
Proceedings of Machine Learning Research vol 120:1–22, 2020 2nd Annual Conference on Learning for Dynamics and Control

A Duality Approach for Regret Minimization in Average-Reward
Ergodic Markov Decision Processes

Hao Gong HGONG@PRINCETON.EDU
Department of Operations Research and Financial Engineering, Princeton University, NJ 08540

Mengdi Wang MENGDIW@PRINCETON.EDU

Department of Electrical Engineering, Princeton University, NJ 08540

Editors: A. Bayen, A. Jadbabaie, G. J. Pappas, P. Parrilo, B. Recht, C. Tomlin, M.Zeilinger

Abstract
In light of the Bellman duality, we propose a novel value-policy gradient algorithm to explore and
act in infinite-horizon Average-reward Markov Decision Process (AMDP) and show that it has
sublinear regret. The algorithm is motivated by the Bellman saddle point formulation. It learns
the optimal state-action distribution, which encodes a randomized policy, by interacting with the
environment along a single trajectory and making primal-dual updates. The key to the analysis is to
establish a connection between the min-max duality gap of Bellman saddle point and the cumulative
regret of the learning agent. We show that, for ergodic AMDPs with finite state space S and action
space A and uniformly bounded mixing times, the algorithm’s T -time step regret is

R(T) = Õ
(

(t∗mix)
2
τ

3
2

√
(τ3 + |A|)|S|T

)
,

where t∗mix is the worst-case mixing time, τ is an ergodicity parameter, T is the number of time
steps and Õ hides polylog factors.
Keywords: regret analysis, Markov decision process, primal-dual method, saddle point, exponen-
tiated gradient, reinforcement learning, online learning

1. Introduction

Reinforcement learning (RL) addresses the problem of an agent learning to act in an environment in
order to optimize long term performance (Bertsekas, 2007; Sutton and Barto, 1998). We consider
RL in the infinite-horizon undiscounted Average-Reward Markov Decision Process (AMDP). With-
out knowing the transition model, an agent has to explore continuously and maximize the long-term
average-per-time-step reward. We focus on the tabular AMDP with finitely many states and actions,
under the assumption that the MDP is ergodic under any policy. Our main interest is to develop
an online algorithm that observes state transitions and learns to act along a single trajectory, with
provably sublinear regret.

Regret minimization for AMDP has been considered in a number of prior works including Auer
et al. (2009); Bartlett and Tewari (2012); Osband and Roy (2016); Ouyang et al. (2017); Agrawal
and Jia (2017); Zhang and Ji (2019). The best known regret is O(

√
D|S||A|T), where S , A are

the state space and action space respectively, D = maxi,j minπ Eπ[HittingTime(j) | i] is known as
the MDP’s diameter. Most of these methods are based on estimating either transition models or Q
functions and constructing upper confidence state-action values to encourage exploration.

c© 2020 H. Gong & M. Wang.

In this paper, we take a different route towards regret minimization in AMDP, in light of the
min-max duality that is intrinsic to Bellman equations. It is known that optimal Bellman equation
can be formulated as linear programs (Puterman, 2014). It further implies an equivalent min-max
Bellman saddle point (Wang, 2017), which motivates us to adopt a primal-dual optimization ap-
proach. This approach was previously considered in the case with a generative model and can learn
an approximate-optimal policy by sampling from the oracle (Chen and Wang, 2016; Wang, 2017).
In this work we study the more challenging regret minimization problem without assuming a gen-
erative model, where the agent has to learn online in an infinitely long process. Our algorithm
approximates the value function (primal variable) and the optimal state-action stationary distribu-
tion (dual variable) simultaneously by conducting a series of on-policy primal-dual updates, during
which actions are picked greedily according to the randomized policy inferred from the dual iterates.
A key observation is that the cumulative regret of this learning algorithm can be bounded by a mul-
tiple of the averaged duality gap of the primal-dual iterates. This allows us to establish a sublinear
regret C

√
|S||A|T , where C depends on the worst-case mixing times and an ergodicity parameter

that measures the multiplicative range of stationary distributions of the AMDP. In the case where
S contains a single state, the algorithm reduces to EXP3 for multi-arm bandit (Auer et al., 2003)
(Freund and Schapire, 1997). In this case we have C = O(1) and the result becomes the standard
regret Õ(

√
|A|T) for multi-arm bandit.

This paper has several technical novelties:

• Our results appear to be the first duality-based value-policy gradient method and regret anal-
ysis for infinite-horizon RL. The proof relates the cumulative regret with a Lagrangian duality
gap through characterizing the empirical state distribution between consecutive dual updates.

• We do not assume bounded diameter (worst-case hitting time) as needed in most existing
analyses. Instead, our analysis depends on an ergodicity parameter that plays an important
role in the complexity theory of AMDP, which is an analogy of “diameter in policy space”.
Our bound can be significantly smaller than diameter-dependent bounds in some cases.

• To analyze the empirical state distribution between updates, we use a change of measure
trick and the Aldous’s lemma for Martingale stopping times, which associates the cumulative
regret with cover time and hitting time of the MDP, and may be of independent interest

2. Preliminaries

2.1. Average-Reward Markov Decision Problem

The environment of an AMDP can be specified by a tupleM = (S,A, (P a)a∈A , (ra)a∈A), where
S is the set of states, A is the set of actions, P ai,j = P (st+1 = j|st = i, at = a) is the unknown
transition matrix, and rai = E [rt+1|st = i, at = a] is the unknown reward function. Suppose that
the environment is in state i at time t and the agent selects action a, the environment will evolve to
the next state j with probability P ai,j and give the agent a random reward rt ∈ [0, 1]. A stationary
policy π maps each state to a distribution over the action space. It can be represented by a |S|-by-
|A| stochastic matrix, whose (i,a)-th element is the probability of choosing action a at state i. The
optimal policy π∗ is the policy that maximizes the infinite-horizon expected average reward

v̄π = Eπ

[
lim
t→∞

1

T

T∑
r=1

rt

]
, (1)

2

where Eπ denotes expectation over all possible trajectories generated by policy π.
Throughout the paper, we assume that the AMDP is ergodic under any π, i.e., the transition

matrix P π under policy π is aperiodic and positive-recurrent. The above v̄π is thus uniquely defined
regardless of the initial state s1. Ergodicity of AMDP is necessary for an online agent to avoid
getting stuck in some state. Without ergodicity, any learning agent may incur linear regret Ω(T), if
she misses choosing the correct action to reach some rewarding state that is not reachable later.

2.2. Min-Max Formulation of Bellman Equation

Under some parameterized ergodicity condition (see Assumption 1 in the next section), for any
policy π there exists a unique stationary distribution νπ such that νπi = limt→∞ P (st = i|a1:t−1 ∼
π), which is independent of s1. It can be shown that maximizing the average reward is equivalent
to the following optimization problem (Puterman, 2014)

max
ξ,π

v̄π =
∑
i∈S

ξi
∑
a∈A

πi,ar
a
i subject to (P π)>ξ = ξ, ξ ≥ 0,

∑
i∈S

ξi = 1, (2)

where the constraint forces ξ to be the stationary distribution νπ of policy π. Let µi,a = ξiπi,a
denote the joint stationary state-action probability. The above problem is equivalent to a linear
program

max
µ

∑
a∈A

µ>a r
a subject to

∑
a∈A

(
I − (P a)>

)
µa = 0,

∑
a,i

µi,a = 1, µ ≥ 0, (3)

where the constraint ensures that µ is a stationary joint state-action distribution. It is worth pointing
out that the dual problem of (3) is equivalent to the Bellman equation (Puterman, 2014), where
the state value function coincides with the Lagrangian multipliers associated with the constraint∑

a∈A
(
I − (P a)>

)
µa = 0. Now we follow the ideas of Chen and Wang (2016); Wang (2017) and

formulate the linear system (3) into an equivalent min-max problem

min
h∈H

max
µ∈U

∑
a∈A

µ>a ((P a − I)h + ra) (4)

where H and U are constraint sets used to regularize primal-dual iterates for fast convergence (see
Lemma 3 in Appendix B for details). As shown in Wang (2017), the saddle point (µ∗, h∗) solution

gives the optimal policy by π∗i,a =
µ∗i,a∑
a∈A µ

∗
i,a

. In the rest of the paper we call h the primal variable
and µ the dual variable.

3. An Online Primal-Dual Algorithm

Bellman duality implies that maximizing the average-reward (1) in AMDP is equivalent to solving
the min-max problem (4). Our goal is to construct a reinforcement learning algorithm by taking
advantage of the min-max duality to explore and act in the environment. The learning agent will
use the current dual variable µ to greedily prescribe actions at each state, using the implied policy
π given by πi,a =

µi,a∑
a∈A µi,a

.
There are two technical issues: (1) Unbiased gradients cannot be easily obtained. Unlike the

case with a generative model, constructing unbiased value and distributional gradient estimates is

3

challenging in online RL. This is because we only have highly dependent past experiences, and
the future state distribution that will generate new samples is unknown. (2) The algorithm needs
to balance the exploration-exploitation trade-off. Our primal-dual algorithm does not compute any
upper confidence bounds. The µ update needs to automatically encourage exploration in areas of
high uncertainty. Having the two questions in mind, let us construct the algorithm.

Constructing partial gradient estimates. Denoting L(h, µ) =
∑

a∈A µ
>
a ((P a − I)h + ra) the

min-max objective. To solve the optimization problem, we wish to construct unbiased estimates of
the primal-dual gradients

∂L

∂h
=
∑
a∈A

(P a − I)>µa,
∂L

∂µa
= (P a − I)h + ra, (5)

and use them to perform updates. Let us start with an ideal situation, assuming there was a uniform
sampler that generates states i ∼ Uniform(S), waits until we pick some action a, and outputs r ∼ rai
and j ∼ P ai,·. Given the current µ, we pick a with probability πi,a =

µi,a∑
a∈A µi,a

at state i. In this

case, it is easy to see that (ej − ei) ·
∑

a∈A µi,a and ei,a · hj−hi+rπi,a
are unbiased estimates of ∂L∂h and

∂L
∂µ , respectively. Next we will construct unbiased gradient samplings without being able to sample
states uniformly.

Making gradient samples unbiased via a change of measure. The empirical distribution of
the online samples depends on both the initial state and all actions that have been chosen by the
learning agent. The sample transitions depend on one other, making it harder to obtain independent
unbiased estimators than in the case where an oracle is available (Chen and Wang, 2016; Wang,
2017). However, the above discussion on hypothetical uniform sampler inspires a way to tackle this
problem. We impose a “uniform distribution” on the training samples by constructing batch updates
such that each batch contains exactly one sample transition starting from each state. Intuitively, we
are selecting a subset of observations to change the empirical measure to a uniform measure.

In preparation for a new update, we initialize an empty set B. The agent then keeps sampling
along the trajectory and acting according to the policy defined by πi,a =

µi,a∑
a∈A µi,a

at each state i
it faces. Every time it encounters a state i that has not been visited during the current update, the
agent adds the its transition and reward (i, ai, ji, ri) to B. When all states have been visited, we
have exactly |S| samples in the current batch B = {(i, ai, ji, ri) | i ∈ S}. Then the agent constructs
a pair of unbiased gradient estimators of −∂L

∂h and ∂L
∂µa

as

d =
∑
i∈S

(ei − eji) · ξi,

∆i,a = 1{ai=a}
hji − hi + ri

πi,a
, ∀ i, a.

where ξi =
∑

a∈A µi,a. The agent then updates h, µ in the way detailed below, resets B to empty
set and starts preparing for the next update batch. The constructed samples can be shown to be
conditionally unbiased per batch, where each batch update takes a random number of time steps.

Exploration with exponentiated distributional gradient. In analogy to EXP3, we also use expo-
nentiated updates in µ to encourage exploration. Denoting ∆(k+1) the unbiased estimator obtained

4

for ∂L∂µ , we conduct the update by

µ(k+ 1
2

) ← µ(k) · exp(∆(k+1))

‖µ(k) · exp(∆(k+1))‖1,1
, µ(k+1) ← argmin

µ∈U
DKL(µ ‖ µ(k+ 1

2
)).

In view of optimization, this exponentiated µ update is a proximal gradient step using projection
with respect to the Kullback-Leiber divergence. See Schulman et al. (2017) for similar usage.
Similar to the role of exponentiated update in online optimization, the above µ update is the key to
exploration. In the case where S contains only one state, the algorithm degenerates to the EXP3
algorithm for multi-arm bandit.

Algorithm 1 gives the full implementation details.

Algorithm 1: Online Primal-Dual π Learning
Input: Precision level ε > 0, S , A, t∗mix, τ
Set α, β, M according to Theorem 4 in Appendix B
Initialize primal-dual variables h(0) ← 0 ∈ R|S|, µ(0) ← 1

|S||A|1 ∈ R|S||A|

Initialize k ← 0, ∆← 0 ∈ R|S||A|, d← 0 ∈ R|S|
Initialize S′ ← S, the set of all states that haven’t been visited
Initialize environment s1

Compute current policy π(k)
i,a =

µ
(k)
i,a∑

a′∈A µ
(k)

i,a′
and ξ(k)

i =
∑

a′∈A µ
(k)
i,a′ , ∀i ∈ S, ∀a ∈ A

for time step t = 1, 2, 3, · · · do
Agent picks action at according to π(k)

st,·, observes reward rt and next state st+1

if st ∈ S′ then
S′ ← S′ \ {st}

∆← ∆ + β · h
(k)
st+1
−h(k)st +rt−M
π>st,at

· est,at
d← d + α · ξ(k)

st · (est − est+1)

where ei,j ∈ R|S||A|, ei ∈ R|S| are one-hot vectors
end
if S′ = ∅ then

Dual update µ
(k+ 1

2
)

i,a ← µ
(k)
i,a ·exp(∆i,a)∑

i′,a′ µ
(k)

i′,a′ exp(∆i′,a′)
µ(k+1) ← argminµ∈U DKL(µ ‖ µ(k+ 1

2
))

Primal update h(k+1) ← ProjH(h(k) + d)

Update policy π(k+1)
i,a =

µ
(k+1)
i,a∑

a′∈A µ
(k+1)

i,a′
and ξ(k+1)

i =
∑

a′∈A µ
(k+1)
i,a′ , ∀i ∈ S, ∀a ∈ A

Start next batch update k ← k + 1, ∆← 0 ∈ R|S||A|, d← 0 ∈ R|S|, S′ ← S

end
end

4. Regret Analysis

In this section we analyze the regret of Algorithm 1.

5

4.1. Main Result

The regret of RL is the difference between the expected cumulative reward obtained by the algo-
rithm, and that we could have gained if we ran the optimal policy for the same length of time:

R(T) := Eπ
∗

[
T∑
t=1

r′t

]
−Ealg

[
T∑
t=1

rt

]
, (6)

where Eπ
∗

and Ealg denote expectations taken over trajectories generated under the optimal policy
and the learning algorithm, respectively.

The following assumption and definitions are useful for analyzing the regret.

Assumption 1 (Ergodic Decision Process) The Markov decision process specified byM = (S,A,P =
(P a)a∈A , r = (ra)a∈A) is τ -stationary in the sense that it is ergodic under any stationary policy π
and there exists τ > 1 such that

1√
τ |S|

1 ≤ νπ ≤
√
τ

|S|
1.

The ergodicity parameter τ measures the range of stationary distribution across possible poli-
cies. It is an important quantity that plays a key role in the complexity theory of AMDP. For ex-
ample, this τ showed up in sample complexity bound for solving AMDP using a generative model
Wang (2017). It also relates to the worst-case distributional correction ratio which shows up in
off-policy RL Liu et al. (2019). The paper Sidford et al. (2019) proves that the number of policy it-
erations needed to solve AMDP depends linearly on τ . This ergodicity parameter can be essentially
viewed as the “diameter” of policy space.

Definition 1 (Mixing Time, Hitting Time and Cover Time) For any MDPM, its worst-case mix-
ing time, worst-case hitting time and worst-case cover time are defined respectively, as

t∗mix := max
π

min

{
t ≥ 1

∣∣∣∣‖(P π)>(i, ·)− νπ‖TV ≤
1

4
, ∀i ∈ S

}
,

t∗hit := max
π

max
s,x∈S

Eπ [τhit(x)|s0 = s] , t∗cov := max
π

max
s∈S

Eπ [τcov|s0 = s] .
(7)

where ‖ · ‖TV denotes the total variation, τhit(x) = min {t > 0 | st = x} is the first time at which
state x ∈ S is visited, and τcov = min {t > 0 | {s1, s2, ..., st} ⊃ S} is the first time at which all the
states have been visited.

Our main result is given below.

Theorem 2 Suppose MDP M satisfies Assumption 1, then the following regret bound holds for
Algorithm 1

R(T) = Õ
(

(t∗mix)2 τ
3
2

√
(τ3 + |A|)|S|T

)
. (8)

Our regret result depends on the worst-case mixing time t∗mix and the ergocity parameter τ that
is a worst-case probability correction ratio. The mixing time t∗mix characterize the “transientness”
of the AMDP, while τ characterizes only stationary distributions - the two quantities are orthogonal
to each other. For comparison, a best known regret upper bound for AMDP is D

√
|S||A|T which

6

depends on the diameterD. There are cases where our regret bound can be much smaller whileD is
large. For example consider the extreme case where the P (·|s, a) equals to the uniform distribution
for all s, a. Then the AMDP reduces to contextual bandit with |S| distinct contexts and |A| distinct
arms per context. In this case it is easy to verify that D = 1/|S|, t∗ = 1 and τ = 1, as a result
our regret bound is Õ(

√
|S||A|T) - much smaller than the existing result in this case which is

D
√
|S||A|T = Õ(

√
|S|3/2|A|T).

4.2. Sketch of the Proof.

In what follows we outline the key ideas of the regret proof.

Convergence of duality gap From an optimization view, the algorithm makes noisy primal-dual
gradient updates. By invoking a primal-dual convergence analysis tailored to the exponentiated dual
update, we can show that the averaged duality gap across N batch updates satisfies

DualityGap(N) =
1

N

N−1∑
k=0

E

[∑
a∈A

(h∗ − Pah∗ − ra + v̄∗1)>µ(k)
a

]
≤ Õ

(
t∗mix

√
τ3 + |A|

N

)
.

(9)
See Theorem 4, Lemmas 4-9 in Appendix B for details of the duality gap analysis.

Relating cumulative regret and duality gap Recall that each batch update takes a variable num-
ber of time steps. Now we analyze RN , the regret accumulated throughout N batch updates, i.e.,

RN =
N−1∑
k=0

Ealg

[∑
a∈A

∑
i∈S

(h∗ − P ah∗ − ra + v̄∗1)i π
(k)
i,a n̂

(k)
i

]
+O (t∗mix) , (10)

where v̄∗ is the optimal average reward and π(k) is the behavior policy used by the learning agent
between the k-th and the (k + 1)-th updates. Here n̂(k)

i is the number of visits to state i during the
same period, and in our case it can be decomposed as the empirical distribution ν̂(k) multiplied by
a cover time τ (k)

cov needed for finishing the batch. We denote n̂(k) =
∑

i n̂
(k)
i be the total number of

time steps between the two consecutive updates.
Intuitively, if we can figure out a way to related the empirical distribution ν̂(k) to the stationary

distribution νπ
(k)

associated with policy π(k), we will be able to control π(k)
i,a n̂

(k)
i byO

(
π

(k)
i,a ν

π(k)
t∗cov

)
,

and thus by O (τµi,at
∗
cov) according to the ergodicity assumption. This leads to an upper bound of

RN in the form of

RN ≤ O

(
tcovτ

N−1∑
k=0

Ealg

[∑
a∈A

(h∗ − P ah∗ − ra + v̄∗1)> µ(k)
a

])
≤ C · DualityGap(N), (11)

which C is a constant depending on the ergodicity parameter τ .

Analyzing the state distribution between consecutive batch updates The problem now reduces
to analyzing the empirical distribution of the states visited between two consecutive batch updates,
where each update time is a Martingale stopping time. Analyzing the empirical distribution of states
between two stopping times is nontrivial in general - the number of states in between is stochastic,
as well as the starting state and the end state.

7

To make it work, we first condition on the σ-algebra generated by the former stopping time - the
difference between the two stopping times thus becomes a cover time. We invoke the Aldous Lemma
(Levin et al., p. 130) and obtain that the expected empirical distribution covered by a stopping time
equals to the stationary distribution, if the stopping time always stops at the same state as starting
state, i.e.,

if P (Xτ = a|X1 = a) = 1 then E

[∞∑
t=1

1{Xt=i,τ>t}

]
= E[τ |X1 = a]ν(i), ∀i,

where ν is the stationary distribution. In order to utilize the Aldous Lemma, we append a hitting
time to the cover time as if the agent was to wait to see all states and then the original state where
the last update happens. The hitting time, on the other hand, can be as long as the cover time in
expectation, leading to an upper bound of E[n̂

(k)
i] ≤ 2t∗covν

(k)
i . The detailed proof is provided in

Appendix C.

Regret analysis for fixed T The previous analysis is concerned with the cumulative regret over
N updates, where each update takes a random number of time steps.

Finally let us analyze the regret as the number of time steps T increases. Note that the T -
timestep regret of Algorithm 1 is less than RN with N = T/|S|, which is the most number of
updates that can be conducted within T steps. Appendix D summarizes the theoretical results ob-
tained so far. Putting the analysis together we obtain the following bound on Algorithm 1 with T
steps.

RT = Õ

(
t∗mixτ

√
(τ3 + |A|) T

|S|
t∗cov

2

)
. (12)

Cover time and hitting time analysis The only thing left is to estimate the worst-case cover time
of the MDP - if it was too large compared to the state size |S|, the proposed algorithms would
be intractable. Matthews proved that the worst-case cover time of an irreducible finite Markov is
controlled by its worst-case hitting time multiplied by log state size. Meanwhile, the relationship
between the mixing time and the hitting time of a large set has been studied in probability literature
(Aldous, 1982; Peres and Sousi, 2011; Oliveira; Anderson et al., 2018) that indicates these two
quantities are equal up to some universal multiplicative constant. Although the previous work sheds
some light on our case, none of it directly applies to the worst-case hitting time of a single state.
Most work also imposed reversibility or some other conditions on the Markov chain. We adjust the
idea and provide a simple proof in Appendix E to bound the hitting time of fast-mixing Markov
chains under Assumption 1. Combining Mathews’ method and the bound on hitting time we get
t∗cov = Õ (

√
τt∗mix |S|) . This bound, together with (12), completes the proof.

5. Summary

This paper explored a new approach towards regret minimization in MDP by leveraging the intrinsic
min-max duality of Bellman equation. We provided the first duality-based value-policy updating
method that is able to learn and explore in undiscounted MDP environment and achieve sublinear
regret. The regret analysis combines primal-dual convergence, exponentiated updates and a hitting
time analysis, which finds a useful connection between min-max duality gap and the cumulative
regret. We hope this new approach and its analysis might pique researchers’ interest and motivate
more generalizable methods.

8

References

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-
case regret bounds. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
1184–1194. Curran Associates, Inc., 2017.

David Aldous and James Allen Fill. Reversible markov chains and random walks on graphs, 2002.
Unfinished monograph, recompiled 2014, available at http://www.stat.berkeley.
edu/\simaldous/RWG/book.html.

David J. Aldous. Some inequalities for reversible markov chains. J. London Math. Soc, pages
564–576, 1982.

Robert M. Anderson, Haosui Duanmu, and Aaron Smith. Mixing times and hitting times for general
markov processes, 2018.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multi-
armed bandit problem. SIAM J. Comput., 32(1):48–77, January 2003. ISSN 0097-5397.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural
Information Processing Systems 21, pages 89–96. Curran Associates, Inc., 2009.

Peter L. Bartlett and Ambuj Tewari. Regal: A regularization based algorithm for reinforcement
learning in weakly communicating mdps, 2012.

Dimitri P Bertsekas. Dynamic programming and optimal control. Athena scientific Belmont, MA,
2007.

Yichen Chen and Mengdi Wang. Stochastic Primal-Dual Methods and Sample Complexity of Re-
inforcement Learning. arXiv e-prints, art. arXiv:1612.02516, December 2016.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times. American
Mathematical Society.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient
with state distribution correction. arXiv preprint arXiv:1904.08473, 2019.

Peter Matthews. Covering problems for markov chains. Ann. Probab., (3):1215–1228, 07 . doi:
10.1214/aop/1176991686.

Roberto Oliveira. Mixing and hitting times for finite markov chains. Electron. J. Probab., page 12
pp. doi: 10.1214/EJP.v17-2274.

Ian Osband and Benjamin Van Roy. On lower bounds for regret in reinforcement learning, 2016.

9

http://www.stat.berkeley.edu/$\sim $aldous/RWG/book.html
http://www.stat.berkeley.edu/$\sim $aldous/RWG/book.html

Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain. Learning unknown markov decision
processes: A thompson sampling approach, 2017.

Yuval Peres and Perla Sousi. Mixing times are hitting times of large sets, 2011.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Aaron Sidford, Mengdi Wang, Lin Yang, and Yinyu Ye. Improved upper and lower bounds for
policy and strategy iteration. NeurIPS workshop on OptRL, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Mengdi Wang. Primal-dual π learning: Sample complexity and sublinear run time for ergodic
markov decision problems. CoRR, abs/1710.06100, 2017.

Zihan Zhang and Xiangyang Ji. Regret minimization for reinforcement learning by evaluating the
optimal bias function, 2019.

10

Appendix A. Notations

Some additional notations are needed before heading to the regret analysis.
Let s1, a1, r1, s2, a2, r2, ... be the infinite-length trajectory generated by Algorithm 1 as if T =

∞. Define {Ft = σ({s1, a1, r1, s2, · · · , st−1, at−1, rt−1, st})}t≥1 be the filtration generated by the
trajectory up to time t, not including the terminal action, reward and transition. We define stopping
times (the times of batch updates) as

τ (0) = 0, τ (k) = inf
{
t > τ (k−1)|∀i ∈ S,∃ t′ ∈ (τ (k−1), t] s.t. st′ = i

}
, k ≥ 1.

Denote for short F(k) := Fτ (k)+1, which is a valid σ-algebra since (τ (k) + 1) is also a stopping
time. Furthermore, it follows from τ (k) < τ (k+1) that F(k) ⊂ F(k+1).

The trajectory-policy sequence generated by Algorithm 1 with N batch updates is

s1
π(0)

−−→ s2 99K sτ (1)
π(0)

−−→ sτ (1)+1
π(1)

−−→ sτ (1)+2 99K sτ (k)
π(k−1)

−−−−→ sτ (k)+1
π(k)

−−→ sτ (k)+2

99K ... 99K sτ (N)
π(N−1)

−−−−→ sτ (N)+1,

where the policy π(k) is updated to π(k+1) after the agent observes sτ (k+1)+1 and is thus ready for
the batch update. It is worth pointing out that if the agent kept acting according to the current policy
π(k) rather than switching to the new policy, the strong Markov property indicates that the sequence{
sτ (k)+t

}
t≥1

would be a Markov chain with transition matrix P π
(k)

, and would be independent of
the past trajectory when conditioned on sτ (k)+1. Meanwhile, by the construction of Algorithm 1,
(τ (k+1)− τ (k)) is a cover time on this extended Markov chain. Hence we can condition on F(k) and
focus on the (k + 1)-th sample batch.

Appendix B. Duality Gap

The following lemma shows that the optimal difference-of-value function and stationary state-action
distribution h∗, µ∗ form a saddle point to the min-max problem. (4)

Lemma 3 (Wang (2017)) Under Assumption 1, the optimal primal and dual solutions h∗, µ∗ to
the min-max problem (4) satisfy h∗ ∈ H and µ∗ ∈ U , where

H =
{
h ∈ R|S|

∣∣∣ ‖h‖∞ ≤ 2t∗mix

}
,

U =

{
µ ∈ R|S||A|

∣∣∣1Tµ = 1, µ ≥ 0,
∑
a∈A

µa ≥
1

τ |S|
1

}
.

In what follows, we analyze the averaged duality gap of our algorithm across N batch updates.

Theorem 4 Let M = (S,A,P, r) be an arbitrary MDP tuple satisfying Assumption 1. t∗mix is
its worst-case mixing time. Then the sequence of iterates generated by Algorithm 1 with N batch
updates satisfies

1

N

N−1∑
k=0

E

[∑
a∈A

(h∗ − Pah∗ − ra + v̄∗1)Tµ(k)
a

]
≤ Õ

(
t∗mix

√
τ3 + |A|

N

)
, (13)

when α =
|S|t∗mix

τ

√
2

3N , β =
√

log(|S||A|)
4|A|(4t∗mix+1)2N

, M = 4t∗mix + 1.

11

Denote
{

(i, a
(k+1)
i , j

(k+1)
i , r

(k+1)
i)

∣∣∣ i ∈ S} the (k+1)-th update batch gathered during [τ (k)+

1, τ (k+1) + 1]. Then the primal and dual increments used in Algorithm 1 are equivalent to

d(k+1) =
∑
i∈S

αξ
(k)
i (ei − e

j
(k+1)
i

), (14)

∆(k+1) =
∑
i∈S

β
h

(k)

j
(k+1)
i

− h(k)
i + r

(k+1)
i −M

π
(k)

i,a
(k+1)
i

e
i,a

(k+1)
i

. (15)

Theorem 4 is proved based on the following lemmas.

Lemma 5 Wang (2017) The iterates generated by Algorithm 1 satisfy

E
[
DKL(µ∗‖µ(k+1))

]
−DKL(µ∗‖µ(k)) ≤

∑
i∈S

∑
a∈A

(µ
(k)
i,a − µ

∗
i,a)E

[
∆

(k+1)
i,a

∣∣∣F(k)

]
+

1

2

∑
i∈S

∑
a∈A

µ
(k)
i,aE

[(
∆

(k+1)
i,a

)2
∣∣∣∣F(k)

]
,

for all k with probability 1.

Lemma 6 The iterates generated by Algorithm 1 satisfy∑
i∈S

∑
a∈A

µ
(k)
i,aE

[(
∆

(k+1)
i,a

)2
∣∣∣∣F(k)

]
≤ 4|A|(4t∗mix + 1)2β2,

for all k with probability 1.

Proof From (15) we have

(
∆

(k+1)
i,a

)2
=

βh(k)

j
(k+1)
i

− h(k)
i + r

(k+1)
i −M

π
(k+1)
i,a

1{a(k+1)
i =a}

2

≤ β2 4 (4t∗mix + 1)2(
π

(k)
i,a

)2 1{a(k+1)
i =a} ∀i ∈ S, a ∈ A.

Then it follows that∑
i∈S

∑
a∈A

µ
(k)
i,aE

[(
∆

(k+1)
i,a

)2
∣∣∣∣F(k)

]
≤
∑
i∈S

∑
a∈A

µ
(k)
i,aE

[
β2 4 (4t∗mix + 1)2

(π
(k)
i,a)2

1{a(k+1)
i =a}

∣∣∣∣∣F(k)

]

=
∑
i∈S

∑
a∈A

ξ
(k)
i π

(k)
i,a β

2 4 (4t∗mix + 1)2

(π
(k)
i,a)2

π
(k)
i,a

= 4 (4t∗mix + 1)2 β2
∑
i∈S

∑
a∈A

ξ
(k)
i

= 4|A|(4t∗mix + 1)2β2.

12

Lemma 7 The generated dual iterates {µk}k≥0 satisfy

E
[
DKL(µ∗‖µ(k+1))

∣∣∣F(k)

]
≤ DKL

(
µ∗‖µ(k)

)
+β

∑
a∈A

(
µ(k)
a − µ∗a

)T (
(P a − I)h(k) + ra

)
+2|A|(4t∗mix+1)2β2,

(16)
for all k with probability 1.

Proof Again from (15) we have

E
[

∆
(k+1)
i,a

∣∣∣F(k)

]
= E

βh(k)

j
(k+1)
i

− h(k)
i + r

(k+1)
i −M

π
(k)
i,a

1{a(k+1)
i =a}

∣∣∣∣∣∣∣F(k)

=

β

π
(k)
i,a

E

∑
j∈S

(
h

(k)
j − h

(k)
i + r

(k+1)
i −M

)
1{a(k+1)

i =a,j
(k+1)
i =j}

∣∣∣∣∣∣F(k)

=

β

π
(k)
i,a

∑
j∈S

(
h

(k)
j − h

(k)
i + rai −M

)
π

(k)
i,a P

a
i,j

= β
∑
j∈S

(
h

(k)
j − h

(k)
i + rai −M

)
P ai,j .

Then∑
i∈S

∑
a∈A

(µ
(k)
i,a − µ

∗
i,a)E

[
∆

(k+1)
i,a

∣∣∣F(k)

]
=
∑
i∈S

∑
a∈A

(µ
(k)
i,a − µ

∗
i,a)β

∑
j∈S

(
h

(k)
j − h

(k)
i + rai −M

)
P ai,j

= β
∑
a∈A

∑
i∈S

∑
j∈S

(µ
(k)
i,a − µ

∗
i,a)P

a
i,jh

(k)
j +

∑
i∈S

(µ
(k)
i,a − µ

∗
i,a)(−h

(k)
i + rai)

− βM

∑
i∈S

∑
a∈A

(µ
(k)
i,a − µ

∗
i,a)

= β
∑
a∈A

(
µ(k)
a − µ∗a

)T (
P ah(k) − h(k) + ra

)
.

Here we used the fact that
∑

i∈S
∑

a∈A µ
(k)
i,a =

∑
i∈S
∑

a∈A µ
∗
i,a = 1. Combining Lemma 5, 6 we

get (16).

Lemma 8 The generated primal iterates {hk}k≥0 satisfy

E
[
‖h(k+1) − h∗‖2

∣∣∣F(k)

]
≤ ‖h(k) − h∗‖2 + 2α

(
h(k) − h∗

)T (∑
a∈A

(I − P a)Tµ(k)
a

)
+

3τ3

|S|
α2,

(17)
for all k with probability 1.

13

Proof We will compute E
[
d(k+1)|F(k)

]
and E

[
‖d(k+1)‖2|F(k)

]
in step 1,2, respectively, and com-

bine them in step 3 to complete the proof.
Step 1. From (14) we have

E
[
d(k+1)|F(k)

]
= E

[∑
i∈S

αξ
(k)
i (ei − e

j
(k+1)
i

)

∣∣∣∣∣F(k)

]

= E

∑
i∈S

∑
a∈A

∑
j∈S

1{a(k+1)
i =a,j

(k+1)
i =j}αξ

(k)
i (ei − ej)

∣∣∣∣∣∣F(k)

= α

∑
i∈S

∑
a∈A

∑
j∈S

π
(k)
i,a P

a
i,jξ

(k)
i (ei − ej)

= α
∑
a∈A

(I − P a)Tµ(k)
a .

Step 2. Recall that π(k) is the policy under which the batch were obtained. We denote P π
(k)

the
transition matrix under this policy, by Assumption 1 we have

(P π
(k)

)T1 ≤ (P π
(k)

)T (
√
τ |S|νπ(k)

) =
√
τ |S|νπ(k) ≤

√
τ |S| ·

√
τ

|S|
1 = τ1.

Hence it hold that

E

[∥∥∥d(k+1)
∥∥∥2
∣∣∣∣F(k)

]

= E

∥∥∥∥∥∑
i∈S

αξ
(k)
i (ei − e

j
(k+1)
i

)

∥∥∥∥∥
2
∣∣∣∣∣∣F(k)

≤ 2E

∥∥∥∥∥∑
i∈S

αξ
(k)
i ei

∥∥∥∥∥
2
∣∣∣∣∣∣F(k)

+ 2E

∥∥∥∥∥∑
i∈S

αξ
(k)
i e

j
(k+1)
i

∥∥∥∥∥
2
∣∣∣∣∣∣F(k)

= 2α2

‖ξ(k)‖2 +
∑
i∈S

(ξ
(k)
i)2E

[
‖e

j
(k+1)
i

‖2
∣∣∣F(k)

]
+
∑
i1 6=i2

ξ
(k)
i1
ξ

(k)
i2

E

[
eT
j
(k+1)
i1

e
j
(k+1)
i2

∣∣∣∣F(k)

]
= 2α2

2‖ξ(k)‖2 +
∑
i1 6=i2

ξ
(k)
i1
ξ

(k)
i2

∑
j∈S

P(j
(k+1)
i1

= j
(k+1)
i2

= j|F(k))

(Since j(k+1)

i1
and j(k+1)

i2
are independent conditioned on F(k),)

= 2α2

2‖ξ(k)‖2 +
∑
i1 6=i2

∑
j∈S

ξ
(k)
i1
ξ

(k)
i2
P π

(k)

i1,j P
π(k)

i2,j

≤ 2α2

(
2‖ξ(k)‖2 + (ξ(k))TP π

(k)
(P π

(k)
)T ξ(k)

)
(Recall µ(k) ∈ U =⇒ ξ(k) ≤

√
τ

|S|
1,)

14

≤ 2α2

(
2
τ

|S|2
1T1 +

τ

|S|2
1TP π

(k)
(P π

(k)
)T1

)
≤ 2α2

(
2τ

|S|
+

τ

|S|2
τ21T1

)
≤ 6τ3

|S|
α2

Step 3. According to Algorithm 1, we have

h(k+1) = Proj
H

(h(k) + d(k+1)),

where ProjH denotes the Euclidean projection onto H = {h | ‖h‖∞ ≤ 2t∗mix}. Because H is
nonexpansive and h∗ ∈ H, we have

E
[
‖h(k+1) − h∗‖2

∣∣∣F(k)

]
= E

[
‖Proj
H

(h(k) + d(k+1))− h∗‖2
∣∣∣∣F(k)

]
≤ E

[
‖h(k) + d(k+1) − h∗‖2

∣∣∣F(k)

]
≤ ‖h(k) − h∗‖2 + 2(h(k) − h∗)TE

[
d(k+1)|F(k)

]
+ E

[
‖d(k+1)‖2

∣∣∣F(k)

]
≤ ‖h(k) − h∗‖2 + 2α(h(k) − h∗)T

(∑
a∈A

(I − P a)Tµ(k)
a

)
+

6τ3

|S|
α2.

Lemma 9 We define

E(k) = DKL(µ∗‖µ(k)) +
β

2α
‖h(k) − h∗‖2, G(k) =

∑
i∈S

∑
a∈A

µ
(k)
i,a (h∗ − P ah∗ − ra)i + v̄∗.

The iterates generated by Algorithm 1 satisfy for all k with probability 1 that

E
[
E(k+1)

∣∣∣F(k)

]
≤ E(k) − βG(k) + 4|A|(4t∗mix + 1)2β2 +

3τ3

|S|
αβ.

Proof (16) + β
2α ∗ (17) and use the fact

∑
a∈A

(
µ(k)
a − µ∗a

)T (
(P a − I)h(k) + ra

)
+
(
h(k) − h∗

)T (∑
a∈A

(I − P a)Tµ(k)
a

)
= −G(k),

we obtain the inequality.

Proof of Theorem 4
Note that µ(0) is set to be uniform distribution and h(0),h∗ ∈ H, hence

E(0) = DKL(µ∗‖µ1) +
β

2α
‖h(0) − h∗‖2 ≤ log (|S||A|) +

β

2α
· 4|S|(t∗mix)2.

15

It follows from Lemma 9 that

G(k) ≤
(
E(k) −E

[
E(k+1)|F(k)

]) 1

β
+ 4|A|(4t∗mix + 1)2β +

3τ3

|S|
α.

Summing over k = 0, 1, · · · , N − 1 and taking unconditional expectation, we get

1

N

N−1∑
k=0

E
[
G(k)

]
≤

E
[
E0
]
−E

[
EN
]

Nβ
+ 4|A|(4t∗mix + 1)2β +

3τ3

|S|
α

≤ log(|S||A|)
N

1

β
+

2|S|(t∗mix)2

N

1

α
+ 4|A|(4t∗mix + 1)2β +

3τ3

|S|
α

=

√
4|A|(4t∗mix + 1)2 log(|S||A|)

N
+

6τ3(t∗mix)2

N
,

which gives us 13.

Appendix C. Analysis of Cumulative Regret In N Batch Updates

Recall that the regret is defined as the difference between the expected cumulative reward and that
we could have gained if we ran the optimal policy for the same length of time.

RN := Eπ
∗

τ (N)∑
t=1

r′t

−Ealg

τ (N)∑
t=1

rt

 , (18)

where the superscripts π∗ and alg denote that the trajectories are generated under optimal policy
and the agent, respectively. τ (N) is the stopping time defined as in previous section so that it only
depends on the algorithm trajectory.

Theorem 10 Let N be the number of batch updates, we have the following regret bound for Algo-
rithm 1

RN = Õ
(
t∗mixτ

√
(τ3 + |A|)Nt∗cov2

)
.

The proof of Theorem 10 is based on two lemmas. We first state the following Aldous Lemma
without proving.

Lemma 11 (Aldous and Fill (2002)) If τ is a stopping time for a finite and irreducible Markov
chain and satisfies P (Xτ = a|X1 = a) = 1, then

Gτ (a, x) = E[τ |X1 = a]ν(x),

where Gτ := E[
∑∞

t=1 1{Xt=x,τ>t}] is the Green’s function and ν is the stationary distribution.

Lemma 12 Suppose {Xt}t≥1 is a finite ergodic Markov chain on Ω. Let ν and τcov be its stationary
distribution and cover time. Then

E

[
τcov∑
t=1

1{Xt=x}

∣∣∣∣∣X1

]
≤ 2E [τcov|X1] ν(x)

holds with probability 1 for any initial distribution and x ∈ Ω.

16

Proof It suffices to show for any fixed initial state a. Define τ = inf{t > τcov|Xt = a}. By the
strong Markov property we know (τ−τcov) is a hitting time of {Xτcov+t}t≥1, and thus E[τ−τcov] ≤
E [τcov|X1], a.s. We apply Lemma 11 and get

E

[
τcov∑
t=1

1{Xt=x}

∣∣∣∣∣X1 = a

]
≤ E

[
τ−1∑
t=1

1{Xt=x}

∣∣∣∣∣X1 = a

]
= Gτ (a, x) = E[τ |X1 = a]ν(x)

≤ 2E [τcov|X1] ν(x)

Proof of Theorem 10
Step 1. We observe that

Eπ
∗

 τ (N)∑
t=1

(r′t + h∗st+1
− h∗st − v̄

∗)

∣∣∣∣∣∣F1

= Eπ

∗

[∞∑
t=1

(r′t + h∗st+1
− h∗st − v̄

∗)1{τ (N)≥t}

∣∣∣∣∣F1

]

= Eπ
∗

[∞∑
t=1

Eπ
∗
[
r′t + h∗st+1

− h∗st − v̄
∗
∣∣∣Ft]1{τ (N)≥t}

∣∣∣∣∣F1

]

= Eπ
∗

 ∞∑
t=1

rπ∗ +
∑
j

P π
∗

st,jh
∗
j − h∗st − v̄

∗

1{τ (N)≥t}

∣∣∣∣∣∣F1

= 0.

Hence we can simplify the first term in as D

Eπ
∗

 τ (N)∑
t=1

r′t

∣∣∣∣∣∣F1

= Eπ

∗

 τ (N)∑
t=1

(r′t + h∗st+1
− h∗st − v̄

∗)

∣∣∣∣∣∣F1

+ Eπ
∗
[
h∗s1 − h

∗
τ (N)+1

∣∣∣F1

]
+ Eπ

∗
[
τ (N)v̄∗

∣∣∣F1

]
= h∗s1 −Eπ

∗
[
h∗s

τ(N)+1

∣∣∣F1

]
+ Ealg

[
τ (N)v̄∗

∣∣∣F1

]
.

(19)
Step 2. We turn to the second term in (D). For each update batch we have

Ealg

 τ (k+1)∑
t=τ (k)+1

rt

∣∣∣∣∣∣F(k)

= Eπ

(k)

 τ (k+1)∑
t=τ (k)+1

(rt + h∗st+1
− h∗st)

∣∣∣∣∣∣F(k)

+ h∗s
τ(k)+1

−Ealg
[
h∗s

τ(k+1)+1

∣∣∣F(k)

]

17

= Eπ
(k)

 τ (k+1)−τ (k)∑
t=1

(
rτ (k)+t + h∗s

τ(k)+t+1
− h∗s

τ(k)+t

)∣∣∣∣∣∣F(k)

+ h∗s
τ(k)+1

−Ealg
[
h∗s

τ(k+1)+1

∣∣∣F(k)

]

= Eπ
(k)

 τ (k+1)−τ (k)∑
t=1

(
rπ

(k)

s
τ(k)+t

+ (P π
(k)
h∗)s

τ(k)+t
− h∗s

τ(k)+t

)∣∣∣∣∣∣F(k)

+ h∗s
τ(k)+1

−Ealg
[
h∗s

τ(k+1)+1

∣∣∣F(k)

]

=
∑
a∈A

∑
i∈S

π
(k)
i,a (ra + P ah∗ − h∗)iE

π(k)

 τ (k+1)−τ (k)∑
t=1

1{s
τ(k)+t

=i}

∣∣∣∣∣∣F(k)

+ h∗s

τ(k)+1
−Ealg

[
h∗s

τ(k+1)+1

∣∣∣F(k)

]
=
∑
a∈A

∑
i∈S

π
(k)
i,a (ra + P ah∗ − h∗ − v̄∗1)iE

π(k)

 τ (k+1)−τ (k)∑
t=1

1{s
τ(k)+t

=i}

∣∣∣∣∣∣F(k)

+ h∗s

τ(k)+1
−Ealg

[
h∗s

τ(k+1)+1

∣∣∣F(k)

]
+ v̄∗Ealg

[
τ (k+1) − τ (k)

∣∣∣F(k)

]
As shown before, τ (k+1) − τ (k) is a cover time of

{
sτ (k)+t

}
t≥1

. Let ν(k) denote the stationary

distribution under policy π(k), applying Lemma 12 we get

Eπ
(k)

 τ (k+1)−τ (k)∑
t=1

1{s
τ(k)+t

=i}

∣∣∣∣∣∣F(k)

 ≤ 2E
[
τ (k+1) − τ (k)

∣∣∣F(k)

]
ν

(k)
i ≤ 2t∗covν

(k)
i , ∀i ∈ S.

Recall that h∗ is also the solution of the Bellman equation

h∗i = max
a∈A

∑
j∈S

P ai,j
(
rai − v̄∗ + h∗j

) , ∀i ∈ S,

which implies that
(ra + P ah∗ − h∗ − v̄∗1)i ≤ 0, ∀i ∈ S.

Therefore

Ealg

 τ (N)∑
t=1

rt

∣∣∣∣∣∣F1

= Ealg

N−1∑
k=0

Ealg

 τ (k+1)∑
t=τ (k)+1

rt

∣∣∣∣∣∣F(k)

∣∣∣∣∣∣F1

≥

N−1∑
k=0

Ealg

[∑
a∈A

∑
i∈S

π
(k)
i,a (ra + P ah∗ − h∗ − v̄∗1)i · 2t

∗
covν

(k)
i

∣∣∣∣∣F1

]
+ Ealg

[
h∗s

τ(0)+1
− h∗s

τ(N)+1

∣∣∣F1

]
+ v̄∗Ealg

[
τ (N) − τ (0)

∣∣∣F1

]
≥ 2t∗covτ

N−1∑
k=0

Ealg

[∑
a∈A

∑
i∈S

(ra + P ah∗ − h∗ − v̄∗1)i µ
(k)
i,a

∣∣∣∣∣F1

]
+ h∗s1 −Ealg

[
h∗s

τ(N)+1

∣∣∣F1

]
+ v̄∗Ealg

[
τ (N)

∣∣∣F1

]

(20)

18

where the last inequality comes from the fact that both the stationary state-action distribution(
π

(k)
i,a ν

(k)
i

)
i∈S,a∈A

and the dual iterate µ belong to the dual feasible set U , and differ at most by a

multiplier τ as specified in Assumption 1.
Combining (19) and (20), we obtain

RN ≤ 2t∗covτ

N−1∑
k=0

Ealg

[∑
a∈A

(h∗ − P ah∗ − ra + v̄∗1)T µ(k)
a

]
+ Elog

[
h∗s

τ(N)+1

]
−Eπ

∗
[
h∗s

τ(N)+1

]
.

Applying Theorem 4 we complete the proof.

Appendix D. Analysis of Cumulative Regret In T Time Steps

We now consider the case when Algorithm 1 stops right after T steps, rather than completing a
certain number of batch updates. Since every batch update involves at least |S| steps, we know
that the algorithm at most conducts

⌊
T
|S|

⌋
updates. Let N =

⌊
T
|S|

⌋
+ 1, we thus have τ (N) > T

following the notation in Appendix A.
Let K := min

{
k ≥ 0|T ≤ τ (k)

}
≤ N denote the update that the algorithm began to collect

data for but did not finish. The regret of Algorithm 1 has the following decomposition

RT = Eπ
∗

[
T∑
t=1

r′t

]
−Ealg

[
T∑
t=1

rt

]

=

Eπ
∗

τ (N)∑
t=1

r′t

−Ealg

τ (N)∑
t=1

rt

+

Ealg

 τ (K)∑
t=T+1

rt

−Eπ
∗

 τ (K)∑
t=T+1

r′t

+

Ealg

 τ (N)∑
t=τ (K)+1

rt

−Eπ
∗

 τ (N)∑
t=τ (K)+1

r′t

 .

The first term has been shown in Appendix C to be bounded by

Õ
(
t∗mixτ

√
(τ3 + |A|)Nt∗cov2

)
.

The second term can be easily bounded by t∗cov due to the fact that rt ∈ [0, 1].

Ealg

 τ (K)∑
t=T+1

rt

−Eπ
∗

 τ (K)∑
t=T+1

r′t

 ≤ Ealg

 τ (K)∑
t=τ (K−1)+1

rt

− 0 ≤ Ealg
[
τ (K) − τ (K−1)

]
≤ t∗cov.

The third term is indeed the negative regret of the algorithm between t = τ (K) + 1 and τ (N),
except that the optimal policy starts from a different state at t = τ (K) + 1. We construct a third

19

“concatenated” policy π̂ that picks actions according to the algorithm before t = τ (K) + 1, and
follows π∗ thereafter. Then we have

Ealg

 τ (N)∑
t=τ (K)+1

rt

−Eπ
∗

 τ (N)∑
t=τ (K)+1

r′t

=

Ealg

 τ (N)∑
t=τ (K)+1

rt

−Eπ̂

 τ (N)∑
t=τ (K)+1

r′′t

+

Eπ̂

 τ (N)∑
t=τ (K)+1

r′′t

−Eπ
∗

 τ (N)∑
t=τ (K)+1

r′t

,

where the first term on the right hand side is the negative regret, and thus negative. The second term
is the difference of the cumulative returns along two trajectories generated by the optimal policy
starting from different states. From the theory of MDP Puterman (2014) we know that it can be
controlled by 2‖h∗‖∞ = O(t∗mix).

From above we have the following bound of the Algorithm 1’s regret in T time steps.

RT = Õ

(
t∗mixτ

√
(τ3 + |A|) T

|S|
t∗cov

2

)
. (21)

Appendix E. Controlling Worst-Case Cover Time

The following theorem says that for fast-mixing MDP, the worst-cast cover time is roughly the same
as the size of the state space.

Theorem 13 Let t∗mix, t∗cov be the worst-case mixing time and worst-case cover time, under As-
sumption 1 we have

t∗cov = Õ
(√
τt∗mix |S|

)
. (22)

In the rest of this section we denote tmix, thit and tcov the worst-case mixing time, worst-case
hitting time and worst-case cover time of the Markov chain considered in the context.

Lemma 14 Matthews Let {Xt}t≥1 be an irreducible finite Markov chain on Ω. tcov and thit are
the worst-case cover time and worst-case hitting time, respectively. Then

tcov ≤ thit
(

1 +
1

2
+ ...+

1

|Ω| − 1

)
≤ thit (log(|Ω|) + 1) . (23)

Lemma 15 Suppose the transition matrix P on a finite space Ω is ergodic with stationary distri-
bution ν. Define the ε-mixing time tmix(ε) = min

{
t ≥ 1

∣∣‖P t(i, ·)− ν‖TV ≤ ε, ∀i ∈ Ω
}

. Then

tmix(ε) ≤
⌈
log2 ε

−1
⌉
tmix,

where tmix := tmix
(

1
4

)
is the worst-case mixing time.

Proof See Levin et al..

20

Lemma 16 Let {Xt}t≥1 be an ergodic finite Markov chain on Ω with transition matrix P , worst-
case hitting time thit and worst-case cover time tcov. Suppose its stationary distribution ν satisfies
ν ≥ 1√

τ |Ω|1 for some constant τ ≥ 1. Then

thit ≤ 9 log
(√
τ |Ω|

)√
τtmix |Ω| . (24)

Proof Let ε0 = 1
4
√
τ |Ω| and t0 = tmix(ε). Then by definition it holds that for any i, j ∈ Ω

∣∣P t0(i, j)− νj
∣∣ ≤ 2

∥∥P t0(i, ·)− ν
∥∥
TV
≤ 2ε =

1

2
√
τ |Ω|

.

Hence
P t0(i, j) ≥ νj −

∣∣P t0(i, j)− νj
∣∣ ≥ 1√

τ |Ω|
− 1

2
√
τ |Ω|

=
1

2
√
τ |Ω|

,

which follows that
P (Xt+t0 = j|Xt = i) ≥ 1

2
√
τ |Ω|

, ∀ t.

Fix any j ∈ Ω, let τhit be the hitting time of j. Then for any n ∈ N

P (τhit > 1 + t0n) ≤ P (X1 6= j)
n∏
k=1

P
(
X1+t0k 6= j|X1+t0(k−1) 6= j

)
≤ 1

n∏
k=1

(
1− 1

2
√
τ |Ω|

)
=

(
1− 1

2
√
τ |Ω|

)n
.

Therefore we have

E [τhit] =
∞∑
t=0

P (τhit > t)

= 1 +
∞∑
n=0

t0(n+1)∑
t=1+t0n

P (τhit > t)

≤ 1 +

∞∑
n=0

t0P (τhit > 1 + t0n)

≤ 1 +

∞∑
n=0

t0

(
1− 1

2
√
τ |Ω|

)n
= 1 + 2t0

√
τ |Ω|.

Since the above holds for any j ∈ Ω, we have thit ≤ 1 + 2t0
√
τ |Ω|.

Meanwhile, t0 is bounded by Lemma 15

t0 ≤
⌈
log2 ε

−1
0

⌉
tmix ≤ 4 log

(√
τ |Ω|

)
tmix,

which completes the proof.

Proof of Theorem 13

21

We know that for any stationary policy π, the Markov chain defined by P π on the state space S
satisfies the conditions of Lemma 14 and 16. Combining (23), (24) we have

t∗cov ≤ 9 log
(√
τ |S|

)√
τtmix |S| (log(|S|) + 1) ,

which implies (22).

In summary, we have proved the following regret bound for Algorithm 1:

R(T) = Õ
(

(t∗mix)2 τ
3
2

√
(τ3 + |A|)|S|T

)
. (25)

22

	Introduction
	Preliminaries
	Average-Reward Markov Decision Problem
	Min-Max Formulation of Bellman Equation

	An Online Primal-Dual Algorithm
	Regret Analysis
	Main Result
	Sketch of the Proof.

	Summary
	Notations
	Duality Gap
	Analysis of Cumulative Regret In N Batch Updates
	Analysis of Cumulative Regret In T Time Steps
	Controlling Worst-Case Cover Time

