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Abstract
Reinforcement learning (RL) applies to control problems with large state and action spaces, hence
it is natural to consider RL with a parametric model. In this paper we focus on finite-horizon
episodic RL where the transition model admits the linear parametrization: P =

∑d
i=1(θ)iPi. This

parametrization provides a universal function approximation and capture several useful models
and applications. We propose an upper confidence model-based RL algorithm with value-targeted
model parameter estimation. The algorithm updates the estimate of θ by recursively solving a
regression problem using the latest value estimate as the target. We demonstrate the efficiency of
our algorithm by proving its expected regret bound Õ(d

√
H3T ), where H,T, d are the horizon,

total number of steps and dimension of θ. This regret bound is independent of the total number of
states or actions, and is close to a lower bound Ω(

√
HdT ).

1. Introduction

In this paper, we study episodic reinforcement learning in an environment that can be parameterized
by finitely many unknown parameters. In particular, we focus on the case where the unknown
probability transition law admits a linear parametrization P =

∑
i θiPi where P1, P2, . . . , Pd are

known basis models and θ∗ = (θ1, . . . , θd) are unknown parameters. This is one of the most
basic parametrization for transition systems, finding use as discrete-time approximations in robotics
(Kober et al., 2013) and queueing systems (Kovalenko, 1968). It can be viewed as a mixture model
that aggregates a finite family of known basic dynamical models (Modi et al., 2019), and it is also
a linearized approximation to the more general smoothly parameterized system studied by Abbasi-
Yadkori and Szepesvári (2015). It contains as an important special case the linear-factor MDP
model where, when good feature representations are available, it is sufficient to embed conditional
transition distributions of P into a finite-dimensional matrix (Yang and Wang, 2019a).

The main contribution of this paper is an upper confidence RL algorithm, which estimates the
model parameter θ∗ adaptively using value-targeted regression and learns to act through episodes.
The key to the algorithm is estimation of the model parameter, therefore it is a model-based method.
However, there are some important differences to existing model-based methods: Model-based RL
methods often explicitly estimate transition probabilities so as to predict future observations (or
features, or raw states) (e.g. Jaksch et al., 2010; Yang and Wang, 2019a) or update a Bayesian
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posterior over a class of transition models given the observations (e.g., Strens, 2000; Osband and
Van Roy, 2014; Abbasi-Yadkori and Szepesvári, 2015; Ouyang et al., 2017; Agrawal and Jia, 2017).
In contrast, our algorithm estimates the model parameters by setting up a suitably chosen regression
problem where the targets in the regression problem are based on the estimated value function that
is used by the algorithm.An optimistic bonus is derived by exploiting the linear mixture form of
the transition kernel. Value-targeted regression has several advantages: (i) The regression target is
a one-dimensional variable, so we avoid tuning and transforming a multivariate regression target
which is often needed if we were to predict future features or observations; (ii) The values used
as regression target are also updated throughout the learning process. Using the current estimated
values as target is motivated by the theoretical observation that the regret seems to be controlled by
the value prediction error. (iii) The θ updates admits simple recursive formula. The full algorithm
is computationally simple and sample-efficient with regret guarantee.

Despite of the intuitive advantages, one might worry that regression using only next estimated
value as the target might miss to capture the full transition model or lead to low sample efficiency.
As a result, the estimated θ̂ may not be used to predict the next state, and failing to learn the full
transition model might lead to large or even linear regret. Having this concern in mind, in this paper
we study the theoretical question:

Is value-targeted regression sufficient and efficient for model-based online RL?

In the model class we study, as expected, the answer turns out to be yes. Our theory suggests
that value-targeted regression is indeed sufficient for model-based RL. We prove that the proposed
algorithm achieves an expected cumulative regret at most O(d

√
H3T ) after K episodes, where H

is the horizon, d is the number of model parameters and T = HK is the total number of steps in
K horizons. It is worth noting this regret does not depend on either the size of the state or that
of the action space. We also provide a regret lower bound Ω(

√
HdT ) by adapting a known lower

bound for tabular RL. Our approach provides a fresh perspective on the use of supervised learning
in RL. They hint that one does not need to precisely estimate the state-to-state transition function but
instead to fit the state-to-value (value of next state) relation – a much simpler supervised learning
task. The estimated value of next state can provide enough information to estimate the model and
perform action-value updates, which leads to provable sublinear regret in the worst case.

2. Problem Formulation and Assumption

We study episodic Markov decision processes (MDPs, for short), described by a tuple (S,A, P, r,H).
Each episode begins at a fixed initial state and ends after the agent madeH decisions. At state s ∈ S,
the agent, after observing the state s, can choose an action a ∈ A to incur the immediate reward
r(s, a), which is also observed. Then the process transitions to the a random next state s′ according
to the transition law P (·|s, a), which we also denote as a row vector in RS . A deterministic policy
π is a mapping from S × [H] into A, where πh(s) denotes the choice of action when encountering
state s ∈ S at the stage h ∈ [H]. The value function of a policy π is defined via

V π
h (s) = Eπ

[
H∑

h′=h

r(sh′ , π(sh′))|sh = s

]
, ∀s ,

where the subscript π (which we will often suppress) signifies that the probabilities underlying the
expectation are governed by π. An optimal policy π∗ and the optimal value function V ∗ are defined
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to be a policy and the value function such that V π
h (s) achieves the maximum among all possible

policies for any s ∈ S and h ∈ [H]. In online RL, the agent does not know P and has to learn to
make the best decisions based on its past observations. Therefore, an RL agent can be identified with
a history-dependent, nonstationary policy, which, colloquially, we also call the algorithm followed
by the agent.The pathwise, cumulated (random) regret incurred by algorithm A across K episodes
is defined as

R(T ) =

K∑
k=1

(
V ∗1 (sk1)−

H∑
h=1

r(skh, a
k
h)

)
,

where T = KH is the total number of time steps, sk1 is the initial state (history independent) at
the k-th episode, and {(s11, a11, . . . , skH , akH), . . . , (sK1 , a

K
1 , . . . , s

K
H , a

K
H)} denotes the history of K

state-action paths generated by A.
In this paper, we aim to design a learning algorithm with provably low expected regret when the

transition model belongs to a parametric family described below.

Assumption 1 (Parameterized Transition Model) There exists a vector θ∗ ∈ Rd such that ‖θ∗‖2 ≤
Cθ (Cθ ≥ 1) and

P (s′|s, a) =
d∑
j=1

(θ∗)jPj(s
′|s, a) = P•(s′|s, a)>θ∗, (1)

where Pj’s are known basis models such that supj∈[d],(s,a)∈S×A ‖Pj(·|s, a)‖1 ≤ 1, and P•(s′|s, a)

denotes the d-dimensional vector P•(s′|s, a) = [P1(s
′|s, a), . . . , Pd(s

′|s, a)]>1. Note that we do not
require each basis model Pj to be a probability transition model.

Models of the form (1) are common in practical complex systems. It can be viewed as a mix-
ture predicted model which is an aggregation of a number of known basis models. We can view
each Pj(·|·) is a basis latent “mode” and the actual transition is a probabilistic mixture of these
latent modes. For one example, robotic systems are often smoothly parameterized by unknown
mechanical parameters such as torque and friction. Our model (1) provides a linearized parame-
terized model, which can be used to approximate more general smooth parametric robotic systems
Abbasi-Yadkori and Szepesvári (2015). For another example, consider large-scale queueing net-
works where the arrival rate and job processing speed for each queue is not known. By using a
discrete-time Bernoulli approximation, the transition probability matrix from time t to t + ∆t be-
comes increasingly close to linear with respect to the unknown arrival/processing rates as ∆t→ 0.
In this case, it is common to model the discrete-time state transition as a linear aggregation of
arrival/processing processes with unknown parameters Kovalenko (1968).

Another interesting special case of model (1) is the linear-factored MDP model where P can be
embedded in a finite matrix (Yang and Wang (2019a)):

P (s′|s, a) = φ(s, a)>Mψ(s′) =

d1∑
i=1

d2∑
j=1

Mij

[
ψj(s

′)φi(s, a)
]
,

where φ(s, a) ∈ Rd1 , ψ(s′) ∈ Rd2 are given for every s, s′ ∈ S and a ∈ A. The matrixM ∈ Rd1×d2
is an unknown matrix and to be learned. Then it is easy to see that the factored MDP model is a

1. We also use P·(·|s, a) to denote a d× S matrix.
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special case of model (1) with each ψj(s′)φi(s, a) being a basis model. In this case, the number of
unknown parameters in the transition model is d = d1 × d2. In this setting, without any additional
assumption, our regret bound matches the result of Yang and Wang (2019a).

3. Upper Confidence RL with Value-Targeted Model Parameter Regression

We develop a regret minimization algorithm that takes advantage of the linearly parametrized model
by following the ideas of linear bandit Dani et al. (2008); Rusmevichientong and Tsitsiklis (2010);
Li et al. (2010); Abbasi-Yadkori et al. (2011); Chu et al. (2011). For a more detailed survey on this
subject, we refer the readers to Bubeck et al. (2012); Lattimore and Szepesvári (2018) and refer-
ences therein. To balance the exploration-exploitation tradeoff, the proposed algorithm updates an
empirical estimate of θ∗ as well as a confidence set. These estimates are used to compute optimistic
state-action values and to choose immediate actions greedily. The full form of our algorithm is
presented in Algorithm 1.

3.1. Model-Based Upper Confidence RL

Upper confidence methods are prominent in online learning. In our algorithm, we will maintain a
confidence ballBk for estimated parameters θ and construct upper confidence estimates of Q values
via optimistic value iteration:

QH+1,k(s, a) = 0,

Vh,k(s) = Π[0,H]

[
max
a∈A

Qh,k(s, a)
]
, ∀1 ≤ h ≤ H + 1,

Qh,k(s, a) = r(s, a) + max
θ∈Bk

d∑
j=1

(θ)jPj(·|s, a)Vh+1,k, ∀1 ≤ h ≤ H.

(2)

As long as θ∗ ∈ Bk with high probability, these value estimates are optimistic estimates of the actual
Q values. Next we show how to construct estimates of θ∗ and the confidence ball Bk in equation (2)
to balance the exploration-exploitation tradeoff.

3.2. Model Parameter Estimation by Value-Targeted Regression

Every time we obtain a sample (s, a, s′) from the transition model P (·|s, a), we receive information
about the model parameter θ∗. Instead of regression onto fixed target like probabilities or raw states,
we will refresh the estimate of θ∗ by regression using the estimated value functions as target. At the
(h, k)-th time step, suppose Vh+1,k is the current estimated value function for the next time step. We
let X>h,kθ be the predicted expected value of next state, where Xh,k = E•[Vh+1,k(s)|skh, akh] ∈ Rd
denotes the vector of predicted value for the basis models, i.e.,

(Xh,k)j = Ej [Vh+1,k(s)|skh, akh] =
∑
s∈S

Vh+1,k(s)Pj(s|skh, akh), j = 1, . . . , d. (3)

In situations where the expected value cannot be computed explicitly, one can approximately com-
pute Xh,k by using Monte Carlo simulation since Pj’s are known. We use the value at the observed
next state as the regression target, i.e.,

yh,k = Vh+1,k(s
k
h+1).
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Then we construct the following empirical loss function to penalize the value prediction error:(
X>h,kθ − yh,k

)2
:=
(
E•[Vh+1,k(s)|skh, akh]>θ − Vh+1,k(s

k
h+1)

)2
By aggregating the value prediction losses constructed from all past experiences, we formulate a
ridge regression problem to estimate θ∗ by

θk+1 = arg min
θ∈Rd

θ>M1,1θ +
∑

(h′,k′)≤(H,k)

(
X>h′,k′θ − yk′,h′

)2 ,
where M1,1 = H2dI acts as a regularization term.

To solve the above regression problem, we can first calculate Xh′,k′ using (3) and recursively
compute estimates of θ∗ by letting

M1,k+1 = M1,1 +
∑

(h′,k′)≤(H,k)

Xh′,k′X
>
h′,k′

w1,k+1 = w1,1 +
∑

(h′,k′)≤(H,k)

yh′,k′ ·Xh′,k′ ,

with M1,1 = H2d · I and w1,1 = 0. Then we obtain the estimated θk+1 easily by

θk+1 = M−11,k+1wk+1.

In the above regression update, we see that the regret target keep changing as the algorithm con-
structs increasingly accurate value estimates. The regression is done adaptively, where the target
value functions keep changing as the agent learns. This is in contrast to typical supervised learning
for model predictive control, where the regression targets are often fixed objects (such as raw states,
features or keypoints; e.g. Doya et al. (2002)) . Our model parameter update can be via a recursive
update in an incremental fashion. In this way, one does not need to re-train the model parameter
from scratch every episode. A similarly simple recursion was used in Jin et al. (2019) for model-free
Q learning. Our method differs in that our Q functions cannot be parameterized by d parameters
and our updates are made on the transition model rather than Q functions.

3.3. Confidence Set and Closed-Form Q-Updates

We construct Bk as follows:

Bk = {θ|(θ − θk)>Mk(θ − θk) ≤ βk}.

where βk is preselected (see the algorithm). Since the confidence sets are ellipsoids, the Q update
given by Eq. (2) have closed-forms solutions:

Qh,k(s, a) = r(s, a) +X>h,kθk +
√
βk

√
X>h,kM

−1
k Xh,k. (4)

The last term in the above is the “bonus” term that quantifies uncertainty and encourages explo-
ration. This optimistic Q value allows us to greedily pick actions while sufficiently exploring the
state space.
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4. Main Results

In this section we establish the main theorems of the paper. Theorem 1 gives the regret upper bound
for Algorithm 1.

Theorem 1 Let Assumption 1 hold. The T -time-step regret of Algorithm 1 satisfies

E [R(T )] = Õ
(
Cθ · d

√
H3T

)
,

where Cθ is a known constant such that ‖θ∗‖ ≤ Cθ and Õ hides polylog factors of H,T .

Let us outline the proof ideas. In the first part of the proof, we show that if θ∗ ∈ Bh,k, then
the estimated Q-functions are optimistic estimates of the true Q-value functions. That is, Qh,k(s) is
greater than the true Q-value Qh(s) for every s ∈ S. Using this fact, we can bound the regret by
the sum of Q1,k(s

k
1)−Qπk1 (sπk1 ), which can be decomposed into the sum of state-action confidence

bounds on the sample path. In the second part, we construct martingale difference sequences and
apply a concentration argument to show that θ∗ ∈ Bh,k for all (h, k) with high probability. The full
proof is deferred to the Appendix D.

We also provide a lower bound for the regret in our model. The proof is by reduction to a known
lower bound and is left to Appendix E.

Theorem 2 For any H ≥ 1 and d ≥ 8, there exists an MDP instance M(S,A, P, r,H) and d
basis models Pi(·|·), 1 ≤ i ≤ d satisfying Assumption 1 such that any algorithm has regret at least
Ω(
√
HdT ) for sufficiently large T .

The theorems validate that, in the setting we consider, it is sufficient to use the predicted value
functions as regression targets. This suggests that it may be unnecessary to apply supervised learn-
ing to predict fixed target like raw state in model-based RL. Our regret upper bound is close to the
lower bound. Also note Rusmevichientong and Tsitsiklis (2010) gives a regret lower bound d

√
T

for linearly parameterized bandit with actions on the unit sphere. Our regret upper bound matches
this bandit lower bound in d, T , although the settings are not exactly the same.

5. Related Work

Reinforcement learning (RL) enables learning to control in complex environments through trial
and error. It is a core problem in artificial general intelligence (Goertzel and Pennachin, 2007;
Sutton et al., 1998) and recent years have witnessed phenomenal empirical advances such as in
games, robotics and science Mnih et al. (2015); Silver et al. (2017); AlQuraishi (2019); Arulku-
maran et al. (2019). In online RL, an agent has to learn to act in an unknown environment from
the scratch, collect data as she acts and adapt the policy in realtime. An important problem is to
design algorithms that provably achieve sublinear regret in a large class of environments. Regret
minimization for RL has received considerable attention during recent years (e.g., Jaksch et al.
2010; Osband et al. 2014; Azar et al. 2017; Dann et al. 2017, 2018; Agrawal and Jia 2017; Osband
et al. 2017; Jin et al. 2018; Yang and Wang 2019a; Jin et al. 2019). While most of these existing
work focus on the tabular or linear-factor MDP, only a handful of prior efforts have studied RL with
general model classes, including the seminal paper Strens (2000) and theoretical works (Osband
and Van Roy, 2014; Abbasi-Yadkori and Szepesvári, 2015; Theocharous et al., 2017) that adopt a
Bayesian, model-based approach. Please see Section A in the appendix for more discussions on
related works.
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Appendix A. More Related Works

A number of prior efforts have established efficient RL methods with provable regret bounds. For
tabular H-horizon MDP with S states and A actions, there have been results on model-based meth-
ods (e.g., Jaksch et al. 2010; Osband et al. 2014; Azar et al. 2017; Dann et al. 2017, 2018; Agrawal
and Jia 2017), and on model-free methods (e.g., Osband et al. 2017; Jin et al. 2018). Among these
works, the best known regret achieved by a model-based algorithm is Õ(

√
H2SAT ) and the best

regret achieved by a model-free algorithms is asymptotic Õ(
√
HSAT ), where T denotes the num-

ber of time steps and Õ(·) hides log factors. Jaksch et al. (2010) established a worst-case regret
lower bound of Ω(

√
HSAT ).

Moving beyond tabular MDP, there have been significant theoretical and empirical advances on
RL with function approximation, including but not limited to Baird (1995); Tsitsiklis and Van Roy
(1997); Parr et al. (2008); Mnih et al. (2013, 2015); Silver et al. (2017); Yang and Wang (2019b);
Bradtke and Barto (1996). Among these works, many papers aim to uncover algorithms that are
provably efficient. Under the assumption that the optimal action-value function is captured by linear
features, Zanette et al. (2019) considers the case when the features are “extrapolation friendly” and a
simulation oracle is available, Wen and Van Roy (2013, 2017) tackle problems where the transition
model is deterministic, Du et al. (2019) deals with a relaxation of the deterministic case when the
transition model has low variance. Yang and Wang (2019b) considers the case of linear factor mod-
els, while Lattimore and Szepesvári (2019) considers the case when all the action-value functions of
all deterministic policies are well-approximated using a linear function approximator. These latter
works handle problems when the algorithm has access to a simulation oracle of the MDP. As for
regret minimization in RL using linear function approximation, Yang and Wang (2019a) assumed
the transition model admits a matrix embedding of the form P (s′|s, a) = φ(s, a)>Mψ(s′), and
proposed a model-based MatrixRL method with regret bounds Õ(H2d

√
T ) with stronger assump-

tions and Õ(H2d2
√
T ) in general, where d is the dimension of state representation φ(s, a). Jin et al.

(2019) studied the setting of linear-factor MDP and constructed a model-free least-squares action-
value iteration algorithm, which was proved to achieve the regret bound Õ(

√
H3d3T ). (Modi et al.,

2019) considered a related setting where the transition model is an ensemble involving state-action-
dependent features and basis models and proved a sample complexity d3K2H2

ε2
where d is the feature

dimension, K is the number of basis models and d ·K is their total model complexity.
As for RL with a general model class, the seminal paper Osband and Van Roy (2014) provided

a general posterior sampling RL method that works for any given classes of reward and transition
functions. It established a Bayesian regret upper bound O(

√
dKdET ), where dK and dE are the

Kolmogorov and the Eluder dimensions of the model class. In the case of linearly parametrized
transition model (Assumption 1 of this paper), this Bayesian regret becomes O(d

√
T ), and our

worst-case regret result matches with the Bayesian one. The works Abbasi-Yadkori and Szepesvári
(2015); Theocharous et al. (2017) also considered the Bayesian regret and while Abbasi-Yadkori
and Szepesvári (2015) considered a smooth parameterization with different notions of smoothness.
To the authors’ best knowledge, there are no prior works addressing the problem of designing low-
regret algorithms for MDPs with linearly parameterized transition models.

Appendix B. Conclusion of the Paper

The paper proposes an episodic upper confidence reinforcement learning method that applies to
linearly parameterized transition systems. The proposed method updates the model parameter re-

9
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cursively by regression using the estimated next-state value as the regression target. Then the esti-
mated model is used to update the optimistic state-action values and prescribe actions in the upcom-
ing episode. We show that this simple algorithm achieves a worst-case regret up to Õ(H3/2d

√
T )

where d is the number of model parameters. This result demonstrates the efficacy of value-targeted
regression for efficient model-based reinforcement learning.

Appendix C. Main Algorithm

In this section, we provide the model-based reinforcement learning algorithm with value-target
regression mentioned in Section 3.

Algorithm 1 UCRL with Value-Targeted Model Estimation
1: Input: MDP, d,H, T = KH;
2: Initialize: M1,1 ← H2dI , w1,1 ← 0 ∈ Rd×1, θ1 ←M−11,1w1,1 for 1 ≤ h ≤ H;
3: Initialize: δ ← 1/K, βk ← 16C2

θH
2d log(1 +Hk) log2((k + 1)2H/δ) for 1 ≤ k ≤ K;

4: Compute Q-function Qh,1 using θ1,1 according to (2);
5: for k = 1 : K do
6: Obtain initial state sk1 for episode k;
7: for h = 1 : H do
8: Choose action greedily by akh = arg maxa∈AQh,k(s

k
h, a) and observe the next state

skh+1

9: Compute the predicted value vector: . Evaluate the expected value of next state
10: Xh,k ← E•[Vh+1,k(s)|skh, akh] =

∑
s∈S Vh+1,k(s) · P•(s|skh, akh).

11: yh,k ← Vh+1,k(s
k
h+1) . Update regression parameters

12: Mh+1,k ←Mh,k +Xh,kX
>
h,k

13: wh+1,k ← wh,k + yh,k ·Xh,k

14: end for
15: Update at the end of episode: . Update Model Parameters

M1,k+1 ←MH+1,k w1,k+1 ← wH+1,k and θk+1 ←M−11,k+1w1,k+1;

16: Compute Qh,k+1, h = H, . . . , 1, using θk+1 according to (4) . Computing Q functions
17: end for

Appendix D. Proof of Theorem 1

Here we will provide the formal proof of Theorem 1. The full proof is divided into five parts in
the following five subsections respectively. In the first subsection, we decompose the regret into the
sum of bonuses assuming the Q-functions indeed are optimistic estimates. In the second subsection,
we discover some important properties of our algorithm. We provide an upper bound to the sum of
bonuses in the third subsection. In the fourth subsection, we will prove that the optimism holds with
high probability by constructing a particular martingale and showing that it concentrates, and in the
final subsection, we will put together all the analysis to finish the proof of upper bound of expected
regret.

10
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We say (h, k) ≤ (h′, k′) if k < k′ or k = k′, h ≤ h′. Thus, ≤ stands for the lexicographic order
with k being the variable that takes priority. We say (h, k) < (h′, k′) if k < k′ or k = k′, h < h′.Let
Fh,k be the filtration generated by the random sample path {(sk′h′ , ak

′
h′ , r

k′
h′)}(h′,k′)≤(h,k).

D.1. Regret Analysis

Throughout D.1 to D.3, we assume that θ∗ ∈ Bk for all 1 ≤ k ≤ K. And in subsection D.4 we will
prove that this event holds with high probability.

D.1.1. OPTIMISM

We will show by induction that Q∗h(s, a) ≤ Qh,k(s, a) for all (s, a), h and k. For h = H + 1, this
inequality obviously holds, since both sides equal to 0. Next suppose that this inequality holds for
some h+ 1 ≤ H . As a result, we have

V ∗h+1(s) =
∏

[0,H]

[
max
a∈A

Q∗h+1(s, a)

]
≤
∏

[0,H]

[
max
a∈A

Qh+1,k(s, a)

]
= Vh+1,k(s),

which indicates that

Q∗h(s, a) = r(s, a) + P (·|s, a)>V ∗h+1 ≤ r(s, a) + P (·|s, a)>Vh+1,k

= r(s, a) +

d∑
j=1

(θ∗)jPj(·|s, a)>Vh+1,k ≤ r(s, a) + max
θ∈Bk

 d∑
j=1

(θ)jPj(·|s, a)>Vh+1,k


= Qh,k(s, a).

This completes the induction.

D.1.2. REGRET DECOMPOSITION

Let us denote πk to be the stationary policy used in the k episode, and let

θ̄h,k(s, a) = arg max
θ∈Bk

d∑
j=1

(θ)jPj(·|s, a)>Vh+1,k.

Using the fact that πk(skh) = akh and θ∗ ∈ Bk and letting ξkh+1 be

ξkh+1 := P (·|skh, akh)>(Vh+1,k − V ∗h+1)−
[
Vh+1,k(s

k
h+1)− V ∗h+1(s

k
h+1)

]
,

11
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we have

Vh,k(s
k
h)− V πk

h (skh) = Qh,k(s
k
h, a

k
h)−Qπkh (skh, a

k
h)

= r(skh, a
k
h) + θ̄h,k(s

k
h, a

k
h)>P•(·|skh, akh)Vh+1,k − r(skh, akh)− θ>∗ P•(·|skh, akh)V πk

h+1

=
[
θ∗ + θ̄h,k(s

k
h, a

k
h)− θk + θk − θ∗

]>
P•(·|skh, akh)Vh+1,k − θ>∗ P•(·|skh, akh)V πk

h+1

≤ θ>∗ P•(·|skh, akh)(Vh+1,k − V πk
h+1) + 2 max

θ∈Bk

∣∣∣(θ − θk)>P•(·|skh, akh)Vh+1,k

∣∣∣
≤ P (·|skh, akh)>(Vh+1,k − V πk

h+1) + 2 max
θ∈Bk

√
(θ − θk)>Mk(θ − θk)·√[

P•(·|skh, akh)Vh+1,k

]>
M−1k

[
P•(·|skh, akh)Vh+1,k

]
≤ Vh+1,k(s

k
h+1)− V

πk
h+1(s

k
h+1) + ξkh+1

+ 2
√
βk ·

√[
P•(·|skh, akh)Vh+1,k

]>
M−1k

[
P•(·|skh, akh)Vh+1,k

]
,

where the first inequality uses the fact that θ∗, θh,k ∈ Bk, the second inequality uses the Cauchy-
Schwarz inequality and the third inequality uses the definition of Bk.

Recall that Vh+1,k(s) = V ∗H+1(s) = 0 for any s ∈ S . We apply the preceding inequality
recursively and obtain

V ∗1 (sk1)− V πk
1 (sk1) ≤ V1,k(sk1)− V πk

1 (sk1) (by optimism of value estimates)

≤
H∑
h=1

ξkh+1 + 2
H∑
h=1

√
βk ·

√[
P•(·|skh, akh)Vh+1,k

]>
M−1k

[
P•(·|skh, akh)Vh+1,k

]
,

therefore the expected regret can be bounded by if we bound the expectation of

R̂(K) =

K∑
k=1

[
V ∗1 (sk1)− V πk

1 (sk1)
]

≤
K∑
k=1

H∑
h=1

ξkh+1 + 2
K∑
k=1

H∑
h=1

√
βk ·

√[
P•(·|skh, akh)Vh+1,k

]>
M−1k

[
P•(·|skh, akh)Vh+1,k

]
.

(5)
Moreover, it is easy to observe that

E
[
ξkh+1

∣∣Fh,k] = 0,

therefore ξkh+1 is a martingale difference sequence w.r.t. Fh,k. Since

0 ≤ V ∗h (skh), Vh,k(s
k
h) ≤ H and P (·|skh, akh) is a probability distribution over the state space,

we have |ξkh| ≤ H with probability 1. By the Azuma-Hoeffding inequality, with probability at least
1− δ, the following inequality holds

K∑
k=1

H∑
h=1

ξkh+1 ≤
√

2H3K log(1/δ). (6)

12
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It remains to analyze the second term of (5), ie., the sum of bonus given by

2
K∑
k=1

H∑
h=1

√
βk ·

√[
P•(·|skh, akh)Vh+1,k

]>
M−1k

[
P•(·|skh, akh)Vh+1,k

]
.

D.2. Some Properties of Algorithm 1

In this subsection we establish several useful properties of our algorithm, assuming that optimism
holds throughout.

D.2.1.

Note that

Mh,k = M1,1 +
∑

(h′,k′)<(h,k)

[
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

] [
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]>
.

Denote
lh,k =

√[
P•(·|skh, akh)Vh+1,k

]>
M−1h,k

[
P•(·|skh, akh)Vh+1,k

]
.

Denote by (h, k) + 1 the double index of the next time step after (h, k), that is (h+ 1, k) if h < H
and (h, k + 1) otherwise. We can see {Mh,k} satisfies M1,k = MH+1,k−1 and also a recursive
formula

M−1(h,k)+1 =

(
Mh,k +

[
P•(·|skh, akh)Vh+1,k

] [
P•(·|skh, akh)Vh+1,k

]>)−1
= M−1h,k −

M−1h,k
[
P•(·|skh, akh)Vh+1,k

] [
P•(·|skh, akh)Vh+1,k

]>
M−1h,k

1 +
[
P•(·|skh, akh)Vh+1,k

]>
M−1h,k

[
P•(·|skh, akh)Vh+1,k

] .
It implies that[

P•(·|skh, akh)Vh+1,k

]>
M−1(h,k)+1

[
P•(·|skh, akh)Vh+1,k

]
= l2h,k −

l2h,k · l2h,k
1 + l2h,k

=
l2h,k

1 + l2h,k
.

D.2.2.

Next, we derive an upper bound to the quantity

K∑
k=1

H∑
h=1

l2h,k
1 + l2h,k

.

Since
M(h,k)+1 = Mh,k +

[
P•(·|skh, akh)Vh+1,k

]> [
P•(·|skh, akh)Vh+1,k

]
,

we have

detM(h,k)+1 = detMh,k det

(
I +M

−1/2
h,k

[
P•(·|skh, akh)Vh+1,k

]> [
P•(·|skh, akh)Vh+1,k

]
M
−1/2
h,k

)
= detMh,k

(
1 + l2h,k

)
.

13
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This indicates that ∑
(h′,k′)≤(h,k)

log
(
1 + l2h′,k′

)
= log detM(h,k)+1 − log detM1,1.

Furthermore, since
l2h,k

1 + l2h,k
≤ min{1, l2h,k} ≤ 2 log

(
1 + l2h,k

)
,

we have∑
(h′,k′)≤(h,k)

l2h′,k′

1 + l2h′,k′
≤

∑
(h′,k′)≤(h,k)

min
{

1, l2h′,k′
}

≤
∑

(h′,k′)≤(h,k)

2 log(1 + l2h′,k′) = 2 log detM(h,k)+1 − 2 log detM1,1.

D.2.3.

Given the initial value M1,1 = H2dI , we have

tr(M(h,k)+1) = tr(M1,1) +
∑

(h′,k′)≤(h,k)

‖P•(·|sk
′
h′ , a

k′
h′)Vh′+1,k′‖2

= H2d2 +
∑

(h′,k′)≤(h,k)

d∑
j=1

(
Pj(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

)2
≤ H2d2 +KdH3,

where the last inequality uses Assumption 1 and the fact that

Pj(·|sk
′
h′ , a

k′
h′)Vh′+1,k′ ≤ ‖Pj(·|sk

′
h′ , a

k′
h′)‖1‖Vh′+1,k′‖∞ ≤ H.

Using the inequalities of arithmetic and geometric means, we get the following upper bound for the
determinant of M(h,k)+1:

detM(h,k)+1 ≤
(

tr(M(h,k)+1)

d

)d
≤ (H2d+KH3)d,

which indicates that

log detM(H,k)+1 − log detM1,1 ≤ log
(

(H2d+KH3)d
)
− log

(
(H2d)d

)
≤ d log(1 +HK).

(7)
Hence we have ∑

(h′,k′)≤(h,k)

l2h′,k′

1 + l2h′,k′
≤

∑
(h′,k′)≤(h,k)

min
{

1, l2h′,k′
}
≤ 2d log(1 +HK).
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D.3. Sum-of-Bonus Analysis

In this section, under the assumption that θ∗ ∈ Bk for every k, we establish an upper bound for the
following sum-of-bonus term

2

K∑
k=1

H∑
h=1

√
βk ·

√[
P•(·|skh, akh)Vh+1,k

]>
M−1k

[
P•(·|skh, akh)Vh+1,k

]
,

where we denote Mk = M1,k for simplicity. We let

uh,k =

√[
P•(·|skh, akh)Vh+1,k

]>
M−1k

[
P•(·|skh, akh)Vh+1,k

]
.

Since βk ≤ βK for any 1 ≤ k ≤ K and by letting

u2h,k =
[
P•(·|skh, akh)Vh+1,k

]>
M−1k

[
P•(·|skh, akh)Vh+1,k

]
≤
[
P•(·|skh, akh)Vh+1,k

]>
M−11

[
P•(·|skh, akh)Vh+1,k

]
=

1

H2d
·

d∑
j=1

[
Pj(·|skh, akh)Vh+1,k

]2
≤ 1

H2d
·H2d = 1,

we have

2
K∑
k=1

H∑
h=1

√
βk ·

√[
P•(·|skh, akh)Vh+1,k

]>
M−1k

[
P•(·|skh, akh)Vh+1,k

]
≤ 2
√
βK ·

K∑
k=1

H∑
h=1

uh,k ≤ 2
√
βK ·

K∑
k=1

H∑
h=1

min{1, uh,k}

≤ 2
√
HKβK ·

√√√√ K∑
k=1

H∑
h=1

min{1, u2h,k} ≤ 4
√
HKβK ·

√√√√ K∑
k=1

H∑
h=1

log(1 + u2h,k)

(8)

where the third inequality uses the Cauchy-Schwarz inequality. Next we notice that

Mk+1 = Mk +
H∑
h=1

[
P•(·|skh, akh)Vh+1,k

]> [
P•(·|skh, akh)Vh+1,k

]
.

Hence we have

det(Mk+1) = det(Mk)·det

(
I +

H∑
h=1

M
−1/2
k

[
P•(·|skh, akh)Vh+1,k

]> [
P•(·|skh, akh)Vh+1,k

]
M
−1/2
k

)
.

We further notice that every eigenvalue of the matrix

I +
H∑
h=1

M
−1/2
k

[
P•(·|skh, akh)Vh+1,k

]> [
P•(·|skh, akh)Vh+1,k

]
M
−1/2
k
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is at least 1, and we have the following bound of its trace:

tr

(
H∑
h=1

M
−1/2
k

[
P•(·|skh, akh)Vh+1,k

]> [
P•(·|skh, akh)Vh+1,k

]
M
−1/2
k

)

=

H∑
h=1

[
P•(·|skh, akh)Vh+1,k

]>
M−1k

[
P•(·|skh, akh)Vh+1,k

]
=

H∑
h=1

u2h,k.

This indicates that

det

(
I +

H∑
h=1

M
−1/2
k

[
P•(·|skh, akh)Vh+1,k

]> [
P•(·|skh, akh)Vh+1,k

]
M
−1/2
k

)

≥ 1 + tr

(
I +

H∑
h=1

M
−1/2
k

[
P•(·|skh, akh)Vh+1,k

]> [
P•(·|skh, akh)Vh+1,k

]
M
−1/2
k

)

= 1 +

H∑
h=1

u2h,k,

where the first inequality follows from the following fact:
∏
i(1 + wi) ≥ 1 +

∑
iwi provided

wi ≥ 0. Combining the above inequality with the following inequality

1 +

H∑
h=1

u2h,k =

∑H
h=1(1 +Hu2h,k)

H
≥

H∏
h=1

(1 +Hu2h,k)
1/H ≥

H∏
h=1

(1 + u2h,k)
1/H ,

we obtain that

H∑
h=1

log(1 + u2h,k) ≤ H log

(
1 +

H∑
h=1

u2h,k

)
≤ H det(Mk+1)−H det(Mk).

Therefore, we have

2

K∑
k=1

H∑
h=1

√
βk ·

√[
P•(·|skh, akh)Vh+1,k

]>
M−1k

[
P•(·|skh, akh)Vh+1,k

]

≤ 4
√
HKβK ·

√√√√ K∑
k=1

H∑
h=1

log(1 + u2h,h)

≤ 4
√
HKβK ·

√√√√ K∑
k=1

H det(Mk+1)−H det(Mk)

≤ 4
√
HKβK ·

√
H det(M(H,k)+1)−H det(M1,1)

≤ 4
√
H2dKβK log(1 +HK),

where the last inequality uses (7).
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D.4. Martingale Concentration Analysis

In this section, we will prove that θ∗ ∈ Bk for every k with high probability. We define

wh,k =
∑

(h′,k′)<(h,k)

Vh′+1,k′(s
k′
h′+1) ·

[
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]
,

θh,k = M−1h,kwh,k,

Bh,k =
{

(θ − θh,k)TMh,k(θ − θh,k) ≤ βk
}
,

and it is easy to see θk = θ1,k and Bk = B1,k. Next, we will prove that θ∗ ∈ Bh,k for every h, k
with high probability. Note that all sample transitions are dependent by the nature of our algorithm.
We will construct a particular martingale to prove concentration of the proposed estimates.

We define the random vectors {Yh,k} as

Yh,k = Mh,k(θh,k − θ∗) = wh,k −Mh,kθ∗,

and define the probabilistic events Eh,k as

Eh,k = {θ ∈ Bh,k} =
{
Y >h,kM

−1
h,kYh,k ≤ βk

}
.

In what follows we will prove that, with probability at least 1− δ events Eh,k holds for all (h, k).
For vector Yh,k, we have its initial value

Y1,1 = −H2d · θ∗,

and by letting

ηh,k = Vh+1,k(s
k
h+1)− E[Vh+1,k(s)|skh, akh] = Vh+1,k(s

k
h+1)− P (·|skh, akh)Vh+1,k,

we have the following iterative formula:

Y(h,k)+1 = w(h,k)+1 −M(h,k)+1θ∗

= wh,k + Vh+1,k(s
k
h+1) ·

[
P•(·|skh, akh)Vh+1,k

]
−Mh,kθ∗

−
[
P•(·|skh, akh)Vh+1,k

] [
P•(·|skh, akh)Vh+1,k

]>
θ∗

= Yh,k +
[
Vh+1,k(s

k
h+1)− P (·|skh, akh)Vh+1,k

]
·
[
P•(·|skh, akh)Vh+1,k

]
= Yh,k + ηh,k

[
P•(·|skh, akh)Vh+1,k

]
.

Since skh+1 is sampled from distribution P (·|skh, akh), we have

E
[
ηh,k

∣∣Fh,k] = 0 and |ηh,k| ≤ H.
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It follows that

Y >(h,k)+1M
−1
(h,k)+1Y(h,k)+1

= Y >h,kM
−1
(h,k)+1Yh,k + 2ηh,k

[
P•(·|skh, akh)Vh+1,k

]
M−1(h,k)+1Yh,k

+ η2h,k

[
P•(·|skh, akh)Vh+1,k

]>
M−1(h,k)+1

[
P•(·|skh, akh)Vh+1,k

]
≤ Y >h,kM−1h,kYh,k + 2ηh,k

[
P•(·|skh, akh)Vh+1,k

]>
M−1(h,k)+1Yh,k

+ η2h,k

[
P•(·|skh, akh)Vh+1,k

]>
M−1(h,k)+1

[
P•(·|skh, akh)Vh+1,k

]
,

where the inequality uses the fact M(h,k)+1 �Mh,k. It follows by induction that

Y >(h,k)+1M
−1
(h,k)+1Y(h,k)+1

≤ Y >1,1M−11,1Y1,1 + 2
∑

(h′,k′)≤(h,k)

ηh′,k′
[
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]T
M−1(h′,k′)+1Yh′,k′

+
∑

(h′,k′)≤(h,k)

η2h′,k′
[
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]>
M−1(h′,k′)+1

[
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]
.

(9)

For the first term on RHS of (9), according to M1 = H2dI and Assumption 1, we have

Y >1,1M
−1
1,1Y1,1 = θ>∗M1θ∗ ≤ H2d‖θ∗‖22 = C2

θ ·H2d.

For the third term on RHS of (9), since[
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]>
M−1(h′,k′)+1

[
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]
=

l2h′,k′

1 + l2h′,k′
and |ηh′,k′ | ≤ H,

we have ∑
(h′,k′)≤(h,k)

η2h′,k′
[
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]>
M−1(h′,k′)+1

[
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]

≤ H2 ·
∑

(h′,k′)≤(h,k)

l2h′,k′

1 + l2h′,k′
≤ 2H2d log(1 +HK).

For the second term in (9), we will conduct a martingale concentration analysis. We let Eh′,k′ be
the indicator function given by

Eh′,k′ = I
[
Eh′′,k′′ for all (h′′, k′′) ≤ (h′, k′)

]
and let

Gh′,k′ = Eh′,k′ · ηh′,k′
[
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]
M−1(h′,k′)+1Yh′,k′ .

We notice that calculating Vh′+1,k′ only requires samples (sk
′′
h′′ , a

k′′
h′′) for k′′ ≤ k′−1 and calculating

M(h′,k′)+1, Yh′,k′ only requires samples (sk
′′
h′′ , a

k′′
h′′) for (h′′, k′′) ≤ (h′, k′). We also notice that

Eh′′,k′′ ∈ Fh′,k′ for every (h′′, k′′) ≤ (h′, k′). These facts indicate

Vh′+1,k′ , M(h′,k′)+1, Yh′,k′ , P•(·|sk
′
h′ , a

k′
h′), Eh′,k′ are all Fh′,k′-measurable.
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Therefore, since E
[
ηh′,k′

∣∣Fh′,k′] = 0, we have

E
[
Gh′,k′

∣∣Fh′,k′] = 0,

therefore
{
Gh′,k′

}
(h′,k′)≤(h,k) is a martingale difference sequence adapted to the filtration {Fk′,h′}(h′,k′)≤(h,k).

Moreover, when Eh′,k′ = 1, we have events Eh′′,k′′ hold for (h′′, k′′) ≤ (h′, k′), which implies that

Eh′,k′ · Yh′,k′M−1h′,k′Yh′,k′ ≤ βk′

and when Eh′,k′ = 0 the left hand side of the above inequality is 0, and this inequality also holds.
Therefore, we have the following upper bound that holds for the absolute value of Gh′,k′ with
probability 1:∣∣Gh′,k′∣∣ ≤ HEh′,k′ · ∣∣∣[P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]
M−1(h′,k′)+1Yh′,k′

∣∣∣
≤ H ·

√[
P•(·|sk′h′ , ak

′
h′)Vh′+1,k′

]
M−1(h′,k′)+1

[
P•(·|sk′h′ , ak

′
h′)Vh′+1,k′

]
·
√
Eh′,k′ · Yh′,k′M−1(h′,k′)+1Yh′,k′

= H ·

√√√√ l2h′,k′

1 + l2h′,k′
·
√
Eh′,k′ · Yh′,k′M−1(h′,k′)+1Yh′,k′ ≤ H ·

√
Eh′,k′ · Yh′,k′M−1h′,k′Yh′,k′

≤ H
√
βk′ ≤ H

√
βk,

It also follows that the sum of conditional variances satisfies with probability 1:∑
(h′,k′)≤(h,k)

Var
(
Gh′,k′

∣∣∣Fk′,h′)
≤

∑
(h′,k′)≤(h,k)

Eh′,k′
∣∣∣ηh′,k′ [P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]
M−1(h′,k′)+1Yh′,k′

∣∣∣2
≤

∑
(h′,k′)≤(h,k)

H2 ·
l2h′,k′

1 + l2h′,k′
·
(
Eh′,k′ · Yh′,k′M−1h′,k′Yh′,k′

)
≤ H2βk

∑
(h′,k′)≤(h,k)

l2h′,k′

1 + l2h′,k′

≤ 4H2d log(1 +HK) · βk.

We will use the Freedman concentration inequality as follows.

Theorem 3 (Freedman et al. (1975)) LetX1, · · · , XT be a martingale difference sequence adapted
to filtration F1, · · · ,FT (X1, · · · , Xt−1 are Ft-measurable and E[Xt|Ft] = 0). Let b be an upper
bound on Xi, and let V be the sum of conditioned variances:

V =
∑
t≤T

Var (Xt|Ft) .

Then for every a, v > 0, we have

P

[
T∑
t=1

Xt ≥ a, and V ≤ v

]
≤ exp

(
−a2

2v + 2ab/3

)
.
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We apply the above Freedman inequality to our constructed martingale difference sequence and
the filtration Fh′,k′ up to (h, k), by letting

b = H
√
βk,

a = βk+1/4 = 4H2d log(1 +Hk) log2((k + 1)2H/δ),

v = 4H2d log(1 + k) · βk,

then we obtain for every (h, k) that

P

 ∑
(h′,k′)≤(h,k)

Gh′,k′ ≤ βk+1/4

 ≥ 1− δ

2(k + 1)2H
.

Further by applying an union bound to the above inequality for all (h, k), we obtain

P

 ∑
(h′,k′)≤(h,k)

Gh′,k′ ≤ βk+1/4 for all (h, k)

 ≥ 1−
∞∑
k=1

H · δ

2(k + 1)2H
≥ 1− δ. (10)

In the following we will prove by induction on (h, k) that if inequality
∑

(h′,k′)≤(h,k)Gh′,k′ ≤
βk+1/4 holds for every (h, k), then events Eh,k hold for all (h, k). When (h, k) = (1, 1), it is easy
to verify that event Eh,k holds. Next we assume that events Eh′,k′ hold for all (h′, k′) ≤ (h, k) and
consider the event E(h,k)+1.

Since Eh′,k′ holds for all (h′, k′) ≤ (h, k), we have Eh′,k′ = 1 for every (h′, k′) ≤ (h, k). This
indicates that∑

(h′,k′)≤(h,k)

ηh′,k′
[
P•(·|sk

′
h′ , a

k′
h′)Vh′+1,k′

]T
M−1(h′,k′)+1Yh′,k′ =

∑
(h′,k′)≤(h,k)

Gh′,k′ ≤
βk+1

4

Hence by using (9) we obtain the following inequality:

Y >(h,k)+1M
−1
(h,k)+1Y(h,k)+1 ≤ C2

θ ·H2d+ βk+1/2 + 4H2d log(1 +HK) ≤ βk+1,

in other words E(h,k)+1 holds. This completes the induction of at (h, k) + 1.
Finally we notice from (10) that with probability at least 1−δ, inequality

∑
(h′,k′)≤(h,k)Gh′,k′ ≤

βk+1/4 holds for all (h, k). Therefore, with probability at least 1−δ, events Eh,k holds for all (h, k),
therefore θ∗ ∈ Bk holds for all 1 ≤ k ≤ K with probability at least 1− δ.

D.5. Expected Regret Analysis

According to Section D.4, we have with probability at least 1− δ that θ∗ ∈ Bk for all 1 ≤ k ≤ K.
When this event happens, we enable the analysis of Sections D.1-D.3. We combine the error bounds
(6) and (8) and apply them into the regret bound (5). It follows that, if T = KN ,

R(T ) ≤ 2
√
H3K log(1/δ) + 4

√
H2dKβK log(1 +HK)

≤ 18CθH
2d
√
K · log(1 +HK) log((K + 1)2H/δ)
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with probability at least 1 − 2δ. Note the trivial upper bound R(K) ≤ HK. Therefore, by letting
δ = 1/K and noticing T = HK, we get

E [R(T )] ≤ (1− 2δ) · 18CθH
2d
√
K · log(1 +HK) log((K + 1)2H/δ) + 2δ ·HK

≤ 20CθH
2d
√
K · log(1 +HK) log(K(K + 1)2H) = Õ(Cθ ·H2d

√
K)

= Õ(Cθ · d
√
H3T ).

Thus we have completed the proof of Theorem 1.

Appendix E. Proof of Theorem 2

In this section we establish a regret lower bound by reduction to a known result for tabular MDP.
Proof We assume without loss of generality that d is a multiple of 4 and d ≥ 8. We set S = 2 and
A = d/4 ≥ 2. According to Azar et al. (2017), Osband and Van Roy (2016), there exists an MDP
M(S,A, P, r,H) with S states, A actions and horizonH such that any algorithm has regret at least
Ω(
√
HSAT ). In this case, we have |S × A × S| = d. We use σ(s, a, s′) to denote the index of

(s, a, s′) in S ×A× S. Letting

Pi(s
′|s, a) =

{
1 if σ(s, a, s′) = i,

0 otherwise,

and θi = P (s′|s, a) if σ(s, a, s′) = i, we will have P (s′|s, a) =
∑d

i=1 θ
iPi(s

′|s, a). Therefore P
can be parametrized using (1). Therefore, the known lower bound Ω(

√
HSAT ) implies a worst-

case lower bound of Ω(
√
H · d/2 · T ) = Ω(

√
HdT ) for our model.
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