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Abstract
Stability of recurrent models is closely linked with trainability, generalizability and in some appli-
cations, safety. Methods that train stable recurrent neural networks, however, do so at a significant
cost to expressibility. We propose an implicit model structure that allows for a convex parametriza-
tion of stable models using contraction analysis of non-linear systems. Using these stability con-
ditions we propose a new approach to model initialization and then provide a number of empirical
results comparing the performance of our proposed model set to previous stable RNNs and vanilla
RNNs. By carefully controlling stability in the model, we observe a significant increase in the
speed of training and model performance.
Keywords: System Identification, Contraction, Stability, Recurrent Neural Network, Vanishing
Gradient, Exploding Gradient, Nonlinear Systems, Echo State Network

Notation

Most of our notation is standard. For a matrix A, A � 0 or A � 0 means that A is positive
definite or positive semi-definite. Similarly A ≺ 0 or A � 0 means that A is negative definite or
negative semi-definite. We use vec(A) to refer to the vector obtained by stacking A into a vector.
A ∈ D+ means that A is a positive definite diagonal matrix. The normal distribution with mean µ
and variance σ2 is N [µ, σ2] and the uniform distribution between a and b is U [a, b].

1. Introduction

Recurrent neural networks (RNNs) are a common class of dynamical system used to model sequen-
tial data (Yi, 2004; Mandic and Chambers, 2001; Graves, 2012). They have been used extensively
in areas such as system identification (Sjberg et al., 1995), learning based control systems (Ander-
son et al., 2007; Knight and Anderson, 2011), natural language processing (Zhou et al., 2016) and
others. Instability of dynamical systems can lead to unpredictable behaviour, and as such, stability
should be a consideration when training and deploying RNNs. Systems using RNNs have also been
proposed in safety critical applications such as autonomous driving (Zyner et al., 2017), surgical
robotics (Mayer et al., 2008) or active prosthetics (Boudali et al., 2019a). In such cases, dynamical
instability could lead to injury or even death. As noted by a RAND corporation report on that state
of AI: ”The current state of AI verification, validation, test, and evaluation (VVT&E) is nowhere
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close to ensuring the performance and safety of AI applications, particularly where safety-critical
systems are concerned” (Tarraf et al., 2019). In practice, there are few approaches to training RNNs
with stability guarantees.

The importance of model stability has more subtle implications than just safety; it is also closely
related to the difficulty in fitting models. Training recurrent models using gradient descent is com-
plicated by the exploding and vanishing gradients problem (Pascanu et al., 2013). If a model is too
stable the gradients will vanish, and if it is unstable they will explode. A common approach to this
problem, used for instance in the Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) or Gated Recurrent Unit (GRU) (Cho et al., 2014), is to alter the model structure to one less
susceptible to these issues. Alternatively, one can initialize or constrain the weights to be isometries
that do not change the magnitude of the gradients. For instance, it has been reported that models
such as the iRNN (Le et al., 2015), orthogonal RNN (Mhammedi et al., 2017) and spectral RNN
(Zhang et al., 2018) can offer similar performance and trainability to the LSTM with fewer param-
eters. An alternative approach avoids this issue by initializing a sufficiently rich bank of dynamics
so that only the input and output mappings must be learned. This is the basis for the Laguerre filter
(Wahlberg, 1991) and the echo state network (Jaeger, 2003). These two approaches suggest that a
more effective initialization scheme may be to initialize with a rich set of dynamics, of which some
modes have long memory.

Another area closely linked to stability is model generalization. Empirically, it has been ob-
served that stability is an effective regularizer in system identification (Umenberger and Manchester,
2019a,b). There are also theoretical results that relate generalization to a form of stability (Zhang
et al., 2018).

1.1. Contraction Analysis

Stability can be defined in many ways. For input-output systems, Zames (1966) argued for two
properties: Firstly, bounded inputs should produce bounded outputs. Secondly, outputs should not
be critically sensitive to small changes in inputs.

Many approaches to RNN stability analysis focus on global stability of a particular equilibrium.
This however, guarantees neither of these properties (Sontag, 2008). An additional complication is
that the analysis is centred on a particular trajectory and in practice, we do not know the trajectories
for unknown inputs. For instance, Kaszkurewicz and Bhaya (1993, 1994, 2000) propose diagonal
stability. For a certain class of non-linearity, less conservative stability guarantees can be found
using diagonally dominant Lyapunov functions (Chu and Glover, 1999). Absolute stability theory
(Barabanov and Prokhorov, 2002) has also been used to reduce reduce conservatism.

Contraction (Lohmiller and Slotine, 1998) and incremental stability (Angeli, 2002), on the other
hand, both guarantee stability in the sense of Zames (1966) and are independent of the input or
equilibrium. We provide a brief introduction to contraction analysis. Additional details can be
found in Lohmiller and Slotine (1998). Suppose that we have a non-linear dynamical system with
dynamics:

xk+1 = f(xk, k), (1)

where xk is the state of the system at time k. If f is piecewise differentiable, then we can study the
differential dynamics given by:

δxk+1
= F (xk, k, δxk) (2)
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where F (x, k, δk) is the directional derivative of f(·) at xk in the direction δk. If f(·) is differ-
entiable then this can be written as F (x, k, δx) = ∂f(x,k)

∂x δx. The vector δx can be interpreted
as a infinitesimal displacement between two neighbouring trajectories. Stability of the differential
dynamics (2) imposes a strong type of stability on the dynamical system (1), whereby, all trajec-
tories of the original system (1) converge exponentially to a single trajectory. This is done by
searching for a contraction metric or differential Lyapunov function (Forni and Sepulchre, 2014)
V (xk, δxk) > 0, ∀ δx 6= 0 such that V (xk+1, δxk+1

) ≤ λV (xk, δxk) for 0 < λ < 1. In this work
we also allow for the case where λ = 1 to allow for non-expansive systems.

In principle there are many metric structures that can be used. A common approach however,
parametrizes a quadratic form V (δxk) = δ>kMδk, where M � 0 is a positive definite matrix. In this
case a sufficient condition for contraction when f(x, k) is differentiable is:

∂f

∂x

>
M
∂f

∂x
− λM � 0, (3)

and M is called a contraction metric. Methods that analyse stability by bounding the maximum
singular value (e.g Miller and Hardt (2018); Zhang et al. (2018)) can be seen as a special case of
(3), where M = I and λ = 1. The use of a parametrized metric provides considerable flexibility to
the model set. This can be seen in the following example:

Example 1 Consider the simple 1 layer RNN:

hk+1
1 = σ(Ahk2), A =

(
0.8 1
0 0.8

)
(4)

Where σ(z) = max(0, z) is a ReLU non-linearity with Lipschitz constant Lσ = 1. The matrix A
has a maximum singular value of 1.44 so it does not satisfy the condition used by Miller and Hardt
(2018). On the other hand, using condition (3), we can construct a contraction metric V = δ>hkPδhk
with P = diag(1, 10) in which the system is contracting.

1.2. Convex Parametrizations

Contraction analysis is a powerful tool for studying dynamical systems. Synthesis (e.g. control
design or system identification) with contraction constraints is complicated by non-convexity in the
model parameters and contraction metric. To be precise, (3) is convex in M or f , but not M and
f . This significantly complicates optimization and even ensuring feasibility of the model becomes
difficult. The situation is greatly improved if the constraints are convex (even if the objective is not)
as projected gradient, barrier or penalty methods can be employed without making the optimization
problem much harder than the unconstrained problem.

Methods such as Miller and Hardt (2018) essentially avoid this problem by fixing the metric at
the cost of model expressibility. It has been found, however, that using an implicit model structure
allows parametrizations jointly convex in the model parameters and contraction metric (Tobenkin
et al., 2017). Our work extends this approach to the model class of RNNs.

1.3. Contributions

We propose a class of contracting implicit recurrent neural network that is jointly convex in the
model parameters and stability certificate. The proposed set has less conservative stability condi-
tions which leads to greater expressibility when compared to previous stable RNNs - particularly
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in the multilayer case. Additionally, we propose an initialization procedure that ensures both a rich
set of dynamics and that the model is not too stable to train which improves the model trainability.
We then provide empirical results on a simulated model and a gait prediction task highlighting the
benefits of our approach.

2. Model Set

We are interested in fitting state space models parametrized by θ ∈ Θ ⊆ Rp, of the following form:

xk+1 = fθ(xk, uk) (5)

yk = gθ(xk, uk) (6)

where the function fθ(x, u) can be represented by anL-layer Neural Network with skip connections,
and Θ refers to a convex set of parameters to be defined later. In this case, we write the dynamics in
(5) as follows:

z0 = x, z`+1 = φ(A`z
` +B`u+ b`) for ` = 0, ..., L− 1, fθ(x, u) = zL. (7)

Here, the superscript to refers to the layer in the network, z` is the output of the `’th hidden layer
of the network and are not necessarily of the same size. The weight matrices and bias for the `’th
layer are denoted A`, B` and b` respectively.

We define the set of admissible activations φ(·) to be the set of piecewise differentiable, scalar,
non-linearities with slope restricted to [−γ, γ]. For simplicity we will assume γ = 1, however this
can be relaxed. This includes any collection of standard activation functions.

Skip connections from the input to the `’th hidden are contained withinB` and skip connections
between hidden layers are included by replacing part of the activation with a linear activation.

The contraction properties are independent of the output mapping so that gθ(x, u) can be any
function. In all examples we will take the output to be linear in the input and final hidden layer so
that gθ(x, u) = Cx+Du.

2.1. Implicit RNNs

We will refer to the dynamics in (7) as the explicit model. We can also parametrize the same set of
models using the following implicit, redundant parametrization:

E0h
0 = x, E`+1h

`+1 = φ(W`h
` +B`u+ b`) for ` = 0, ..., L− 1, fθ(x, u) = ELh

L, (8)

where W` and E` are learnable weight matrices and E` are invertible. Note that the implicit and
explicit models are input/output equivalent under the coordinate transformation z` = E`h` and
A` = W`E

−1
`−1.

We can treat multi-layer networks as a time-varying, periodic, non-linear system by dividing up
each k step into L sub-steps so that

h`+1
k = f `(h`k, uk), ` = 0, ..., L− 1 (9)

with f ` defined in (8) and h0
k+1 = hLk . The associated differential dynamics of the network are

given by E`+1δ
`+1
k = Λ

(
hk,W`δ

`
k

)
, ` = 0, ..., L− 1, where Λ(hk, δ

`
k) is the directional derivative

of φ at hk in the direction δ`k and δ`k is a differential in layer ` at time k.

4



2.2. Contracting Implicit RNNs

We now define the set of contracting implicit RNNs (ci-RNNs): A ci-RNN is an implicit RNN
defined as (5) with fθ(x, u) defined in (8) with an additional contraction constraint. We propose to
use the following constraints to ensure model stability:(

E` + E>` − P` W>`
W` P`+1

)
� 0, ` = 0, ..., L− 1 (10)

with P0 = λPL. The set of ci-RNNs, denoted Θci is defined as:

Θci :=
{
θ : ∃P0, ..., PL ∈ D+ s.t. P0 = λPL, E + E> � 0, (10)

}
Note that Θci is convex as it is the intersection a number of semi-definite cones and a linear equality
constraint, and for all θ ∈ Θci, there exists a corresponding explicit RNN (7). Fixing E` = I and
P` = I recovers the model set used by Miller and Hardt (2018).

Theorem 1 Suppose that θ ∈ Θci, then the model (5), (8) is contracting with rate λ in the metric
V = δ>x E

>
0 P
−1
0 E0δx.

Proof We would like to show that the condition (10) implies the existence of a contraction metric
Vk for the system (5), (8), for which Vk+1 ≤ λVk. Via Schur complement (10) is equivalent to:

E` + E>` − P` −W>` P−1
`+1W` � 0.

For all admissible activation functions (slope restricted to the interval [−1, 1]) and diagonal P � 0,
we have δ>P−1δ ≥ Λ(h, δ)>P−1Λ(h, δ). Left and right multiplying by δh gives

δ>h`+1
E>`+1P

−1
`+1E`+1δh`+1

− δ>h (E + E> − P )δh ≤ 0.

Introducing the storage function V `
k (δ`hk) = δ`hk

>
E>` P

−1
` E`δ

`
hk

and using the bound E>P−1E �
E + E> − P , we can see that V `+1

k − V `
k < 0. Summing this from ` = 0, ...., L − 1 gives

V L
k − V 0

k ≤ 0. Due to the periodicity, we have V 0
k+1 = λV L

k , so V 0
k+1 ≤ λV 0

k , and the system is
contracting in the metric V 0

k .

3. Method

We demonstrate the use of the proposed model set in a system identification context. In particular,
we are interested in finding functions fθ and gθ that minimize the simulation error:

min
θ∈Θ,h0

Jsim =
T∑
k=0

|yk − ỹk|2 s.t. hk+1 = fθ(hk, ũk), yk = gθ(hk, ũk) (11)

where Θ is the domain of the parameters and (ũk, ỹk) are the measured inputs and outputs to system
we would like to identify. We will compare the proposed ci-RNN with two others. The first is a
regular RNN defined by the equations (7) and the second is the stable RNN (s-RNN) defined by the
explicit dynamics (7) with A` having spectral norm less than 1. We enforce this using the following
LMIs: (

I A>`
A` I

)
� 0, ` = 0, ..., L− 1. (12)

In the one layer case, this is the same model set used in Miller and Hardt (2018).
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3.1. Model Initialization

We propose to initialize the models in a two step procedure. Firstly, we sample weights for the
explicit model (7) as follows

Aij ∼ N
[
0,
α2

n

]
, (13)

where α is a hyper parameter that relates to how close to instability we expect our model to operate
and n is the width of the weight matrix. According to the random matrix circular law (Tao and
Vu, 2008), we expect the eigenvalues to be approximately distributed over a circle of radius α.
The intuition is to try and generate a rich set of dynamics so that we only need to learn the input
and output mappings of the dynamical system. Depending on α, we may find that this method of
sampling generates a number of unstable models that complicate training. We project onto the set
of contracting implicit models by solving the following convex optimization problem:

min
θ∈Θci

L−1∑
`=0

|A`E` −W`|2F (14)

We solve this optimization problem using the cvxpy toolbox (Diamond and Boyd, 2016). For the
s-RNN model set, we project onto the set of stable models by clipping the singular values as in
Miller and Hardt (2018). We leave the regular RNNs as they are.

3.2. Training Procedure

Fitting the models ci-RNN or s-RNN require a number of LMIs to be satisfied. We do this using the
Burer-Montero method that has been shown to be both empirically (Burer and Monteiro, 2003) and
theoretically (Boumal et al., 2016) effective for a wide range of problems. This involves replacing
a semi-definite constraint M � 0 with a series of equality constraints: M = LL> where L is an
auxiliary matrix variable.

We then use ADAM optimizer to minimize the following objective J = MSE(y0:T , ỹ0:T ) +
µc>c where MSE is the mean square error, y0:T are the outputs from simulating the model using
(5) and (6) and c = vec(M − LL>) are the equality constraints. We use an initial learning rate of
0.5× 10−3 which decays by a factor of 0.96 at each epoch and an initial penalty parameter of 500.
If the equality constraints are violated by more than 1 × 10−3, we increase the penalty parameter
by a factor of 10. The models are trained until more than 20 epochs have passed without seeing a
model better than the best seen so for (on validation).

4. Results

We test the proposed approach on two systems. Firstly, we will look at a simple simulated system
and explore the effects of implicit parametrizations, stability constraints and model initialization.
Then, we will compare the ci-RNN to both the RNN and s-RNN using a human gait prediction
task based on data gathered from Motion Capture (MOCAP) experiments. Code to reproduce all
examples can be found at https://github.com/imanchester/ci-rnn.
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Figure 1: Best viewed in colour. Figure ex-
plained in text (Section 4.1).

Figure 2: Training error versus epochs for
gait prediction task for subject 1.

4.1. Simulated System

We generate data from a slight modification of the system used in Chen et al. (1990). The system
has been modified so that it operates closer to the edge of stability, as follows:

xk = 1.4

[(
0.8− 0.5e−x

2
k−1

)
xk−1 −

(
0.3 + 0.9e−x

2
k−1

)
xk−2+

uk−1 + 0.2uk−2 + 0.1uk−1uk−2 + wk

]
(15)

with process noise wk ∼ N (0, 0.5) and inputs uk ∼ N (0, 1). For each model realization, we
generate a data set consisting of 20 batches of 500 measurements and train models with 2 layers
of 60 hidden units per layer and ReLU activations. We train 5 different types model denoted A-E.
The models ‘A’ are ci-RNNs with the initialization scheme in Section 3.1, α = 1.2. ‘B’ are implicit
models with the same initialization but without the stability constraint (10). ‘C’ are implicit models
initialized so that E = I and Wij ∼ U [− 1√

60
, 1√

60
]. ‘D’ are explicit models with no stability

constraints initialized by sampling Aij ∼ N [0, 1
60 ] and finally, ‘E’ are explicit models initialized by

sampling Aij ∼ N [0, 1
60 ] and projecting onto the unit spectral norm ball.

Comparing the models ‘C’ with ‘D’ and ‘E’, we can see that the implicit model structure appears
to make training much easier. Comparing the models ‘A’ and ‘B’ with ‘C’, we also see that the
initialization procedure appears to significantly speed up training. Finally, comparing A with B
we see that the proposed contraction constraint did not hinder training compared to unconstrained
models of the same structure. This is in contrast to the spectral norm constraint: comparing D and
E we can see that the constraint dramatically hinders training.

4.2. Gait Prediction

The problem is to determine a mapping to the trajectory of the left leg joint angles from the trajec-
tories of the remaining limbs. Such a model can be used, for example, to generate trajectories for
an actuated prosthetic limb or exoskeleton. As noted by the authors, this is a system where stability
is an important concern as unstable models can lead to unpredictable or dangerous behaviour.

The problem data consists of measurements of joint angles from 9 participants who instructed
to walk across flat ground, up a flight of stairs and then stop at the top. Data was gathered using a
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Figure 3: Performance of models on gait prediction task. The subscripts refer to the number of
layers in the model.

MOCAP system. Additional details on the data collection can be found in Boudali et al. (2019b,a).
The exercise was repeated 11 times for each participant and the final two trials were withheld as a
test set. The remaining 9 datasets were used to train 9 models using 9-fold cross validation. All
models have 64 hidden units per layer, ReLU activations and layers varying from 1 to 3.

In Figure 2, for each model, we have plotted the mean square error of the outputs of one trial
on the training data versus the epochs. We observe a significant increase in the training speed of the
ci-RNN compared to the s-RNN and RNN. We believe that this is due to the proposed initialization
scheme and the increased flexibility provided by the redundant parametrization. In order to compare
the performance of the resulting models across different participants and model outputs, we use
Normalized Simulation Error (NSE) as a performance metric, calculated as:

NSE =

∑
t |yt − ỹt|2∑

t |ỹt|2
. (16)

The box-plots in Figure 3(a) and 3(b) show the average NSE across the 6 outputs for the training
and test datasets for a single participant across the 9 models trained. We see that in each case the ci-
RNN outperforms the models RNN and s-RNN. Additionally we also observe a number of unstable
models in the RNN model set that have unbounded NSE. Figure 3(c) compares the NSE of the ci-
RNN and s-RNN for all models trained and all participants. As the vast majority of the point lie
beneath the line y = x, we can see that almost all ci-RNNs trained outperform the corresponding
s-RNNs, does so in every case for the 3-layer networks.
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