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Abstract
Recent works in high-dimensional model-predictive control and model-based reinforcement learning
with learned dynamics and reward models have resorted to population-based optimization methods,
such as the Cross-Entropy Method (CEM), for planning a sequence of actions. To decide on an
action to take, CEM conducts a search for the action sequence with the highest return according
to the dynamics model and reward. Action sequences are typically randomly sampled from an
unconditional Gaussian distribution and evaluated on the environment. This distribution is iteratively
updated towards action sequences with higher returns. However, this planning method can be very
inefficient, especially for high-dimensional action spaces. An alternative line of approaches optimize
action sequences directly via gradient descent, but are prone to local optima. We propose a method
to solve this planning problem by interleaving CEM and gradient descent steps in optimizing the
action sequence. Our experiments show faster convergence of the proposed hybrid approach, even
for high-dimensional action spaces, avoidance of local minima, and better or equal performance to
CEM. Code accompanying the paper is available here1.

1. Introduction

High-dimensional, nonlinear Model-Predictive Control (MPC) and Model-Based Reinforcement
Learning (MBRL) have seen significant progress over the last years, the task being to first learn a
dynamics and a reward model of the environment and then plan using the learned models. While a
number of recent approaches Hafner et al. (2018); Sharma et al. (2019); Chua et al. (2018); Wang
and Ba (2019) have developed efficient techniques for learning these models in MBRL, fewer
papers Amos and Yarats (2019); Srinivas et al. (2018) have investigated the planning problem.
Instead, many state-of-the-art MBRL approaches perform planning either using the Cross-Entropy
Method (CEM) Rubinstein (1997); Chua et al. (2018); Kobilarov (2012), or via Model-Predictive
Path Integral (MPPI) Williams et al. (2016). Both these approaches are population-based search
heuristics that sample random actions, execute them under the currently learned model, obtain the
sum of rewards, and update the sampling distribution to increase the probability of higher reward
action sequences. In MPC, the first action of the sequence is executed in the environment, the
remaining planned actions are typically discarded, and the search procedure repeats.

1. https://github.com/homangab/gradcem First two authors contributed equally
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Many current MBRL approaches do not leverage gradients through the model, which are cheaply
available, and resort to inefficient optimization, particularly in high dimensions, whereas gradient-
based planning converges faster.

In this paper we combine the two methods, to take advantage of the convergence speed of
gradient-based planning and the broader search, multi-extremum optimization performed by CEM.
Gradient based optimization is one of the main approaches for a number of high-dimensional non-
convex optimization problems in machine learning, yet it has not been widely adopted in planning
problems due to the issue of vanishing or exploding gradients. We investigate situations where
gradient-based planning fails, due to the sensitivity of shooting methods and imperfect models, and
provide a simple way to mitigate it: we interleave CEM steps with gradient-based optimization, so
that the latter can inform the update of the sampling distribution in the former.

2. Preliminaries

In this section we discuss the CEM method, and some of the key issues in gradient-based planning.

2.1. The Cross-Entropy Method for Planning

In model-based reinforcement learning and model predictive control, a model of the environment
and reward is learned from real transitions in the environment. To select an action, MPC searches for
an optimal action sequence under the learned model and executes the first action of that sequence,
discarding the remaining actions. Typically this search is repeated after every step in the real environ-
ment, to account for any prediction errors by the model and to get feedback from the environment. In
many works this planning step is done using the Cross-Entropy Method (CEM) Chua et al. (2018);
Hafner et al. (2018); Wang and Ba (2019); Kobilarov (2012). CEM samples action sequences from a
time-evolving distribution, usually a diagonal Gaussian at:t+H ∼ N (µt:t+H ,diag(σ2

t:t+H)). These
open-loop action sequences are simulated using the learned dynamics model to obtain approximate
resulting state sequences and rewards. By repeatedly sampling random action trajectories, evaluating
them under the model, and re-fitting the sampling distribution to the best K trajectories, a new
Gaussian distribution µt:t+H , σ2

t:t+H of actions for the current time-step is obtained. Convergence
analysis for CEM for rare event simulation is given in Homem-de-Mello and Rubinstein (2002).

Sampling random action sequences in this manner and evaluating the sum of rewards from them
is very costly in practice because it does not leverage any implicit structure in the planning problem,
and does not take advantage of the fact that gradients through the model can in fact be used to direct
the search procedure, instead of naively sampling random action sequences.

2.2. Gradient-Based Planning

Gradient-based methods for planning typically correspond to backpropagating derivatives of a
cumulative loss (or reward) function with respect to actions for updating the sequence of actions
iteratively through gradient descent. In Henaff et al. (2017), the gradients of the cumulative reward
with respect to actions are computed by differentiating through the learned reward and forward
dynamics models. In Srinivas et al. (2018), gradients of the inner loss of the Gradient-Descent
Planner (GDP) with respect to actions are computed in the latent space, by differentiating through a
learned latent forward dynamics model. The ultimate aim is to update actions through an iterative
gradient descent approach:
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Here, H denotes the time-horizon of the episode, a denotes action and s denotes state. One of the
most important drawbacks of gradient descent for non-convex optimization is that the optimization
procedure is only guaranteed to converge to a local optima, not the global optima. In MPC for MBRL,
these planners may converge to sub-optimal plans. In addition, for a long horizon H , there is the
exploding and vanishing gradients problem which must be taken care of during optimization. An
important point to note is that when the action dimension increases, CEM becomes highly inefficient
and requires significantly more optimization epochs due to a blow-up of the search space, whereas
there is only a slight increase (one gradient dimension) in computational burden for gradient descent.
This is because, for optimization CEM utilizes just the aggregate reward which is a one-dimensional
feedback signal per rollout, while gradient-based planning makes use of an D-dimensional feedback
signal, namely the gradient of the cumulative reward with respect to the actions.

3. Approach

Our approach is based on the motivation that in MPC, model gradients should be effectively used for
conducting a more informed search during the planning phase. In the subsequent subsections, we
describe a simple technique for doing this in practice.

3.1. CEM+Gradient Descent

Since gradient descent is prone to getting stuck at local optima and in practice requires sufficiently
different random initializations to alleviate this, we consider a very simple idea - interleave CEM
steps with gradient descent on the samples to locally refine each plan. This method incorporates
gradients through the model, thereby yielding more refined action sequences that can be used to
update the CEM sampling distribution faster. Instead of resampling all plans, we choose to keep the
top K plans from the previous iteration to continue optimizing them via gradient descent.

Let fφ denote the learned dynamics model, rψ the learned reward model, ah the action at time-
step h, sh the state of the environment at time-step h, andH the planning horizon. LetN (µ

(t)
0:H ,Σ

(t)
0:H)

denote the CEM sampling distribution from which action sequences are sampled in the tth CEM
iteration. Here our notation for N , refers to H independent multivariate Gaussian distributions. We
arbitrarily set the parameters (µ

(0)
0:H = 0,Σ

(0)
0:H = I) of this distribution initially. At the beginning of

each CEM iteration, the planner first samples multiple (G) random action sequences:

{(a(t)
0 , ...., a

(t)
H )g}Gg=1 ∼ N (µ

(t)
0:H ,Σ

(t)
0:H)

We next evaluate the cumulative reward obtained from each of these action sequences, under the
current learned dynamics model fφ and the current reward model rψ:

R(t)
g =

H∑
h=1

rψ(s
(t)
h ) s

(t)
h = fφ(s

(t)
h−1, a

(t)
h−1), ∀g = 1, .., G

Here, t indexes the CEM iterations. Now, treating these initial sampled plans as initialization of the
gradient-descent procedure, we perform J steps of gradient descent on all of the sequences. In all of

3



MODEL-PREDICTIVE CONTROL VIA CROSS-ENTROPY AND GRADIENT-BASED OPTIMIZATION

Figure 1: Schematic of the proposed approach. Initial sequences of actions sampled from the CEM sampling distribution
are refined by a few gradient descent updates, denoted by downward arrows. Then the action sequences are evaluated
under the current model. The top K action sequences (i.e. the top K ones with maximum sum of discounted rewards) are
used to refine the CEM sampling distribution from which the actions are sampled. The sampling distribution is typically
assumed to be a Gaussian, and is so for our paper as well.

our experiments to ensure fair comparison to CEM, we set J = 1.

(a
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Then we update the parameters of our proposal (sampling) distribution N (µ
(t+1)
0:H ,Σ

(t+1)
0:H ) to match

the top K updated action sequences:

µ
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Σ
(t+1)
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(t)
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Finally, we replace the bottom G−K action sequences, with samples from the updated proposal
distribution. After T iterations of this, the remaining action sequence with the highest reward is
returned. Our approach is summarized in Algorithm 1.

4. Experiments

Through the experiments we aim to demonstrate the benefits and pitfalls of CEM and gradient
descent, and demonstrate the efficacy of the proposed approach. The gradient-based planner baseline
is hereafter referred to as Grad. This is implemented as SGD (Stochastic Gradient Descent). It
samples G initial samples and separately performs T stochastic gradient steps on them. To better
demonstrate our claims, we created a toy environment, the details of which are described in the next
sub-section. Code for the experiments is available in this repository https://github.com/
homangab/gradcem. Additional experiments in the Appendix and arxiv version.

4.1. Details of the toy environment
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Algorithm 1 Grad+CEM Algorithm (The proposed approach)
Initialize environment transitions data D � {}
for trial m=1 to M do

Train dynamics model s1:H = f(a0:H , s0), reward model r(s1:H) with D
for environment step l=1 to L do

Sample G initial plans {a(0)
0:H}Gg=1 from N (µ

(0)
0:H = 0,Σ

(0)
0:H = I)

Sample a random environment state s0

for CEM iteration t=1 to T do
for gradient descent step j=1 to J do

s
(t)
1:H = f({a(t)

0:H}g, s0)

Calculate model returns for each plan R(t)
g = r(s

(t)
1:H)

Update {a(t)
0:H}Gg=1 by maximizing total model returns via SGD

end
s

(t)
1:H = f({a(t)

0:H}g, s0)

Calculate model returns for each plan R(t)
g = r(s

(t)
1:H)

Sort {a(t)
0:H}Gg=1 based on total model returns {R(t)

g }Gg=1 on step J

Update (µ
(t)
0:H ,Σ

(t)
0:H) to fit the top K action sequences

Replace bottom G−K action sequences with samples from N (µ
(t)
0:H ,Σ

(t)
0:H)

end
Execute first action from the highest model return action sequence
Record real transition in D

end
end

Figure 2: Illustrative diagram of the toy environment. The
black paths are 2D projections of multiple paths of a point
mass. Red denotes high reward and blue denotes low reward
regions. The green circle is an obstacle with soft contact.

To consider the planning problem in isolation,
we created a toy environment in which we have
access to ground truth gradients through the dy-
namics model. The agent controls a mass in
an N dimensional space by applying forces at
each time step. Fig. 2 shows a 2D projection of
the environment. The task is to move towards
high reward regions of the state-space (red re-
gion) from the blue region. The black lines and
dots show 2D projections of multiple rolled out
trajectories starting from the origin. The fluo-
rescent green region denotes an obstacle with
soft contact. The soft contact is modeled as a
repulsive spring force at every time step that in-
creases proportionally to the penetration depth
of the agent into the obstacle. The “hardness” of the contact can be tuned by the spring constant. The
larger the spring constant is, the stronger is the repulsion force. For all the toy environment results,
all the methods used T = 10 number of iterations. To make a fair comparison we set the number of
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(a) Performance of different planners for single obstacle, soft con-
tact case as the environment dimensionality (both states and ac-
tions) is increased.

(b) Multi-object, hard contact two-dimensional case as the number
of obstacles is increased. For simulating hard contact, the spring
constant 10 times larger.

Figure 3: Total reward obtained by CEM vs Grad vs Grad+CEM planners on the toy environment. The total reward
is averaged over 50 runs for each data point and error bars denote the standard deviation of those runs. The error bars
correspond to one standard deviation for optimization with 50 random seeds. Higher is better.

inner gradient steps per iteration J = 1 for Grad+CEM. All methods used G = 20 sampled plans at
each iteration. CEM and Grad+CEM both select the top K = 4 plans at each iteration.

4.2. Results in high dimensions

In the toy environment shown in Fig. 2, we hypothesize that increasing the dimensions of the action
space is likely to deteriorate the performance of a vanilla CEM planner but not of a gradient descent
based planner. Fig. 3a shows a comparative analysis of total reward collected in the environment as
the number of action dimensions are increased from 2 to 20.

There is a significant drop in the performance of the CEM based planner with increasing action
dimensionality. For optimization CEM utilizes just the aggregate reward, which is a one-dimensional
error signal per rollout, while gradient-based planning makes use of a D-dimensional error signal,
namely the gradient.

4.3. When gradient based optimization fails

Fig. 4 shows an experimental scenario that involves multiple obstacles with non-smooth contact (the
spring constant is set 10 times higher). Here it is evident that the purely gradient based approach does
not succeed and gets stuck in some local optima. The main reason for this is that the non-smooth
contact results in discontinuous gradients (e.g. consider the edge of a table. There is a sudden jump
in the magnitude of the gradients when moving from one edge to the other) which make learning
difficult. To alleviate this, we show in Fig. 3b that interleaving CEM and gradient-descent update
steps helps learn better plans. Note that we decrease the size of obstacles as we increase their number
in order to pack them into the same space and that is why it is possible for Grad+CEM to do better as
the number of obstacles increases.
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Figure 4: Illustration of trajectories of different algorithms in the multiple obstacles scenario.

(a) OpenAI Gym Half-Cheetah Brockman et al. (2016) (b) OpenAI Gym Pendulum Brockman et al. (2016)

Figure 5: Variation of rewards at test time during the course of training. OpenAI Gym (a) Pendulum and (b) Half-Cheetah
environments. CEM is the default Planet Hafner et al. (2018) algorithm that plans through CEM. Grad+CEM is the version
of Planet that plans using the proposed Grad+CEM scheme. The error bars correspond to the standard deviation during
evaluation with three random seeds. Higher is better.

4.4. Experiments with Planning over Learned Dynamics Models

In this section, we consider the complete MBRL problem of learning dynamics+reward models and
using the learned models to do planning. In particular, we consider the SOTA Planet Hafner et al.
(2018) model and replace the CEM based planning module with the proposed Grad+CEM approach.
Fig. 5 shows that for two different OpenAI Gym Brockman et al. (2016) environments, Pendulum
and Half-Cheetah, while the default CEM based planning scheme struggles to converge in terms of
the test rewards, incorporating model gradients for planning ensures a quick and reliable convergence.
So, from the experiments we conclude that the Grad+CEM scheme helps in converging to higher
rewards faster, with fewer optimization iterations. For Fig. 5b and Fig. 5a, for a pairwise t-test
between the two variants CEM and Grad+CEM, we respectively obtain p-values 0.019 and 0.004.
Both results are significant at p < 0.05. In Fig. 6 (refer to the Appendix), conducting a pairwise
t-test for (a), (b), (c), and (d), we respectively obtain p-values 0.314, 0.103, 0.121, and 0.136. These
results are not significant at p < 0.05. In the Pendulum environment, the pendulum starts at a random
position, and the goal is to swing it up so that it stays upright. In the Half-Cheetah environment, the
agent gets rewarded for moving a fast as possible and maintaining proper gait (not toppling over). In
both these environments, the input to the policy are high dimensional rendered images, which make
the tasks challenging. Our main conclusions from these experiments are that the hybrid method has
equal or better search performance compared to CEM. The main advantages of the proposed hybrid
method, as shown in Figs. 2, 3, and 4 include faster speed of convergence compared to CEM, when
the dimensionality of the action space increases, as well as broader coverage of local minima than
gradient-based optimization.
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5. Related Works

Our paper is broadly based on the theme of model-based reinforcement learning (MBRL) Chua et al.
(2018); Hafner et al. (2018), where the idea is to learn a dynamics model of the world and plan using
the learned dynamics model. For high dimensional inputs like images, the dynamics are typically
learned in a learnt latent space Hafner et al. (2018). Most current MBRL approaches use some
version of the Cross-Entropy Method (CEM) for doing a random population based search of plans
given the current model Wang and Ba (2019); Hafner et al. (2018). Some papers Sharma et al. (2019)
use other population based search approaches like Model-Predictive Path Integral (MPPI) Williams
et al. (2016) for planning. A recent paper Okada and Taniguchi (2019) discusses how in the control
as inference framework, the two approaches, CEM, and MPPI are very similar, and differ only with
respect to the reward function r(s1:H). Both these random shooting approaches are very costly and
take a long time to converge because they involve sampling random action sequences and evaluating
them under the current model to determine the high performing sequences. Although Wang and Ba
(2019) introduces the idea of performing the CEM search in the parameter space of a distilled policy,
it still is very costly and requires a lot of samples for convergence.

Gradient-descent based optimization methods have been successful in a wide range of machine
learning domains Finn et al. (2017), but for planning, there are very few papers that have been able to
successfully perform gradient-descent based planning. Universal Planning Networks (UPNs) Srinivas
et al. (2018); Bharadhwaj et al. (2019) optimizes action sequences in a latent space such that the
optimized sequence matches expert demonstrations of actions. So the approach requires high quality
expert data, and is based on imitation learning, not end-to-end reinforcement learning. SGD for
model predictive control is also done in Henaff et al. (2017) but without a diverse initialization it can
lead to local optima. Hence the approach is limited to simple grid worlds, and cannot scale to more
challenging robotic tasks Von Stryk and Bulirsch (1992); Diehl et al. (2006).

Direct collocation approaches for control, address some of the ill-conditioning of shooting
methods, and avoid backpropagating the model through time, by parameterizing the state and action
sequences and optimizing both jointly. In this setting, Subbarao and Shippey (2009) propose
initializing the collocation optimization from a solution found by a genetic algorithm similar to
CEM. However, they do not interleave the two optimizations and the collocation method requires
parameterizing state trajectories with analytic functions such as splines.

6. Conclusion

In this paper we investigate the problem of planning and optimization in model predictive control
and in the context of model-based reinforcement learning. We address the scaling problems of the
widely-used, but gradient-free, Cross-Entropy Method, which struggles as the dimensionality of the
environment increases. This is an important issue as we scale these methods to real world control
problems. On the other hand, gradient-descent-based planning is conveniently applicable to high-
dimensional continuous control problems, especially since the learned dynamics models are typically
parameterized by differentiable functions. We show that in environments with many local optima,
pure gradient descent can fail to find an optimal solution, compared to CEM. Combining the strengths
of the two approaches, we propose a simple method that interleaves CEM and gradient descent
updates, and we show that this method scales to higher dimensions and performs at least as well
as CEM on multi-extrema settings, while benefiting from the convergence speed of gradient-based
optimization.
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