
Proceedings of Machine Learning Research vol 120:1–13, 2020

Learning to Correspond Dynamical Systems

Nam Hee Kim NHGK@CS.UBC.CA

Zhaoming Xie ZXIE47@CS.UBC.CA

Michiel van de Panne VAN@CS.UBC.CA

Department of Computer Science, The University of British Columbia

Abstract
Many dynamical systems exhibit similar structure, as often captured by hand-designed simplified
models that can be used for analysis and control. We develop a method for learning to correspond
pairs of dynamical systems via a learned latent dynamical system. Given trajectory data from two
dynamical systems, we learn a shared latent state space and a shared latent dynamics model, along
with an encoder-decoder pair for each of the original systems. With the learned correspondences in
place, we can use a simulation of one system to produce an imagined motion of its counterpart. We
can also simulate in the learned latent dynamics and synthesize the motions of both corresponding
systems, as a form of bisimulation. We demonstrate the approach using pairs of controlled bipedal
walkers, as well as by pairing a walker with a controlled pendulum.
Keywords: dynamical correspondence, latent dynamics, autoencoders

1. Introduction

Naturally occurring movement patterns such as locomotion are inherently similar across different
species (Alexander and Jayes, 1983). For example, although a human and an ostrich have very
different anatomical features, both share a fundamental system of joints that work together to pro-
duce bipedal gaits, and possibly share similar foot-placement strategies for balance recovery in the
face of a large disturbance. In principle, knowing the similarities across these bipedal locomotion
patterns should be beneficial for building a controller for a new bipedal robot, i.e., we could use a
known control strategy on one system to control another. This is also a motivation for using sim-
plified models, such as an inverted pendulum model, as they provide crude-but-canonical models of
the dynamics that can be used to guide the control. While finding good correspondences is a well-
established problem in other settings, including matching geometric shapes, there has been much
less work examining how to learn correspondences across multiple dynamical systems.

Figure 1: Similar dynamical systems, such as a walking human and an ostrich (left, right) can be
mapped to a canonical system such as an inverted pendulum (center). These are often developed by
hand. In this paper we show how to learn an abstract shared latent dynamics model.

c© 2020 N.H. Kim, Z. Xie & M. van de Panne.

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

In this paper, we introduce a simple supervised learning method named L2CDS (Learning to
Correspond1 Dynamical Systems). L2CDS is a data-driven approach that can put two-or-more
dynamical systems into correspondence by extracting a shared latent state space that encapsulates
the similarities across the motions of the systems via a learned latent state-space that is shared across
systems, together with a learned latent dynamics model. We can project the state of a source system
to a desired target system by encoding to the corresponding latent space and then decoding to the
corresponding target state space.

Our contributions are as follows. We formalize the problem of dynamical system correspon-
dence and introduce a learned latent space dynamics model to solve it in a modular fashion. The
autoencoder-based model finds dynamics-compatible correspondences across the states of multiple
dynamical systems. Finally, we give results for well-studied controlled dynamical systems and eval-
uate their correspondence both qualitatively and quantitatively. We refer the reader to the project
website: https://sites.google.com/view/l2cds for a narrated video that provides ex-
planations of the method and animated results.

2. Related Work

Correspondence We adopt the view of correspondence as a matching between different modali-
ties of a common latent object. Iterative closest point (ICP) (Besl and McKay, 1992) is a classical
method to solve shape correspondence. There is also significant work on motion retargeting, where
kinematic sequences are transferred between characters with different morphologies, e.g. (Jain and
Liu, 2011) (Rhodin et al., 2014). These do not deal with the general problem of learning to corre-
spond dynamical systems, which is the focus of our work.

Template models for locomotion Due to the high number of degrees of freedom of typical bipeds,
simplified models are often used to model and control these dynamical systems (See Figure 1). This
includes inverted pendulums and their many variants, e.g. (Kajita et al., 2001; Pratt et al., 2006;
Geyer et al., 2006). These models are utilized to design simple control laws for the original compli-
cated bipedal systems. Robots having different morphologies can also be put into correspondence
to simplify control. For example, Raibert (1986) use correspondences between one-legged hopper
gaits, biped gaits, and quadruped gaits to produce locomotion policies that share significant struc-
ture. The aforementioned methods involve hand-crafting the reduction from a complex system to a
simpler one with lower degrees of freedom. Instead, our work focuses on leveraging state trajectory
data to learn an appropriate reduction.

Autoencoders with latent dynamics Learning the dynamics of the motion and the physical envi-
ronment is a classic learning problem in the control literature. Early arguments for learned dynamics
can be traced to the 1980s, e.g. (Werbos, 1987). Watter et al. (2015) instead learned the dynamics
on the latent space produced via variational autoencoders and demonstrated that the latent dynam-
ics can be utilized for easier control. Ha and Schmidhuber (2018) proposed using learned latent
dynamics to augment reinforcement learning. More recently, Hafner et al. (2019) used the latent
system exclusively to learn the control policy of the original system. Our work concerns using
latent dynamics as a mechanism to achieve correspondence with temporal consistency, to aid the

1. although “correspond” is an intransitive verb, we use the phrase “to correspond” as a short-hand way of saying
“putting into correspondence”.

2

https://sites.google.com/view/l2cds

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

Autoencoder loss

Symmetric nearest neighbor

Forward dynamics consistency

State encoder

State decoder

Latent forward dynamics

Figure 2: Left: Summary figure for variables and mappings in L2CDS, where each solid arrow
represents a learned mapping. Dashed arrows represent the forward dynamics of original state
trajectories. Right: summary figure of losses involved in optimizing L2CDS. Traversing the arrows
in the left figure results in backpropagation-enabled transformations. Best viewed in color.

correspondence of dynamical systems. A future goal is to leverage the learned latent dynamics to
improve the efficiency and stability of reinforcement learning in continuous control.

Learning latent features for optimal control Our work is similar in spirit to Gupta et al. (2017),
which used proxy tasks and a similarity loss to induce an overlap in the latent feature space across
two characters. The authors further used the learned latent space to improve reinforcement learning
performance. While Gupta et al. (2017) focuses on the transfer of new skills between a fixed number
of agents, we focus on the possibility of the transfer of a fixed number of skills from expert agents
to a novice agent. Moreover, we improve upon the strong prior knowledge used to establish the
correspondences in Gupta et al. (2017) by learning (possibly non-unique) correspondences explicitly
with the use of latent dynamics.

3. Method

3.1. Problem Formulation

Consider a discrete-time dynamical system consisting of a tuple (S, f), with the state space S ⊆ Rn

and the transition function f : S → S . The state of the dynamical system st+1 at time t+ 1 can be
computed from the state st at time t via st+1 = f(st).

Given two dynamical systems A = (SA, fA) and B = (SB, fB), our goal is to find a pair of
correspondence functions CB

A : SA → SB and CA
B : SB → SA. CB

A projects a state of the source
system A to the state space of the target system B. CA

B is the inverse of CB
A . The correspondence

functions must not only map the distributions of states, but also honor the temporal ordering of
states based on each system’s dynamics. In other words, consecutive states in one system must
correspond to consecutive states in the other:

CB
A (sAt+1) = fB(CB

A (sAt)), CA
B(s

B
t+1) = fA(CA

B(s
B
t)). (1)

3

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

Dynamical systems can often be embedded in a lower dimensional manifold. Instead of directly
learning the corresponding function CB

A , we embed the two dynamical systems into a latent dy-
namical system D′ = (S ′, f ′). More formally, we first learn the correspondence function CD′

A and
CB
D′ and then compose the two functions CB

D′ ◦ CD′
A to compute CB

A . See Figure 2 for a graphical
representation of this approach.

3.2. Collecting State Trajectories

To learn the correspondence functions in a data-driven fashion, we rely on the collection of state
trajectories for each system of interest. For systems A and B, we compile datasets DA and DB by
simulating each system forward. We advance each state trajectory to a desired horizon and then
restart the system with some randomness to collect a new one. More formally:

D =

R⋃
i=1

{〈st, st+1〉 | t = 1, 2, · · · , H}i (2)

where i is the state trajectory index, H is the horizon for each trajectory, and R is the number of
resets performed during collection. The same data collection strategy is used for systems A and B.

3.3. Autoencoders

We employ autoencoders, e.g., (Kramer, 1991), to project original states onto the latent state space
and back onto the original state space (st → s′t → ŝ′t). To use the terminology of autoencoders, we
denote the corresponding function and its inverse to be E (encoder) and D (decoder) respectively.
In this work, the encoder and decoder are represented as a feed forward neural network, thus the
decoder is only an approximate inverse. One can project a state in the original space onto the latent
space and/or project a latent state onto the original space with the following set of operations:

s′At = EA(sAt) ŝAt = DA(s′At) s′Bt = EB(sBt) ŝBt = DB(s′Bt) (3)

Where EA and DA are the encoder and the decoder for the states of system A, and so on. Note that
the arguments for decoders DA and DB are interchangeable, since latent states s′At and s′Bt share
the same space. Reconstructed states ŝAt and ŝBt are used as estimates of the corresponded states for
systems A and B at the tail-end of our pipeline. To ensure that the reconstructed state is consistent
with the original state, we use the autoencoder loss (Note that states sAt and sBt are sampled from
datasets DA and DB , not decoders):

LAE(D) = EsAt ∼DA,sBt ∼DB
[
||ŝAt − sAt ||2 + ||ŝBt − sBt ||2

]
(4)

3.4. Symmetric Nearest Neighbors

When an encoder-decoder pair is learned for each system, the encoders are not constrained to pro-
duce overlapping latent state distributions across the systems of interest. This prohibits using the de-
coders interchangeably for correspondence (see Figure 3). We employ a symmetric nearest neighbor
loss, where the encoders are penalized for mapping onto subspaces far away from other encoders.

For our two-system example, the nearest-neighbor loss is computed by (1) sampling a separate
batch from each dataset, i.e. sAt ∼ DA and sBt ∼ DB , (2) computing latent states s′At and s′Bt for

4

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

Original
Space

Latent
Space

E

D
Symmetric nearest neighbor distance

Figure 3: Left: Naı̈vely learned autoencoders do not enforce the latent space to be shared across
systems. Right: regularizing for the minimum distance between the two sets of latent space can act
to fuse state distributions together. Best viewed in color.

each batch, and (3) computing the minimum distance between each state in system A and another
state in system B, and vice versa. We minimize the expected minimum distances by introducing the
following loss term:

LNN (D) = EsAt ∼DA,sBt ∼DB

[
min
sBt

||s′At − s′Bt ||2 +min
sAt

||s′At − s′Bt ||2
]

(5)

The right side of Figure 3 illustrates the effect of this loss function.

3.5. Latent Forward Dynamics

Up to this point, we have enforced different systems to project their states onto the same latent state
space and required latent states of different sources to reside in close proximity. However, although
the previous loss terms enforce spatial consistency in latent state distribution, the resulting temporal
ordering of the latent states is highly ambiguous, without the dynamics constraint as required by
Equation (1). We prevent this degeneracy by introducing a latent dynamics model that is shared
across the systems of interest. The latent dynamics model F takes a latent state and produces a
displacement to the latent state at next time step:

v′t = F (s′t), s′t+1 = s′t + v′t. (6)

We encourage the encoder to project states st and st+1 to the latent state space and ensure that the
encoder’s results are consistent with the latent dynamics. The following loss function expresses this
objective:

LFD(D) = E〈st,st+1〉∼D
[
||
(
s′t + F (s′t)

)
− s′t+1||2

]
. (7)

Note that the latent forward dynamics model F is learned in a fully unsupervised fashion, essentially
providing regularization for LFD. We still optimize F along with other modules such that its
predictions are stable.

Furthermore, a state in a Markovian dynamical system must describe all information necessary
for predicting the state at the next timestep. Practically, a state st typically breaks down into the
pose θt and the velocity θ̇t of the system. Then the dynamics function establishes a differential

5

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

(a) (b) (c)

Figure 4: The dynamical systems for our experiments: (a) walker2d: a 2D walker character
with 6 joints. |st| = 17. (b) ostrich2d: a 2D walker character with 8 joints. |st| = 21. (c)
pendulum: a 1-DOF pendulum system driven to a stable cyclic motion using a PD controller.

equation involving θt, θ̇t, and θ̈t (acceleration) of the system. We reflect this in the latent space, so
that the latent system also honors the Markovian definition of a state. In other words, we encourage
the encoders to produce latent states that observe the relationship between pose and velocity with
respect to time. More formally, let[

θ′t
θ̇′t

]
= s′t,

[
θ′t+1

θ̇′t+1

]
= s′t+1 (8)

where θ′t and θ̇′t are the pose and velocity of the latent system at time t, respectively. If s′t ∈ R2k,
then θ′t, θ̇

′
t ∈ Rk. We minimize the following loss:

LPV (D) = E〈st,st+1〉∼D

[
||(θ′t + θ̇′t)− θ′t+1||2

]
(9)

to encourage the encoders to honor the pose-velocity relationship.

3.6. Final Loss Function and Runtime Procedure

Our final loss function is the weighted sum of the four loss functions introduced above:

L(D) = λAELAE(D) + λNNLNN (D) + λFDLFD(D) + λPV LPV (D) (10)

where loss weights λAE , λNN , λPV , and λFD are selected experimentally so that the resulting
correspondence is qualitatively and quantitatively sound. The right part of Figure 2 summarizes
this final loss function. After optimizing over the final loss function, correspondence is achieved by
using the learned mappings to project source system states to the latent space, and then projecting the
latent states to the target system state space. In other words, we can put states into correspondence
by using the learned decoders interchangeably.

4. Experiments

We demonstrate our results on the three systems shown in Figure 4. We put these systems into
correspondence using the L2CDS pipeline. These systems are simulated with DART (Lee et al.,
2018). The neural networks and learning algorithms are implemented in PyTorch (Steiner et al.,
2019). RAdam (Liu et al., 2019) is used to optimize the neural network parameters. We use 256×
256 multi-layer perceptrons (MLPs), where ReLU is used as hidden layer activation and Tanh is
applied at the output to limit the output range. We use a batch size of 4096 for stochastic gradient
descent; note that this is high compared to what is typically used for other learning tasks but is

6

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

necessary in our settings to accommodate the needed sampling accuracy for the symmetric nearest-
neighbor loss. To prevent state decoders and forward dynamics models from learning to separate
latent states of different sources, we add Gaussian noise to the inputs of the decoder networks and
the latent forward dynamics model. The effect of the noise is significant, as summarized in Table 1.

The dynamical systems we consider also involve control inputs. To make the dynamical systems
fully autonomous, we pre-train a policy for each system. In particular, the pendulum is running a
PD controller that tracks a time-varying PD target that repeats at a fixed period, walker2d and
ostrich2d run policies that track repeating walking cycles, which are obtained using DeepMimic
(Peng et al., 2018). When generating the state trajectories, we add small Gaussain noise to the
policies as to encourage more variety in the states visited.

Quantitatively, we evaluate the estimated correspondence by measuring the difference between
the distributions of the original states st and the reconstructed states ŝt after using the learned
projections in L2CDS (st → s′t → ŝt). As a heuristic to this difference, we use the mean symmetric
nearest neighbor (MSNN) distances within the original state space:

EMSNN =
1

2n

∑
st

min
ŝt
||st − ŝt||+

∑
ŝt

min
st
||st − ŝt||

 (11)

where n is the number of states stored in the dataset.
Qualitatively, we observe similarities in corresponding states of different systems. Namely, we

simulate one character with the pre-trained policy and use the learned mappings to generate the es-
timated corresponding states of another system. We particularly focus on the effect of perturbations
in the simulated system. A good correspondence across dynamical systems must take into account
the system’s interactions with its physical environment, such as contact and forces. Therefore, we
expect the correspondence to go beyond a simple mapping between multiple limit cycles; rather, the
dynamics must capture and put perturbed states of systems into correspondence.

4.1. Corresponding 2D Walker with Pendulum

Our method successfully learns to correspond the classical 2D walker character with the pendu-
lum. The supplementary video shows that the swing of the pendulum is aligned with the gait of the
walker, such that one swing of the pendulum completes as one walking cycle of the walker is com-
pleted. The limit cycle drawn with the estimated corresponding states of the pendulum shows that
both the position and the velocity of the pendulum are reconstructed with high precision. Finally,
perturbing the walker with an external force results in the perturbation of the pendulum, showing
that the state-to-state mapping goes beyond a simple matching of two cycles.

4.2. Corresponding 2D Walkers

Table 1 shows EMSNN computed on various configurations on the walker-ostrich correspondence
case. We ablate each logical component of the full loss function and also show the impact of the
presence of noise in the inputs of state decoders and forward dynamics models. We use Equation
(11) on a test dataset of n = 1000 state tuples, generated with a random seed different from that of
the training data (otherwise exact same procedure).

In Table 1, WLW (walker-latent-walker) and OLO (ostrich-latent-ostrich) are the two projec-
tions that consistently achieve low EMSNN. This is expected since state reconstruction in these two

7

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

WLW OLO WLOLW OLWLO WLO OLW
With noise Full model 0.89(±0.09) 0.78(±0.07) 1.07(±0.06) 1.09(±0.10) 1.35(±0.17) 1.30(±0.13)

Without LFD,LPV 0.33(±0.01) 0.29(±0.00) 0.47(±0.01) 0.41(±0.02) 1.64(±0.15) 1.44(±0.18)
Without LNN 0.72(±0.00) 0.64(±0.02) 39.00(±25.24) 28.78(±18.41) 26.07(±13.65) 25.65(±10.51)

Without noise Full model 0.56(±0.04) 0.47(±0.04) 1.57(±0.52) 2.75(±0.77) 3.87(±1.14) 3.40(±0.82)
Without LFD,LPV 0.30(±0.01) 0.29(±0.01) 0.58(±0.04) 0.52(±0.05) 2.32(±0.16) 1.88(±0.17)
Without LNN 0.54(±0.02) 0.52(±0.11) 28.90(±18.64) 44.52(±20.76) 43.48(±22.20) 46.89(±22.40)

Table 1: MSNN distances (Equation (11)) for walker-ostrich correspondence case. Taken across 5
random seeds for each configuration, reporting mean errors with standard deviations. W=Walker,
L=Latent, O=Ostrich. WLW refers to using learned mappings to project walker-latent-walker
(swalker

t → s′t → ŝwalker
t), and so on. “Noise” refers to Gaussian noise being added to each de-

coder and the latent forward dynamics model.

projections is directly correlated with the autoencoder loss LAE in Equation 4. Once the inter-
system correspondence is involved (i.e. WLOLW, OLWLO, WLO, OLW), EMSNN increases as the
latent state distributions are no longer identical. Without LNN, the model can still achieve low
EMSNN for WLW and OLO, but making large error for other projections.

The lowest EMSNN involving inter-system correspondence is achieved by learning the model
without the latent forward dynamics components. However, visualizing the results, we see that this
model yields a qualitatively poor correspondence, due to the ambiguities induced by the lack of
temporal consistency in the latent states. On the other hand, adding noise to state decoders and the
latent forward dynamics model has a significant effect on the reduction of EMSNN. This is thanks
to state encoders producing latent states that state decoders and forward dynamics models cannot
distinguish, encouraging a homogeneous mixture of the latent states of different sources. We note
that the full model with noise achieves the next best performance in terms of EMSNN, and has the
most qualitatively sound result. We refer the reader to the video for the qualitative results.

5. Conclusion

We have presented L2CDS, a data-driven approach to learning correspondences across the states
of multiple dynamical systems. L2CDS achieves correspondence by viewing the input systems as
different manifestations of a common latent system. The latent system is modeled by simultaneously
learning the latent state and dynamics based on the trajectories from the given dynamical systems.

A limitation of the current method is that our dynamical systems (controlled physics-simulated
characters) were designed to complete their limit cycles in an equal time interval, and thus the
resulting corresponded state trajectories can align very well. In real systems, however, we cannot
expect such alignments due to possible mismatches in the time-scales of the dynamics, as would
readily result from different physical scales, e.g., a cat steps at a much higher frequency than an
elephant. Another limitation is that our method does not currently allow for outlier rejection. This
can be problematic even when matching two different instances of the same system if the samples
collected from each system sample do not come from fully-overlapping state-space regions.

In future work, we wish to accelerate the learning of control policy for novel-but-similar sys-
tems, by only learning the correspondence with the latent dynamical system. This is a promising
direction for achieving efficient and stable transfer learning via a type of learning-by-analogy. In-
verted pendulum and centroidal dynamics are widely used to design control policies for bipedal
robots, and we wish to explore if similar results can be achieved via a learned canonical system.

8

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

References

R McN Alexander and AS Jayes. A dynamic similarity hypothesis for the gaits of quadrupedal
mammals. Journal of zoology, 201(1):135–152, 1983.

Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor fusion IV: control
paradigms and data structures, volume 1611, pages 586–606. International Society for Optics
and Photonics, 1992.

Hartmut Geyer, Andre Seyfarth, and Reinhard Blickhan. Compliant leg behaviour explains basic
dynamics of walking and running. Proceedings of the Royal Society B: Biological Sciences, 273
(1603):2861–2867, 2006.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. arXiv preprint arXiv:1703.02949,
2017.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Sumit Jain and C. Karen Liu. Motion analogies : Automatic motion transfer to different mor-
phologies. Eurographics/ACM SIGGRAPH Symposium on Computer Animation (SCA) Posters
2009, 2011. URL https://www.cc.gatech.edu/graphics/projects/Sumit/
homepage/papers/sca09/jain_moanal_sca09_draft.pdf.

Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hirohisa Hirukawa. The 3d
linear inverted pendulum mode: A simple modeling for a biped walking pattern generation. In
Proceedings to IROS 2001, volume 1, pages 239–246. IEEE, 2001.

Mark A Kramer. Nonlinear principal component analysis using autoassociative neural networks.
AIChE journal, 37(2):233–243, 1991.

Jeongseok Lee, Michael X Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Siddhartha S
Srinivasa, Mike Stilman, and C Karen Liu. Dart: Dynamic animation and robotics toolkit. J.
Open Source Software, 3(22):500, 2018.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Trans. Graph., 37
(4):143:1–143:14, July 2018. ISSN 0730-0301. doi: 10.1145/3197517.3201311. URL http:
//doi.acm.org/10.1145/3197517.3201311.

Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami. Capture point: A step toward
humanoid push recovery. In 2006 6th IEEE-RAS international conference on humanoid robots,
pages 200–207. IEEE, 2006.

9

https://www.cc.gatech.edu/graphics/projects/Sumit/homepage/papers/sca09/jain_moanal_sca09_draft.pdf
https://www.cc.gatech.edu/graphics/projects/Sumit/homepage/papers/sca09/jain_moanal_sca09_draft.pdf
http://doi.acm.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3197517.3201311

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

Marc H. Raibert. Legged Robots That Balance. Massachusetts Institute of Technology, Cambridge,
MA, USA, 1986. ISBN 0-262-18117-7.

Helge Rhodin, James Tompkin, Kwang In Kim, Varanasi Kiran, Hans-Peter Seidel, and Christian
Theobalt. Interactive motion mapping for real-time character control. Computer Graphics Forum
(Proceedings Eurographics), 33(2), 2014.

Benoit Steiner, Zachary DeVito, Soumith Chintala, Sam Gross, Adam Paszke, Francisco Massa,
Adam Lerer, Gregory Chanan, Zeming Lin, Edward Yang, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32,
2019.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in neural
information processing systems, pages 2746–2754, 2015.

Paul J Werbos. Learning how the world works: Specifications for predictive networks in robots and
brains. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, NY,
1987.

10

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

Appendix A. Is the Learned Latent System Meaningful?

Enforcing the dynamics in a shared latent space effectively produces a dynamical system that oper-
ates on the latent states. Since we aim to leverage this latent system in future work, it is important to
assess whether this learned latent system is actually encapsulating something meaningful in learning
to correspond dynamical systems.

One way to test the validity of this latent system is to check if our view of correspondence
corroborates with the learned models. In our work, correspondence is a matching between two
modalities of a common latent object. Then the correspondence between two dynamical systems
is a matching between two modalities of a common latent dynamical system. Therefore, two cor-
responding state trajectories of each real system can be viewed as a ”rendered“ version of a latent
state trajectory simulated forward by the latent dynamics. We show that the learned dynamics F
and the decoders DA and DB in L2CDS produce this result in fact. More formally, we choose a
starting latent state s′1 and simulate the latent system forward for T timesteps using F :

s′t+1 = s′t + F (s′t), t = 1, 2, · · · , T − 1.

The resulting simulated latent state trajectory (s′1, s
′
2, · · · , s′T) can be decoded into each system:

sAt = DA(s′t), t = 1, 2, · · · , T (12)

sBt = DB(s′t), t = 1, 2, · · · , T (13)

We obtain the sequence (sA1 , s
A
2 , · · · , sAT) and (sB1 , s

B
2 , · · · , sBT) accordingly. Rendering the de-

coded sequences results in a qualitatively sound motion in the real systems. Figure 5 shows the
latent system’s simulated states being decoded into walker2d and ostrich2d.

Appendix B. Are the Perturbed State Mappings Meaningful?

As mentioned, a true correspondence between dynamical systems must go beyond a simple mapping
between two periodic trajectories. Examining perturbations is therefore crucial in assessing the
validity of our method. We provide a brief statistical analysis to show that the perturbed states
indeed map to each other in a meaningful way. To this end, we use the correlation between the
original system’s root x-velocity and the corresponded root x-velocity of the target system. We
prepare simple linear models:

ˆ̇xBt ∼ βẋAt + ε (14)
ˆ̇xBt ∼ β0 + β1ẋ

A
t + ε (15)

where ẋAt ∈ sAt and ˆ̇xBt ∈ ŝBt are the root x-velocity of system A and the estimated corresponding
system B state. We first sample sAt from the state trajectory dataset. For each sAt , we generate
10 new data points by adding a uniform noise to ẋAt to create diverse scenarios where the root x-
velocity is perturbed. We then predict ŝBt using L2CDS and finally learn the regression coefficients
β, β0, and β1.

Figure 6 summarizes the results of the above experiment on the n = 1000 states gathered from
ostrich2d and walker2d. In both OLW and WLO, the slope coefficient of the simple linear
model is significantly above zero with the reported p � 0.05, whether the intercept is included
or not. This shows that perturbations such as a forward or backward push on the original system
results in a push in the same direction on the target system when L2CDS is used to estimate the
corresponding target system states.

11

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

t=1 t=2 t=3 t=4

Figure 5: The evolution of the latent system forward in time. Top: the latent system is simulated
forward with the latent dynamics as per Equation 12. The latent system is learned from applying
L2CDS to walker2d and ostrich2d. The latent state trajectory (blue line segments) is visual-
ized in PCA subspace with the first two principal components. The red arrow indicates the output
of the latent forward dynamics model encoded into the PCA subspace. The latent forward dynam-
ics is visualized as a vector field in the PCA subspace. Bottom: decoded states are rendered into
respective characters. The decoded motions are visually very close to the walking motions of the
original systems. See supplmentary video for the animated result.

6 4 2 0 2 4
ostrich2d's root x-velocity

3

2

1

0

1

2

3

4

wa
lk

er
2d

's
ro

ot
 x

-v
el

oc
ity

 (c
or

re
sp

on
de

d)

OLW, correlation between corresponding root x-velocities

= 0.592, R2 = 0.41, p = 0.000
0 = 0.302, 0 = 1.452, R2 = 0.551, p = 0.000

original data

2 0 2 4 6
walker2d's root x-velocity

2

1

0

1

2

3

4

os
tri

ch
2d

's
ro

ot
 x

-v
el

oc
ity

 (c
or

re
sp

on
de

d)

WLO, correlation between corresponding root x-velocities
= 0.428, R2 = 0.76, p = 0.000
0 = 0.333, 0 = 0.355, R2 = 0.621, p = 0.000

original data

Figure 6: Results of linear regression on the corresponded root x-velocity vs. the source system’s
root x-velocity. The lines represent the learned linear models. β, β0, β1 correspond to the parameters
specified in Equations 14 and 15. Red: without intercept. Orange: with intercept. Best viewed in
color.

12

LEARNING TO CORRESPOND DYNAMICAL SYSTEMS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.0 0.1 0.2 0.3
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Left: orange and blue points are two aperiodic dynamical systems, whose particles in
motion towards a common point of convergence. Middle: the latent state resulting from applying
L2CDS to the state tuples of the two systems. The output of the latent dynamics model is visualized
as arrows. Right: visualizing the correspondence between the blue system and the orange system.
The blue lines connect the original blue system states to the estimated corresponding orange system
states (red points). Best viewed in color.

Appendix C. Aperiodic Dynamical Systems

Our method can be applied to both periodic and aperiodic systems. Figure 7 illustrates two systems
whose dynamics move particle towards a common point. The two systems truly correspond to each
other as they are are mirror images. Using L2CDS, we retrieve this correspondence successfully.

Appendix D. Table of Hyperparameters

Experiment |s′t| λAE λNN λFD λPV σ

walker2d and pendulum 2 1 1 1e-3 1e-3 1e-1
ostrich2d and walker2d 8 1 1 1e3 1e3 5e-3

Table 2: For each experiment, we tune the following hyperparameters: |s′t|: dimension of latent
state. λAE, λNN, λFD, λPV: loss weight for autoencoder loss, symmetric nearest neighbors loss,
latent forward dynamics consistency loss, and latent pose-velocity loss, respectively. σ: standard
deviation for the Gaussian noise input for the decoders and the latent forward dynamics model.

13

	Introduction
	Related Work
	Method
	Problem Formulation
	Collecting State Trajectories
	Autoencoders
	Symmetric Nearest Neighbors
	Latent Forward Dynamics
	Final Loss Function and Runtime Procedure

	Experiments
	Corresponding 2D Walker with Pendulum
	Corresponding 2D Walkers

	Conclusion
	Is the Learned Latent System Meaningful?
	Are the Perturbed State Mappings Meaningful?
	Aperiodic Dynamical Systems
	Table of Hyperparameters

