly
aimed at solving the problem of region selection in the enormous dimensionality of fMRI
data.

4.1. Hemodynamic deconvolution in a state space approach

While having a long history in engineering, state space modeling was only introduced re-
cently for the inference of neural states from neuroimaging signals. The earliest attempts
targeted estimating hidden neuronal population dynamics from scalp-level EEG data (Her-
nandez et al., 1996; Valdes-Sosa et al., 1999). This work first advanced the idea that state
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space models and appropriate filtering algorithms are an important tool to estimate the
trajectories of hidden neuronal processes from observed neuroimaging data if one can for-
mulate an accurate model of the processes leading from neuronal activity to data records.
A few years later, this idea was robustly transferred to fMRI data in the form of DCM
(Friston et al., 2003). DCM combines three ideas about causal influence analysis in fMRI
data (or neuroimaging data in general), which can be understood in terms of the discussion
of the fMRI signal and state space models above (Daunizeau et al., 2009a).
First, neuronal interactions are best modeled at the level of unobserved (latent) signals,

instead of at the level of observed BOLD signals. This requires a state space model with a
dynamic model of neuronal population dynamics and interactions. The original model that
was formulated for the dynamics of neuronal states x = {x1, . . . , xN} is a bilinear ODE
model:

ẋ = Ax+
∑
vjB

jx+Cv (18)

That is, the noiseless neuronal dynamics are characterized by a linear term (with entries in
A representing intrinsic coupling between populations), an exogenous term (with C repre-
senting driving influence of experimental variables) and a bilinear term (with Bj represent-
ing the modulatory influence of experimental variables on coupling between populations).
More recent work has extended this model, e.g. by adding a quadratic term (Stephan et al.,
2008), stochastic dynamics (Daunizeau et al., 2009b) or multiple state variables per region
(Marreiros et al., 2008).
Second, the latent neuronal dynamics are related to observed data by a generative (for-

ward) model that accounts for the temporal convolution of neuronal events by slow and
variably delayed hemodynamics. This generative forward model in DCM for fMRI is ex-
actly the (simplified) balloon model set out in section 2. Thus, for every selected region
a single state variable represents the neuronal or synaptic activity of a local population of
neurons and (in DCM for BOLD fMRI) four or five more represent hemodynamic quanti-
ties such as capillary blood volume, blood flow and deoxy-hemoglobin content. All state
variables (and the equations governing their dynamics) that serve the mapping of neuronal
activity to the fMRI measurements (including the observation equation) can be called the
observation model. Most of the physiologically motivated generative model in DCM for
fMRI is therefore concerned with an observation model encapsulating hemodynamics. The
parameters in this model are estimated conjointly with the parameters quantifying neuronal
connectivity. Thus, the forward biophysical model of hemodynamics is ‘inverted’ in the es-
timation procedure to achieve a deconvolution of fMRI time series and obtain estimates of
the underlying neuronal states. DCM has also been applied to EEG/MEG, in which case
the observation model encapsulates the lead-field matrix from neuronal sources to EEG
electrodes or MEG sensors (Kiebel et al., 2009).
Third, the approach to estimating the hidden state trajectories (i.e. filtering and smooth-

ing) and parameter values in DCM is cast in a Bayesian framework. In short, Bayes’ theorem
is used to combine priors p(Θ|M)and likelihood p (y|Θ,M)into the marginal likelihood or
evidence:

p (y|M) =
∫
p (y|Θ,M) p (Θ|M) dΘ (19)
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Here, the modelM is understood to define the priors on all parameters and the likelihood
through the generative models for neuronal dynamics and hemodynamics. A posterior
for the parameters p (Θ|y,M) can be obtained as the distribution over parameters which
maximizes the evidence (19). Since this optimization problem has no analytic solution
and is intractable with numerical sampling schemes for complex models, such as DCM,
approximations must be used. The inference approach for DCM relies on variational Bayes
methods (Beal, 2003) that optimize an approximation density q(Θ) to the posterior. The
approximation density is taken to have a Gaussian form, which is often referred to as the
“Laplace approximation” (Friston et al., 2007). In addition to the approximate posterior on
the parameters, the variational inference will also result into a lower bound on the evidence,
sometimes referred to as the “free energy”. This lower bound (or other approximations
to the evidence, such as the Akaike Information Criterion or the Bayesian Information
Criterion) are used for model comparison (Penny et al., 2004). Importantly, these quantities
explicitly balance goodness-of-it against model complexity as a means of avoiding overfitting.
An important limiting aspect of DCM for fMRI is that the models M that are compared

also (implicitly) contain an anatomical model or structural model that contains i) a selection
of the ROIs in the brain that are assumed to be of importance in the cognitive process or
task under investigation, ii) the possible interactions between those structures and iii) the
possible effects of exogenous inputs onto the network. In other words, each model M
specifies the nodes and edges in a directed (possibly cyclic) structural graph model. Since
the anatomical model also determines the selected part y of the total dataset (all voxels)
one cannot use the evidence to compare different anatomical models. This is because the
evidence of different anatomical models is defined over different data. Applications of DCM
to date invariably use very simple anatomical models (typically employing 3-6 ROIs) in
combination with its complex parameter-rich dynamical model discussed above. The clear
danger with overly simple anatomical models is that of spurious influence: an erroneous
influence found between two selected regions that in reality is due to interactions with
additional regions which have been ignored. Prototypical examples of spurious influence,
of relevance in brain connectivity, are those between unconnected structures A and B that
receive common input from, or are intervened by, an unmodeled region C.

4.2. Exploratory approaches for model selection

Early applications of WAGS influence to fMRI data were aimed at counteracting the prob-
lems with overly restrictive anatomical models by employing more permissive anatomical
models in combination with a simple dynamical model (Goebel et al., 2003; Roebroeck
et al., 2005; Valdes-Sosa, 2004). These applications reflect the observation that estimation
of mathematical models from time-series data generally has two important aspects: model
selection and model identification (Ljung, 1999). In the model selection stage a class of
models is chosen by the researcher that is deemed suitable for the problem at hand. In the
model identification stage the parameters in the chosen model class are estimated from the
observed data record. In practice, model selection and identification often occur in a some-
what interactive fashion where, for instance, model selection can be informed by the fit of
different models to the data achieved in an identification step. The important point is that
model selection involves a mixture of choices and assumptions on the part of the researcher
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and the information gained from the data-record itself. These considerations indicate that
an important distinction must be made between exploratory and confirmatory approaches,
especially in structural model selection procedures for brain connectivity. Exploratory tech-
niques use information in the data to investigate the relative applicability of many models.
As such, they have the potential to detect ‘missing’ regions in structural models. Confirma-
tory approaches, such as DCM, test hypotheses about connectivity within a set of models
assumed to be applicable. Sources of common input or intervening causes are taken into
account in a multivariate confirmatory model, but only if the employed structural model
allows it (i.e. if the common input or intervening node is incorporated in the model).
The technique of Granger Causality Mapping (GCM) was developed to explore all re-

gions in the brain that interact with a single selected reference region using autoregressive
modeling of fMRI time-series (Roebroeck et al., 2005). By employing a simple bivariate
model containing the reference region and, in turn, every other voxel in the brain, the
sources and targets of influence for the reference region can be mapped. It was shown that
such an ‘exploratory’ mapping approach can form an important tool in structural model
selection. Although a bivariate model does not discern direct from indirect influences, the
mapping approach locates potential sources of common input and areas that could act as
intervening network nodes. In addition, by settling for a bivariate model one trivially avoids
the conflation of direct and indirect influences that can arise in discrete AR model due to
temporal aggregation, as discussed above. Other applications of autoregressive modeling to
fMRI data have considered full multivariate models on large sets of selected brain regions,
illustrating the possibility to estimate high-dimensional dynamical models. For instance,
Valdes-Sosa (2004) and Valdes-Sosa et al. (2005b) applied these models to parcellations of
the entire cortex in conjunction with sparse regression approaches that enforce an implicit
structural model selection within the set of parcels. In another more recent example (Desh-
pande et al., 2008) a full multivariate model was estimated over 25 ROIs (that were found to
be activated in the investigated task) together with an explicit reduction procedure to prune
regions from the full model as a structural model selection procedure. Additional variants
of VAR model based causal inference that has been applied to fMRI include time vary-
ing influence (Havlicek et al., 2010), blockwise (or ‘cluster-wise’) influence from one group
of variables to another (Barrett et al., 2010; Sato et al., 2010) and frequency-decomposed
influence (Sato et al., 2009).
The initial developments in autoregressive modeling of fMRI data led to a number of

interesting applications studying human mental states and cognitive processes, such as
gestural communication (Schippers et al., 2010), top-down control of visual spatial atten-
tion (Bressler et al., 2008), switching between executive control and default-mode networks
(Sridharan et al., 2008), fatigue (Deshpande et al., 2009) and the resting state (Uddin
et al., 2009). Nonetheless, the lack of AR models to account for the varying hemodynamics
convolving the signals of interest and aggregation of dynamics between time samples has
prompted a set of validation studies evaluating the conditions under which discrete AR
models can provide reliable connectivity estimates. In (Roebroeck et al., 2005) simulations
were performed to validate the use of bivariate AR models in the face of hemodynamic con-
volution and sampling. They showed that under these conditions (even without variability
in hemodynamics) AR estimates for a unidirectional influence are biased towards inferring
bidirectional causality, a well known problem when dealing with aggregated time series
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(Wei, 1990). They then went on to show that instead unbiased non-parametric inference
for bivariate AR models can be based on a difference of influence terms (X → Y −Y → X).
In addition, they posited that inference on such influence estimates should always include
experimental modulation of influence, in order to rule out hemodynamic variation as an
underlying reason for spurious causality. In Deshpande et al. (2010) the authors simulated
fMRI data by manipulating the causal influence and neuronal delays between local field
potentials (LFPs) acquired from the macaque cortex and varying the hemodynamic delays
of a convolving hemodynamic response function and the signal-to-noise ratio (SNR) and
the sampling period of the final simulated fMRI data. They found that in multivariate
(4 dimensional) simulations with hemodynamic and neuronal delays drawn from a uniform
random distribution correct network detection from fMRI was well above chance and was
up to 90% under conditions of fast sampling and low measurement noise. Other studies
confirmed the observation that techniques with intermediate temporal resolution, such as
fMRI, can yield good estimates of the causal connections based on AR models (Stevenson
and Kording, 2010), even in the face of variable hemodynamics (Ryali et al., 2010). However,
another recent simulation study, investigating a host of connectivity methods concluded low
detection performance of directed influence by AR models under general conditions (Smith
et al., 2010).

4.3. Toward integrated models

David et al. (2008) aimed at direct comparison of autoregressive modeling and DCM for
fMRI time series and explicitly pointed at deconvolution of variable hemodynamics for
causality inferences. The authors created a controlled animal experiment where gold stan-
dard validation of neuronal connectivity estimation was provided by intracranial EEG
(iEEG) measurements. As discussed extensively in Friston (2009b) and Roebroeck et al.
(2009a) such a validation experiment can provide important information on best practices
in fMRI based brain connectivity modeling that, however, need to be carefully discussed
and weighed. In David et al.’s study, simultaneous fMRI, EEG, and iEEG were measured in
6 rats during epileptic episodes in which spike-and-wave discharges (SWDs) spread through
the brain. fMRI was used to map the hemodynamic response throughout the brain to seizure
activity, where ictal and interictal states were quantified by the simultaneously recorded
EEG. Three structures were selected by the authors as the crucial nodes in the network
that generates and sustains seizure activity and further analysed with i) DCM, ii) simple AR
modeling of the fMRI signal and iii) AR modeling applied to neuronal state-variable esti-
mates obtained with a hemodynamic deconvolution step. By applying G-causality analysis
to deconvolved fMRI time-series, the stochastic dynamics of the linear state-space model are
augmented with the complex biophysically motivated observation model in DCM. This step
is crucial if the goal is to compare the dynamic connectivity models and draw conclusions on
the relative merits of linear stochastic models (explicitly estimating WAGS influence) and
bilinear deterministic models. The results showed both AR analysis after deconvolution and
DCM analysis to be in accordance with the gold-standard iEEG analyses, identifying the
most pertinent influence relations undisturbed by variations in HRF latencies. In contrast,
the final result of simple AR modeling of the fMRI signal showed less correspondence with
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the gold standard, due to the confounding effects of different hemodynamic latencies which
are not accounted for in the model.
Two important lessons can be drawn from David et al.’s study and the ensuing dis-

cussions (Bressler and Seth, 2010; Daunizeau et al., 2009a; David, 2009; Friston, 2009b,a;
Roebroeck et al., 2009a,b). First, it confirms again the distorting effects of hemodynamic
processes on the temporal structure of fMRI signals and, more importantly, that the dif-
ference in hemodynamics in different parts of the brain can form a confound for dynamic
brain connectivity models (Roebroeck et al., 2005). Second, state-space models that em-
body observation models that connect latent neuronal dynamics to observed fMRI signals
have a potential to identify causal influence unbiased by this confound. As a consequence,
substantial recent methodological work has aimed at combining different models of latent
neuronal dynamics with a form of a hemodynamic observation model in order to provide an
inversion or filtering algorithm for estimation of parameters and hidden state trajectories.
Following the original formulation of DCM that provides a bilinear ODE form for the hidden
neuronal dynamics, attempts have been made at explicit integration of hemodynamics con-
volution with stochastic dynamic models that are interpretable in the framework of WAGS
influence.
For instance in (Ryali et al., 2010), following earlier work (Penny et al., 2005; Smith

et al., 2009), a discrete state space model with a bi-linear vector autoregressive model to
quantify dynamic neuronal state evolution and both intrinsic and modulatory interactions
is proposed:

xk = Axk−1 +
∑
j=1 v

j
kB
jxk−1 +Cv

j
k + εk

xmk =
[
xmk , x

m
k−1, ∙ ∙ ∙ , x

m
k−L+1

]

ymk = β
mΦxmk + e

m
k

(20)

Here, we index exogenous inputs with j and ROIs with min superscripts. The entries in the
autoregressive matrix A, exogenous influence matrix C and bi-linear matrices Bjhave the
same interpretation as in deterministic DCM. The relation between observed BOLD-fMRI
data yand latent neuronal sources x is modeled by a temporal embedding of into xmfor
each region or ROI m. This allows convolution with a flexible basis function expansion
of possible HRF shapes to be represented by a simple matrix multiplication βmΦxmk in the
observation equation. Here Φ contains the temporal basis functions in Figure 2B and βm

the basis function parameters to be estimated. By estimating basis function parameters
individually per region, variations in the HRF shape between region can be accounted for
and the confounding effects of these on WAGS influence estimate can be avoided. Ryali et al.
found that robust estimates of parameters Θ =

{
A,Bj ,C, βm,Σε,Σe

}
and states xk can be

obtained from a variational Bayesian approach. In their simulations, they show that a state-
space model with interactions modeled at the latent level can compensate well for the effects
of HRF variability, even when relative HRF delays are opposed to delayed interactions.
Note, however, that subsampling of the BOLD signal is not explicitly characterized in their
state-space model.
A few interesting variations on this discrete state-space modeling have recently been

proposed. For instance in (Smith et al., 2009) a switching linear systems model for latent
neuronal state evolution, rather than a bi-linear model was used. This model represents
experimental modulation of connections as a random variable, to be learned from the data.
This variable switches between different linear system instantiations that each characterize
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connectivity in a single experimental condition. Such a scheme has the important advantage
that an n-fold cross validation approach can be used to obtain a measure of absolute model-
evidence (rather than relative between a selected set of models). Specifically, one could
learn parameters for each context-specific linear system with knowledge of the timing of
changing experimental conditions in a training data set. Then the classification accuracy
of experimental condition periods in a test data set based on connectivity will provide a
absolute model-fit measure, controlled for model complexity, which can be used to validate
overall usefulness of the fitted model. In particular, this can point to important brain
regions missing from the model incase of poor classification accuracy.
Another related line of developments instead has involved generalizing the ODE models

in DCM for fMRI to stochastic dynamic models formulated in continuous time (Daunizeau
et al., 2009b; Friston et al., 2008). An early exponent of this approach used local lineariza-
tion in a (generalized) Kalman filter to estimate states and parameters in a non-linear SDE
models of hemodynamics (Riera et al., 2004). Interestingly, the inclusion of stochastics in
the state equations makes inference on coupling parameters of such models usefully inter-
pretable in the framework of WAGS influence. This hints at the ongoing convergence, in
modeling of brain connectivity, of time series approaches to causality in a discrete time tra-
dition and dynamic systems and control theory approaches in a continuous time tradition.

5. Discussion and Outlook

The modeling of an enormously complex biological system such as the brain has many
challenges. The abstractions and choices to be made in useful models of brain connectivity
are therefore unlikely to be accommodated by one single ‘master’ model that does better
than all other models on all counts. Nonetheless, the ongoing development efforts towards
improved approaches are continually extending and generalizing the contexts in which dy-
namic time series models can be applied. It is clear that state space modeling and inference
on WAGS influence are fundamental concepts within this endeavor. We end here with some
considerations of dynamic brain connectivity models that summarize some important points
and anticipate future developments.
We have emphasized that WAGS influence models of brain connectivity have largely been

aimed at data driven exploratory analysis, whereas biophysically motivated state space mod-
els are mostly used for hypothesis-led confirmatory analysis. This is especially relevant in
the interaction between model selection and model identification. Exploratory techniques
use information in the data to investigate the relative applicability of many models. As
such, they have the potential to detect ‘missing’ regions in anatomical models. Confirma-
tory approaches test hypotheses about connectivity within a set of models assumed to be
applicable.
As mentioned above, the WAGS influence approach to statistical analysis of causal influ-

ence that we focused on here is complemented by the interventional approach rooted in the
theory of graphical models and causal calculus. Graphical causal models have been recently
applied to brain connectivity analysis of fMRI data (Ramsey et al., 2009). Recent work
combining the two approaches (White and Lu, 2010) possibly leads the way to a combined
causal treatment of brain imaging data incorporating dynamic models and interventions.
Such a combination could enable incorporation of direct manipulation of brain activity by
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(for example) transcranial magnetic stimulation (Pascual-Leone et al., 2000; Paus, 1999;
Walsh and Cowey, 2000) into the current state space modeling framework.
Causal models of brain connectivity are increasingly inspired by biophysical theories.

For fMRI this is primarily applicable in modeling the complex chain of events separating
neuronal population activity from the BOLD signal. Inversion of such a model (in state
space form) by a suitable filtering algorithm amounts to a model-based deconvolution of
the fMRI signal resulting in an estimate of latent neuronal population activity. If the
biophysical model is appropriately formulated to be identifiable (possibly including priors
on relevant parameters), it can take variation in the hemodynamics between brain regions
into account that can otherwise confound time series causality analyses of fMRI signals.
Although models of hemodynamics for causal fMRI analysis have reached a reasonable
level of complexity, the models of neuronal dynamics used to date have remained simple,
comprising one or two state variables for an entire cortical region or subcortical structure.
Realistic dynamic models of neuronal activity have a long history and have reached a high
level of sophistication (Deco et al., 2008; Markram, 2006). It remains an open issue to what
degree complex realistic equation systems can be embedded in analysis of fMRI – or in fact:
any brain imaging modality – and result in identifiable models of neuronal connectivity and
computation.
Two recent developments create opportunities to increase complexity and realism of neu-

ronal dynamics models and move the level of modeling from the macroscopic (whole brain ar-
eas) towards the mesoscopic level comprising sub-populations of areas and cortical columns.
First, the fusion of multiple imaging modalities, possibly simultaneously recorded, has re-
ceived a great deal of attention. Particularly, several attempts to model-driven fusion of
simultaneousy recorded fMRI and EEG data, by inverting a separate observation model
for each modality while using the same underlying neuronal model, have been reported
(Deneux and Faugeras, 2010; Riera et al., 2007; Valdes-Sosa et al., 2009). This approach
holds great potential to fruitfully combine the superior spatial resolution of fMRI with the
superior temporal resolution of EEG. In (Valdes-Sosa et al., 2009) anatomical connectivity
information obtained from diffusion tensor imaging and fiber tractography is also incorpo-
rated. Second, advances in MRI technology, particularly increases of main field strength to
7T (and beyond) and advances in parallel imaging (de Zwart et al., 2006; Heidemann et al.,
2006; Pruessmann, 2004; Wiesinger et al., 2006), greatly increase the level spatial detail
that are accessible with fMRI. For instance, fMRI at 7T with sufficient spatial resolution to
resolve orientation columns in human visual cortex has been reported (Yacoub et al., 2008).
The development of state space models for causal analysis of fMRI data has moved from

discrete to continuous and from deterministic to stochastic models. Continuous models
with stochastic dynamics have desirable properties, chief among them a robust inference
on causal influence interpretable in the WAGS framework, as discussed above. However,
dealing with continuous stochastic models leads to technical issues such as the properties and
interpretation of Wiener processes and Ito calculus (Friston, 2008). A number of inversion or
filtering methods for continuous stochastic models have been recently proposed, particularly
for the goal of causal analysis of brain imaging data, including the local linearization and
innovations approach (Hernandez et al., 1996; Riera et al., 2004), dynamic expectation
maximization (Friston et al., 2008) and generalized filtering (Friston et al., 2010). The
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ongoing development of these filtering methods, their validation and their scalability towards
large numbers of state variables will be a topic of continuing research.
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