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Abstract
This paper proposes an Adaptive Stochastic Model Predictive Control (MPC) strategy for stable
linear time-invariant systems in the presence of bounded disturbances. We consider multi-input,
multi-output systems that can be expressed by a Finite Impulse Response (FIR) model. The param-
eters of the FIR model corresponding to each output are unknown but assumed sparse. We estimate
these parameters using the Recursive Least Squares algorithm. The estimates are then improved us-
ing set-based bounds obtained by solving the Basis Pursuit Denoising Chen et al. (2001) problem.
Our approach is able to handle hard input constraints and probabilistic output constraints. Using
tools from distributionally robust optimization, we reformulate the probabilistic output constraints
as tractable convex second-order cone constraints, which enables us to pose our MPC design task
as a convex optimization problem. The efficacy of the developed algorithm is highlighted with a
thorough numerical example, where we demonstrate performance gain over the counterpart algo-
rithm of Bujarbaruah et al. (2018), which does not utilize the sparsity information of the system
impulse response parameters during control design.
Keywords: Adaptive MPC, Finite Impulse Response, Kalman Filtering, Convex Optimization,
Compressed Sensing.

1. Introduction

The uncertainty in modeling of dynamical systems can be primarily attributed to two factors: (i)
model uncertainty (e.g., modeling mismatch and inaccuracies), and (ii) exogenous disturbances
(e.g., sensor noise). In recent times, utilizing tools from classical Adaptive Control, Adaptive
Model Predictive Control (MPC) Tanaskovic et al. (2014); Lorenzen et al. (2019); Bujarbaruah
et al. (2018); Köhler et al. (2019b) has established itself as a promising approach for control of
uncertain systems subject to input and output constraints. For linear systems specifically, the litera-
ture on Adaptive MPC has extensively focused on either robust or probabilistic satisfaction of such
imposed constraints on the system, using either state-space or input-output modeling.

In Soloperto et al. (2018); Bujarbaruah et al. (2019) additive model uncertainties are considered
with known system matrices, and imposed state and input constraints are robustly satisfied for all
such realizable uncertainties. In Lorenzen et al. (2019); Vicente and Trodden (2019); Köhler et al.
(2019a) robust state-input constraint satisfaction is extended to include both unknown system dy-
namics matrices and additive disturbances. The approach introduced in Bujarbaruah et al. (2019)
is also suited for satisfaction of probabilistic chance constraints on system states. Furthermore, the
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work in Hewing and Zeilinger (2017); Koller et al. (2018) uses Gaussian Process (GP) regression for
real-time learning of an uncertain model and satisfies probabilistic state constraints with a traditional
stochastic MPC Farina et al. (2016) controller. Although such state-space modeling based Adap-
tive MPC controllers have proven to be effective, they involve construction of positive invariant sets
Blanchini (1999), which can become computationally cumbersome. As a consequence, input-output
modeling of systems has been opted in literature for proposing computationally efficient Adaptive
MPC algorithms for certain applications (e.g., for stable, slow systems).

Adaptive MPC algorithms using input-output modeling of the system are presented in Tanaskovic
et al. (2014, 2019); Bujarbaruah et al. (2018); Parsi et al. (2019), both for robust and probabilistic
satisfaction of imposed input-output constraints. The works of Tanaskovic et al. (2014, 2019); Parsi
et al. (2019) deal with modeling errors in the Finite Impulse Response (FIR) domain, in the presence
of a bounded additive disturbance, and prove recursive feasibility and stability (Borrelli et al., 2017,
Chapter 12) of the proposed robust Adaptive MPC approaches. These ideas are extended in Bujar-
baruah et al. (2018), where a recursively feasible adaptive stochastic MPC algorithm is presented,
demonstrating satisfaction of probabilistic output constraints and hard input constraints. The pro-
posed approach in Bujarbaruah et al. (2018) obtains a better performance compared to Tanaskovic
et al. (2014) measured in terms of closed-loop cost, owing to the allowance of output constraint
violations with a certain (low) probability.

In this paper, we build on the work of Bujarbaruah et al. (2018), and propose an Adaptive
Stochastic MPC algorithm that similarly considers probabilistic output constraints and hard input
constraints for a Multi Input Multi Output (MIMO) system. Similar to Bujarbaruah et al. (2018),
we consider an uncertain FIR model of the system that is subject to bounded disturbances with
known mean and variance. The support for the set of all possible models, which we call the Fea-
sible Parameter Set (FPS), is adapted at each timestep using a set membership based approach. In
contrast to Bujarbaruah et al. (2018), we additionally consider that the impulse response parameters
corresponding to each output are sparse. Such sparse impulse response modeling can be motivated
by Benesty et al. (2006); Etter (1985) for MIMO systems. Our goal is to utilize this additional spar-
sity information to demonstrate performance improvement over the algorithm in Bujarbaruah et al.
(2018). Our main contributions can be summarized as follows:

• Offline before the control process, we compute a set containing all possible values of the
unknown sparse FIR vectors corresponding to each output, with a very high probability. This
set, which we call the Feasible Sparse Parameter Set (FSPS) is computed using the Basis
Pursuit Denoising Chen et al. (2001) problem.

• Online during the control process, we obtain a point estimate of the unknown system inside
the intersection of the FPS and the FSPS, using a Recursive Least Squares (RLS) estimator.
Using this estimated system, we propagate our nominal predicted outputs used in the MPC
controller objective function to improve performance. Simultaneously, we ensure satisfaction
of the output chance constraints for the unknown true system.

• Through numerical simulations, we demonstrate that our algorithm exhibits better perfor-
mance than the algorithm presented in Bujarbaruah et al. (2018).
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2. Problem Description

2.1. System Modeling and Control Objective

We consider stable linear time-invariant systems described by a Finite Impulse Response (FIR)
model of the form

y(t) = HaΦ(t) + w(t), (1)

where the number of inputs and outputs considered is nu and ny, respectively. The FIR regres-
sor vector of length m is denoted by Φ(t) ∈ Rnum = [u1(t − 1), . . . , u1(t − m), . . . , unu(t −
1), . . . , unu(t − m)]>, where ui(t) denotes the ith input at time t. The matrix Ha ∈ Rny×num

is a matrix comprising of the impulse response coefficients that relate inputs to the outputs of the
system. The disturbance vector w(t) ∈ Rny is assumed to be a zero-mean random variable with a
known variance, component-wise bounded as

|wj(t)| ≤ w̄j ,∀j = 1, 2, . . . ny, (2)

where the w̄j are assumed known. Finally, y(t) ∈ Rny is the measured output of the system. Our
goal is to control the output y(t) while satisfying input and output constraints of the form

Cu(t) ≤ g, t = 0, 1, . . . , (3a)

P{Ey(t) ≤ p} ≥ 1− ε, t = 0, 1, . . . , (3b)

where ε ∈ (0, 1) is the maximum allowed probability of output constraint violation. Following
Bujarbaruah et al. (2018), we consider a single linear output chance constraint, meaning E is a row
vector and p ∈ R.

Assumption 1 We assume that each row of impulse response matrix Ha is sparse. Without loss
of generality, we further assume that the sparsity index for each row, i.e., the number of nonzero
entries, is at most k̄.

2.2. Method Outline

We assume in this paper that the system matrix Ha in (1) is unknown. This paper proposes a
method for identifying this unknown system matrix Ha, and using the estimate in a robust control
formulation to safely regulate the constrained uncertain system. Our proposed method uses the
following steps:

1. Offline before the control process begins: Use q number of collected input sequence regres-
sors [Φ1,Φ2, . . . ,Φq] to compute a set B(Ha), called the Feasible Sparse Parameter Set
(FSPS). We compute this set via the Basis Pursuit Denoising problem Chen et al. (2001).
The FSPS contains the true unknown model Ha, with a high probability.

2. Online during the control process: At each timestep t,

(a) Obtain the current output measurement y(t) and, using the known disturbance bounds
(2), update the time-varying set F(t), which we call the Feasible Parameter Set (FPS).
The FPS is a set guaranteed to contain the true model Ha.
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(b) Use the previous applied control inputs and measured outputs to construct an estimate
µa(t) of Ha, lying in the intersection of F(t) and the offline-computed FSPS. The esti-
mate is constructed using the Recursive Least Squares method.

(c) Compute the input sequence that minimizes the objective function obtained with µa(t)
while satisfying the input and output constraints (3) for all models in the FPS F(t).
Apply the first computed control input and continue to step 2a.

3. Model Estimation and Adaptation

We approximate system (1) with the form

y(t) = H(t)Φ(t) + w(t), (4)

where our model H(t) ∈ Rny×num is a random variable whose support we estimate online during
the control process from the output measurements. The support for the set of all possible models
H(t) consistent with the recorded system data, which we call the Feasible Parameter Set (FPS),
is guaranteed to contain the true model Ha. Based on the knowledge that system (1) has sparse
impulse response properties, we also construct a Feasible Sparse Parameter Set (FSPS) offline by
solving the Basis Pursuit Denoising Problem. During control run-time, a point estimate of Ha is
then computed to lie in the intersection of the offline-computed FSPS and the online-updated FPS.
This estimate is then used in the control design. We decouple the offline and online phases of this
design process and delineate the steps in detail in the following sections:

3.1. Offline: Construct the Feasible Sparse Parameter Set

The Feasible Sparse Parameter Set (FSPS), denoted by B(Ha), is a function of the (unknown) true
system responseHa, and is synthesized offline utilizing the sparsity aspect of system responses from
Assumption 1. Proposition 2 clarifies how this set is synthesized.

Definition 1 (Restricted Isometry Property (RIP) Candes and Tao (2005)) A matrix A satisfies
the Restricted Isometry Property (RIP) of order k̄, with constant δ ∈ [0, 1), if

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22, ∀x k̄ sparse.

The order-k̄ restricted isometry constant δk̄(A) is the smallest number δ such that the above in-
equality holds.

Proposition 2 Suppose we collect q output measurements offline. Suppose yi = AH>ai + wi for
i = 1, 2, . . . , ny, where each yi ∈ Rq×1 and A = [Φ1,Φ2, . . . ,Φq]

> ∈ Rq×num, wi ∈ Rq×1 with
‖wi‖2 ≤

√
qw̄i, and Hai ∈ R1×num denotes the ith row of Ha. If δ2k̄(A) <

√
2 − 1, then any

solution x̂ to the Basis Pursuit Denoising optimization problem

min . ‖x‖1
s.t. ‖Ax− yi‖2 ≤

√
qw̄i, (denoted as B(Hai))

(5)

satisfies ‖x̂−Hai‖2 ≤ C̄
√
qw̄i for some constant C̄ ∈ R, and for all i = 1, 2, . . . , ny.
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Proof See (Wright and Ma, expected 2020, Theorem 3.5.1).

The set B(Ha) is obtained as B(Ha) = [B(Ha1), . . . ,B(Hany
)]>. Note that this set B(Ha) is

synthesized offline, as the regressor vectors [Φ1,Φ2, . . . ,Φq] are required to come from a Gaussian
distribution in order to ensure the RIP property of each matrix Ai for i = 1, 2, . . . , ny. Such
Gaussian inputs are not always allowable during control with system constraints (3). Details on our
choice of these offline regressors [Φ1,Φ2, . . . ,Φq] to ensure δ2k̄(A) <

√
2−1 with high probability

are described in Bujarbaruah and Vallon (2019).

Remark 3 As pointed out in the proof of (Wright and Ma, expected 2020, Theorem 3.5.1), a pos-
sible choice of the numerical constant C̄ in Proposition 2 is C̄ = 2√

λ
, with

√
λ =

1−δ2k̄(1+
√

2)√
2(1+δ2k̄)

.

However, since δ2k̄ is not exactly known, computing C̄ and hence B(Ha) accurately is not possible.
We see that C̄ → 2

√
2 as δ2k̄ → 0. Therefore offline regressor vectors [Φ1,Φ2, . . . ,Φq] should be

chosen to ensure δ2k̄ < δ̄, with δ̄ �
√

2 − 1. Under such choice of the offline regressors as shown
in the Appendix, we pick the constant C̄ ≈ 2

√
2.

3.2. Online: Update the Feasible Parameter Set

Following Tanaskovic et al. (2014); Bujarbaruah et al. (2018), a set-membership identification
method is used for updating the time-varying FPS, denoted by F(t). The initialization of F(0)
is done considering the fact that the true system (1) is stable. We update the FPS as given by

F(t) = F(t− 1) ∩ {H(t) : H(t)Φ(t) ≤ y(t) + w̄} ∩ {H(t) : −H(t)Φ(t) ≤ −y(t) + w̄}, (6)

where w̄ = [w̄1, . . . , w̄ny ]> is the bound of the additive disturbance given by (2). In order to bound
the computational complexity of (6) over time, an alternative algorithm to compute (6) is presented
in Tanaskovic et al. (2014).

3.3. Online: Obtain Point Estimate µa(t)

We rewrite (4) as y(t) = ΦΦΦ(t)H(t) + w(t), where matrices ΦΦΦ(t) ∈ Rny×nynum and H(t) ∈
Rnynum×1 are shown in Bujarbaruah and Vallon (2019). Furthermore, let σ2

w be the variance of
the disturbance w(t). Let the initial prior mean and variance estimates for true system be µa(0)
and σ2

a(0), respectively. Now, the conditional mean and variance estimates, given measurements up
to y(t), can be obtained using the Recursive Least Squares method (Anderson and Moore, 1979,
Sec. (3.1)). We ensure that the mean point estimate µa(t) at any time instant t is chosen as a point
contained in a set Fp(t), that is, µa(t) ∈ Fp(t), with

Fp(t) = F(t) ∩ B(Ha). (7)

As shown in Bujarbaruah and Vallon (2019), after finding a µa(t), this is achieved by solving

X? = arg min
X∈Fp(t)

(X − µa(t))>M(X − µa(t)), and then assigning µa(t) = X?, (8)

where M = (σ2
a(t))−1 � 0. The mean in matrix form, that is, µa(t) ∈ Rny×num is obtained by

reorganizing µa(t) ∈ Rnynum×1 into num columns. This provides the (linear) minimum mean
squared error estimate of the true system Ha. Note that (8) is a convex optimization problem.

Remark 4 In Bujarbaruah et al. (2018) the set Fp(t) in (7) is set as the FPS F(t) for all timesteps.
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4. Control Synthesis

4.1. Prediction Model

Let N > m be the prediction horizon for a predictive controller for system (1). We denote the pre-
dicted system outputs at time t by y(k|t) = H(t)Φ(k|t) + w(k), for some H(t) ∈ F(t). Similarly,
Φ(k|t) denotes the predicted regressor vector, for k ∈ {t+ 1, . . . , t+N}, and is computed as

Φ(k|t) = WΦ(k − 1|t) + Zu(k − 1|t), (9)

where, the matrices W and Z are as reported in the Appendix. With these predicted regressor vec-
tors, the estimated system µa(t) obtained in Section 3.3 is used to propagate the nominal predicted
outputs as ŷ(k + 1|t) = µa(t)Φ(k + 1|t), for all k ∈ {t, . . . , t + N − 1}. This is shown in the
optimization problem presented in Section 4.3.

4.2. Reformulation of Chance Constraints

Within each prediction horizon we enforce P{Ey(k|t) ≤ p} ≥ 1 − ε, where y(k|t) is a function
of some H(t) ∈ F(t). Therefore, to ensure satisfaction of (3b) despite uncertainty in the true
system, we must satisfy the constraint for all H(t) ∈ F(t). Using the theory of distributionally
robust optimization Calafiore and El Ghaoui (2006); Zymler et al. (2013), we can conservatively
approximate the output chance constraints (3b) as

κε

√
Φ̄>(k|t)ΓΦ̄(k|t) + Φ>(k|t)ĒH(t)− p ≤ 0, ∀H(t) ∈ F(t), (10)

where we have k ∈ {t + 1, . . . , t + N}, κε =
√

1−ε
ε and Φ̄(k|t) = [Φ>(k|t) 1 1]>. Here,

Γ � 0 is an appended covariance matrix shown in the Appendix. As F(t) is a polytope, (10) can be
succinctly written as

κε

√
Φ̄>(k|t)ΓΦ̄(k|t) + Φ>(k|t)Ēf j(t)− p ≤ 0, (11)

where f j(t) denote the vertices of the polytope F(t).

4.3. MPC Problem

We solve the following optimization problem for given weights Q ∈ Rny×ny , S ∈ Rnu×nu � 0:

min
U(t)

.

t+N−1∑
k=t

[ŷ>(k|t)Qŷ(k|t) + u>(k|t)Su(k|t)] + ŷ>(t+N |t)Qŷ(t+N |t)

s.t. ŷ(k + 1|t) = µa(t)Φ(k + 1|t),
ŷ(t|t) = y(t),

Cu(k|t) ≤ g,
Φ(t+N |t) = WΦ(t+N |t) + Zu(t+N − 1|t),
κε
√

Φ̄>(k + 1|t)ΓΦ̄(k + 1|t) + Φ>(k + 1|t)Ēf j(t) ≤ p,
∀k = t, . . . , t+N − 1,

∀f j(t) ∈ vertex(F(t)), µa(t) ∈ F(t) ∩ B(Ha),

(12)
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where U(t) = [u(t|t)>, u(t + 1|t)>, . . . , u(t + N − 1|t)>]>, and the regressor Φ(k|t) is as in (9).
We have included the terminal constraint on the regressor vector as given in Tanaskovic et al. (2014)

Φ(t+N |t) = WΦ(t+N |t) + Zu(t+N − 1|t). (13)

After solving (12), we apply the first input

u(t) = u?(t|t) (14)

to system (1) in closed-loop. We then re-solve (12) at timestep t + 1 with new estimated data
µa(t+ 1) and F(t+ 1). This yields a receding-horizon control scheme. See Algorithm 1.

Algorithm 1 Adaptive Stochastic MPC: Sparse-FIR MIMO Systems
Initialize: F(0), µa(0), σa(0).
Inputs: q, w̄, k̄, tend

begin Basis Pursuit Denoising (offline)
1: Construct offline regressors [Φ1,Φ2, . . . ,Φq] such that operator A in Proposition 2 satisfies
δ2k̄(A) < δ̄ �

√
2− 1;

2: Solve (5) for i = 1, 2, . . . , ny to obtain the FSPS B(Ha);
end Basis Pursuit Denoising

begin MPC control process (online)
3: for timestep 1 ≤ t ≤ tend do
4: Obtain y(t) and update the FPS F(t) using (6);
5: Estimate mean and variance µa(t) and σ2

a(t) with RLS estimator. Project the mean with (8)
to the set Fp(t);

6: Solve (12) and apply u(t) = u?(t|t) to system (1);
7: end for

Remark 5 See Bujarbaruah and Vallon (2019) for a detailed proof of recursive feasibility.

5. Numerical Simulations

We compare the performance of our Algorithm 1 with that from the adaptive stochastic MPC
presented in Bujarbaruah et al. (2018). This performance is measured in terms of the expected
closed-loop cost E[V]. The closed-loop cost of any trajectory which is a function of the distur-
bance realization w̄ = [w(0), w(2), . . . , w(tend)], is given by V(w̄,Φ(0),Fp(0), µa(0), σa(0)) =
tend∑
t=0

y>(t)Qy(t) + (u?(t))>Su?(t), where Fp(·) for Algorithm 1 is obtained as in (7), and for the

algorithm in Bujarbaruah et al. (2018), Fp(·) = F(·), as Remark 4 points out. For simulating
both the algorithms, we use the parameters given in Table 1, with the true system response given
as Ha = [−1, 0, 0, 0, 0, 0, 0, 0,−2, 0], which is k̄ = 2 sparse. We run 100 Monte Carlo simula-
tions with both algorithms for 100 randomly chosen disturbance sequences w̄. We approximate the
average closed-loop cost E[V] with the empirical average

V̂(Φ(0),Fp(0), µa(0), σa(0)) =
1

100

100∑
m̃=1

V((w̄)?m̃,Φ(0),Fp(0), µa(0), σa(0)), (15)

where (·)?m̃ represents the m̃th Monte Carlo sample.
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Table 1: Simulation Parameters

Parameter Value Parameter Value
m 10 N 12
tend 20 w U ∼ [−0.1, 0.1]
nu 1 ny 1
ε 0.1 κε 3
E 1 p 5
C diag(1,−1) g [1, 1]>

Q diag(20, 20) S diag(2, 2)
µa(0) 110×1 σ2

a(0) 0.1× I10

Φ(0) 0.1× 110×1 F(0) −310×1 ≤ H> ≤ 310×1

5.1. Cost Comparison
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Figure 1: Closed-Loop Cost
20∑
t=0

y>(t)Qy(t)+(u?(t))>Su?(t) Along 100 Monte Carlo Simulation

of Trajectories.

Fig. 1 shows the comparison of closed-loop cost expressed as V(w̄,Φ(0),Fp(0), µa(0), σa(0)) =
20∑
t=0

y>(t)Qy(t) + (u?(t))>Su?(t) for 100 different Monte Carlo draws of trajectories, obtained

with Algorithm 1 and the algorithm in Bujarbaruah et al. (2018). We see that the empirical average
closed-loop cost obtained as (15) for Algorithm 1 is around 30% lower than the corresponding value
obtained with Bujarbaruah et al. (2018). This demonstrates performance gain by Algorithm 1 as a
consequence of leveraging sparsity information of Ha via the FSPS set B(Ha). This improvement
is cost can be explained in detail from system trajectories. See Bujarbaruah and Vallon (2019).
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Automatica, 103:461 – 471, 2019.

Anilkumar Parsi, Andrea Iannelli, Mingzhou Yin, Mohammad Khosravi, and Roy S. Smith. Robust
adaptive model predictive control with worst-case cost. arXiv preprint arXiv:1911.08607, 2019.

Raffaele Soloperto, Matthias A. Müller, Sebastian Trimpe, and Frank Allgöwer. Learning-based ro-
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