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Abstract
The recursive Newton-Euler Algorithm (RNEA) is a popular technique for computing the dynam-
ics of robots. RNEA can be framed as a differentiable computational graph, enabling the dynamics
parameters of the robot to be learned from data via modern auto-differentiation toolboxes. How-
ever, the dynamics parameters learned in this manner can be physically implausible. In this work,
we incorporate physical constraints in the learning by adding structure to the learned parameters.
This results in a framework that can learn physically plausible dynamics via gradient descent, im-
proving the training speed as well as generalization of the learned dynamics models. We evaluate
our method on real-time inverse dynamics control tasks on a 7 degree of freedom robot arm, both
in simulation and on the real robot. Our experiments study a spectrum of structure added to the
parameters of the differentiable RNEA algorithm, and compare their performance and generaliza-
tion.
Keywords: learning, structure, rigid body parameters, differentiable, recursive Newton-Euler al-
gorithm, inverse dynamics

1. Introduction

An accurate dynamics model is key to compliant force control of robots, and there is a rich history
of learning of such models for robotics (An et al., 1988; Murray et al., 1994; Atkeson et al., 1986).
With an accurate dynamics model, inverse dynamics can be used as a policy to predict the torques
required to achieve a desired joint acceleration, given the state of the robot (Murray et al., 1994).

Due to their widespread utility, robot dynamics have been learned in many ways. One way is
to use a purely data-driven approach with parametric models (Hitzler et al., 2019), non-parametric
models (Nguyen-Tuong et al., 2008), and learning error-models (Kappler et al., 2017), in a su-
pervised or self-supervised fashion. However, these purely data-driven approaches typically suffer
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from a lack of generalization to previously unexplored parts of the state space. Alternatively, Atke-
son et al. (1986) recast the dynamics equations such that inertial parameters are a linear function
of state-dependent quantities, given the joint torques. While inferior to unstructured approaches in
terms of flexibility to fit data, this approach typically provides superior generalization capabilities.
Recently, Lutter et al. (2019); Gupta et al. (2019) learn the parameters of Lagrangian dynamics,
incorporating benefits of flexible function approximation into structured models. However, these
approaches ignore some of the physical relationships and constraints on the learned parameters,
which can lead to physically implausible dynamics.

In this work, we combine the modern approach of parameter learning with the structured ap-
proach to inverse dynamics learning, similar to Ledezma and Haddadin (2017). We implement the
Recursive Newton-Euler algorithm in PyTorch (Paszke et al., 2017), allowing the inertial param-
eters to be learned using gradient descent and automatic-differentiation for gradient computation.
The benefit, over traditional least-squares implementations, is that we can easily explore various
re-parameterizations of the inertial parameters and additional constraints that encode physical con-
sistency, such as Wensing et al. (2018), without the need for linearity.

In that context, the contribution of this paper is threefold: first, we present several re-parameteri-
zations of the inertial parameters, which allow us to learn physically plausible parameters using a
differentiable recursive Newton-Euler algorithm. Second, we show that these re-parameterizations
help in improving training speed as well as generalization capability of the model to unseen situ-
ations. Third, we evaluate a spectrum of structured dynamics learning approaches on a simulated
and real 7 degree-of-freedom robot manipulator.

Our results show that adding such structure to the learning can improve the learning speed as
well as generalization abilities of the dynamics model. Our models can generalize with much lesser
data, and need much fewer training epochs to converge. With our learned dynamics, we see reduced
contributions of feedback terms in control, resulting in more compliant motions.

2. Background and Related Work

The dynamics of a robot manipulator are a function of the joint torque τ , joint acceleration q̈ and
joint position and velocity q, q̇:

τ = fID(q, q̇, q̈) = H(q)q̈ + C(q, q̇)q̇ + g(q) (1)

with H(q),C(q, q̇),g(q) are the system inertia matrix, Coriolis matrix, and gravity force, respec-
tively. fID(q, q̇, q̈) is the inverse dynamics model that returns the torques that can achieve a desired
joint acceleration, given the current joint positions and velocities.

The Recursive Newton-Euler Algorithm (RNEA) (Luh et al., 1980; Featherstone, 2007) is a
computationally efficient method of computing the inverse dynamics, which scales linearly with
respect to the number of the degrees-of-freedom of the robot.

2.1. Learning models for model-based control

Accurate inverse dynamics models are crucial for compliant force controlled robots, and hence
widely studied in robotics. Previously, researchers have used unstructured multi-layer perceptron
(MLP) to learn the complete inverse dynamics (Jansen, 1994; Hitzler et al., 2019) or a residual
component of the inverse dynamics (Kappler et al., 2017). Nguyen-Tuong et al. (2008) compare
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non-parametric methods like locally weighted projection regression (LWPR), support vector regres-
sion (SVR) and Gaussian processes regression (GPR) for learning inverse dynamics models.

Recently Lutter et al. (2019) and concurrently Gupta et al. (2019, 2020), proposed a semi-
structured learning method for the Lagrangian dynamics of a manipulator, called Deep Lagrangian
Networks (DeLaN). In DeLaN, some of the physical constraints of Lagrangian dynamics are obeyed.
For example, the inertia matrix is parametrized to be symmetric positive definite. Moreover, the re-
lationship between coriolis and centrifugal terms and the inertia matrix and joint velocities (Murray
et al., 1994) is satisfied via automatic differentiation. Similarly, the gravity term is derived from
a neural network which takes generalized coordinates as input, representing the potential energy.
However, other constraints in the dynamics, such as the triangle inequality in the principal moments
(Traversaro et al., 2016) of the inertia matrix are not considered. Moreover, neural networks can
be sensitive to the chosen architecture and need variations in input data to generalize to new situa-
tions. Similar to DeLaN, Hamiltonian Neural Networks (HNN) (Greydanus et al., 2019) predict the
Hamiltonian (instead of Lagrangian) of a dynamical system.

Many previous works in parameter identification boil down to setting up a least square prob-
lem with some (hard) constraints (Wensing et al., 2018; Mistry et al., 2009; Kozlowski, 2012),
followed by solving a convex optimization problem. On the other hand, our method incorporates
hard constraints as structure in learning representations of the parameters, and then performs back-
propagation on the computational graph for optimization. As a result, it is not limited to learning
linear parameters, and can generalize to a larger range of problems. Moreover, our approach can
be applied to an online learning setup: for example when the robot carries an additional mass
(an object) on one of its links, our approach can adapt the dynamics parameters online, as the
robot continues to operate and the data is collected in batches. Traditionally, online learning ap-
proaches –including adaptive control (Slotine and Li, 1987)– do not guarantee physical plausibility
of the learned dynamics parameters. On the other hand, more modern system identification meth-
ods which incorporate hard constraints on physical parameters (Wensing et al., 2018; Mistry et al.,
2009; Kozlowski, 2012) require collecting data in the new setting before optimizing the new dy-
namics parameters.

Our work is closely related to the work by Ledezma and Haddadin (2017), in the sense that
our work is also derived from the Newton-Euler formulation of inverse dynamics. However, in our
work, we emphasize more on how incorporating structure in learning dynamics parameters helps
with improving the training speed and generalization capability of the model. Moreover, we also
compare our method with the state-of-the-art semi-structured DeLaN and an unstructured MLP.

3. Encoding Physical Consistency in Newton-Euler Equations

The Newton-Euler equations can be implemented as a differentiable computational graph, e.g. with
PyTorch (Paszke et al., 2017), which we call differentiable NEA (DiffNEA). The parameters of
DiffNEA, e.g. the inertial parameters θ, can now be optimized via gradient descent utilizing auto-
matic differentiation to compute the gradients. Although both kinematics and dynamics parameters
are involved in Newton-Euler algorithm, in this paper we study the optimization of only the dynam-
ics parameters, assuming the kinematics specification of the robot is correct and fixed.

3



ENCODING PHYSICAL CONSTRAINTS IN DIFFERENTIABLE NEWTON-EULER ALGORITHM

Specifically, we aim to optimize parameters θ of the Newton-Euler equations, such that the
inverse dynamics loss is minimized

LID =
T∑
t=1

‖τt − fNE(qt, q̇t, q̈t;θ)‖22 . (2)

Typically, θ is a collection of inertial parameters θi = [m,θh, Ixx, Ixy, Ixz, Iyy, Iyz, Izz]
T ∈ R10

per link, where m is the link mass, θh = [hx, hy, hz] = mc with c being the CoM, and the last 6
parameters representing the rotational inertia matrix IC (Atkeson et al., 1986). When optimizing θ
physical consistency of the estimated parameters is not guaranteed. Enforcing physical constraints
on the parameters can be done through explicit constraints (Traversaro et al., 2016; Wensing et al.,
2018), which requires constrained optimization algorithms to find a solution. In the following, we
discuss and propose several possible parameter representations θ, which encode increasingly more
physical consistency implicitly and allows us to perform unconstrained gradient descent.

3.1. Unstructured Mass and Rotational Inertia Matrix (DiffNEA No Str)

We start out with the simplest representation, with an unconstrained mass value θm and 9 uncon-
strained parameters for the rotational inertia matrix:

θNo Str =
[
θm θh θIC 1 θIC 2 θIC 3 θIC 4 θIC 5 θIC 6 θIC 7 θIC 8 θIC 9

]
(3)

This parametrization does not encode any physical constraints and only serves as baseline.

3.2. Symmetric Rotational Inertia Matrix (DiffNEA Symm)

In this parametrization, we explicitly construct the rotational matrix as a symmetric matrix, with
only 6 learnable parameters. Furthermore, we represent the link mass as: m = (θ√m)2 + b, where
b > 0 is a (non-learnable) small positive constant to ensure m > 0. Thus the learnable parameters
of this representation are

θSymm =
[
θ√m θh θIC 1 θIC 2 θIC 3 θIC 4 θIC 5 θIC 6

]
(4)

This parameter representation enforces positive mass estimates and symmetric –but not necessarily
positive definite– rotational inertia matrices.

3.3. Symmetric Positive Definite Rotational Inertia Matrix (DiffNEA SPD)

Next, we introduce a change of variables, to enforce positive definiteness of the rotational inertia
matrix. We construct the lower triangular matrix:

L =

θLI1 0 0
θLI4 θLI2 0
θLI5 θLI6 θLI3

 (5)

and construct the rotational inertia matrix IC via Cholesky decomposition plus a small positive bias
on the diagonal: IC = LLT + bI3×3. I3×3 is a 3× 3 identity matrix and b > 0 is a (non-learnable)
small positive constant to ensure positive definiteness of IC . The learnable parameters are:

θSPD =
[
θ√m θh θLI1 θLI2 θLI3 θLI4 θLI5 θLI6

]
(6)
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While this representation enforces positive mass and positive definite inertia matrices, it could still
lead to inertia estimates that are not physically plausible, as discussed in Traversaro et al. (2016).
To achieve full consistency, the estimated inertia matrix also needs to fulfill the triangular inequality
of the principal moments of inertia of the 3D inertia matrices (Traversaro et al., 2016).

3.4. Triangular Parameterized Rotational Inertia Matrix (DiffNEA Tri)

To encode the triangular inequality constraints, we first decompose the rotational inertia matrix as:

IC = RJRT (7)

whereR ∈ SO(3) is a rotation matrix, and J is a diagonal matrix containing the principal moments
of inertia J1, J2, J3. The principal moments of inertia are all positive (J1 > 0, J2 > 0, J3 > 0)
such that IC is positive definite. In addition to the positiveness of the principal moments of inertia,
a physically realizable rotational inertia matrix IC needs to have J that satisfies the triangular
inequalities (Wensing et al., 2018; Traversaro et al., 2016):

J1 + J2 ≥ J3, J2 + J3 ≥ J1, J1 + J3 ≥ J2 (8)

In Wensing et al. (2018); Traversaro et al. (2016) the triangular inequality and R ∈ SO(3) con-
straints were encoded explicitly, here we propose a change of variables such that these constraints
are encoded implicitly allowing us to utilize the standard gradient based optimizers of toolboxes
such as PyTorch (Paszke et al., 2017).

We start out by introducing a set of unconstrained parameters θRAA =
[
θRAA1 θRAA2 θRAA3

]T
that represent an axis-angle orientation from which the rotation matrix R can be recovered by ap-
plying the exponential map to the skew-symmetric matrix recovered from θRAA.

R = exp

( 0 −θRAA3 θRAA2

θRAA3 0 −θRAA1

−θRAA2 θRAA1 0

) (9)

where exp(.) is the exponential mapping that maps θRAA, a member of so(3) group, toR, a member
of the SO(3) group (Murray et al., 1994).
Second, to satisfy triangular inequality constraints in Eq. 8 above, we can parameterize J1, J2, and
J3 as the length of the sides of a triangle. The length of the first 2 sides of the triangle are encoded
by J1 and J2, and the length of the 3rd side is computed as

J3 =
√
J2

1 + J2
2 − 2J1J2 cosα (10)

with 0 < α < π. To encode that J1, J2 > 0, and 0 < α < π we choose the following parametriza-
tion:

J1 = (θ√J1)
2 + b, J2 = (θ√J2)

2 + b, α = πsigmoid(θa) (11)

Thus, the learnable parameters of this parametrization are:

θTRI =
[
θ√m θh θRAA1 θRAA2 θRAA3 θ√J1 θ√J2 θa

]
(12)

Note, even though the underlying learnable parameter vector θTRI in Eq. 12 is unconstrained during
the parameter optimization via gradient descent, the intermediate parameters J1, J2, J3,R always
satisfy the hard constraints for physical consistency, i.e. that J1, J2, and J3 are all positive and
satisfy the triangle inequality constraints in Eq. 8, as well asR ∈ SO(3). In other words, it always
lies within the constraint manifold during optimization.
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3.5. Covariance Parameterized Rotational Inertia Matrix (DiffNEA Cov)

Alternatively, the triangular inequality constraint in Eq. 8 can be rewritten as (Wensing et al., 2018):

ΣC =
1

2
Tr(IC)I3×3 − IC � 0 (13)

which provides a somewhat easier and more intuitive representation. Again, in Wensing et al.
(2018) this constraint was imposed explicitly, through linear matrix inequalities. Here, we encode
the constraint ΣC � 0 implicitly by enforcing a Cholesky decomposition plus a small positive bias
b on the diagonal: ΣC = LLT + bI3×3. We parametrize this lower triangular matrix L:

L =

θLΣ1 0 0
θLΣ4 θLΣ2 0
θLΣ5 θLΣ6 θLΣ3

 (14)

and recover the rotational inertia matrix as:

IC = Tr(ΣC)I3×3 −ΣC (15)

with Tr() is the matrix trace operation, and I3×3 is a 3×3 identity matrix. The learnable parameters
of this parametrization are:

θCOV =
[
θ√m θh θLΣ1 θLΣ2 θLΣ3 θLΣ4 θLΣ5 θLΣ6

]
(16)

This parametrization also generates fully consistent inertial parameter estimates, like the previous
parametrization, however it is less complex to implement.

4. Experiments

In this Section, we evaluate our Torch implementation of the Newton-Euler algorithm, with the
parametrizations introduced in Section 3. We study how the parametrizations affect convergence
speed when training the parameters, and how well the dynamics generalize to unseen scenarios.
Furthermore, we compare a spectrum of structured dynamics learning approaches, starting from an
unstructured MLP, and semi-structured models like DeLaN, to our highly structured approach. We
start out with simulation experiments and then provide real system results on Kuka iiwa7 robot.

4.1. Simulation

In simulation, we collect training data on a simulated KUKA IIWA environment in PyBullet
(Coumans and Bai, 2016–2018), by tracking sine waves in each joint with the ground-truth inverse
dynamics model. The sine waves have time periods of [23.0, 19.0, 17.0, 13.0, 11.0, 7.0, 5.0] sec-
onds in each joint, and amplitudes [0.7, 0.5, 0.5, 0.5, 0.65, 0.65, 0.7] times the maximum absolute
movement in each joint. All dynamics models are trained with this sine wave motion dataset. All
feed-forward neural networks involved in MLP and DeLaN models have [32, 64, 32] nodes in the
hidden layer with tanh() activation functions.

We perform each experiment with 5 different random seeds — which affects the random initial-
ization as well as the random end-effector goal position to be tracked during generalization tests —
and then compute the performance statistics with mean and standard deviation across these.
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Table 1: Comparison between models trained to optimize LID on the sine motion dataset from simulation,
in terms of training speed, joint position (q) and velocity (q̇) tracking, and generalization performance: end-
effector position (x) and velocity (ẋ) tracking unseen end-effector reaching tasks.

Model
Sine Tracking (NSME) End-Effector Tracking (NSME)

# Training Epochs q Tracking q̇ Tracking x Tracking ẋ Tracking

Ground Truth N/A 0.000 0.000 0.005±0.006 0.008±0.010
MLP 23±3 0.000 0.001 0.256±0.405 5.542±6.980

DeLaN 58±19 0.000 0.001 0.016±0.008 0.254±0.278
DiffNEA NoStr 61±53 0.000 0.005±0.006 0.005±0.006 0.037±0.057
DiffNEA Symm 8±4 0.000 0.000 0.005±0.006 0.011±0.011
DiffNEA SPD 2±1 0.000 0.000 0.005±0.006 0.008±0.010
DiffNEA Tri 2±1 0.000 0.000 0.005±0.006 0.008±0.010
DiffNEA Cov 2±1 0.000 0.000 0.005±0.006 0.008±0.010

4.1.1. TRAINING SPEED, GENERALIZATION PERFORMANCE, AND EFFECTIVENESS OF

INVERSE DYNAMICS LEARNING

We train each model until it achieves at most a normalized mean squared error (NMSE) of 0.1
for all joints. We record total epochs of training required to reach that level of accuracy and store
the model once this accuracy has been achieved. Next, we evaluate model on tracking a) the sine
motion itself (which the parameters were fitted for), and b) on a series of 5 operational space control
tasks. For the second task, we use a velocity-based operational space controller as described in
(Nakanishi et al., 2008), and use the learned inverse dynamics model within that controller. The
results for convergence speed and tracking performance are averaged across the 5 random seeds and
summarized in Table 1. We measure the tracking performance through NMSE, which is the mean
squared tracking error normalized by the variance of the target trajectory. The better the tracking,
the less the controller relies on the feedback component, and more on the inverse dynamics model
prediction. The behavior becomes more compliant as the contribution of linear feedback goes down.

Table 1, shows that the parametrizations of θSPD,θTRI,θCOV outperform the less constrained
learning, by training faster as well as low NMSE. Moreover, we see that DiffNEA performs close
to ground-truth in performance, and generalizes better than the unstructured MLP as well as the
DeLaN model: MLP model oscillates significantly in the end-effector velocity (ẋ) tracking, while
DeLaN also oscillates mildly in ẋ tracking.

4.1.2. ONLINE LEARNING SPEED Figure 1: Online learning, with NMSE in log scale.

Next, we measure how fast each model can
learn in an online learning setup. We train
each model sequentially without shuffling on
the sine motion data, where each batch is of
size of 256. As the model trains with the se-
quential data, we measure its prediction perfor-
mance through the NMSE on the entire dataset.

In Fig. 1 we see that the DiffNEA model
with rotational inertia IC parameterized with
symmetric positive definite (SPD) matrix, trian-
gular parameterization, and covariance parame-
terization learns the fastest, but also generalizes
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the best to the yet unseen training data, outperforming other models in the online learning setup in
simulation.

4.2. Real Robot Experiments

For the real KUKA IIWA robot, we collect sine wave tracking data for about 240 seconds at 250 Hz
using the default URDF (Unified Robot Description Format) parameters, and the Pinocchio C++
library (Carpentier et al., 2015–2019) for dynamics and kinematics of the robot. We noticed un-
modeled friction dynamics not present in simulation, and added a joint viscous friction/damping
model to both DeLaN and DiffNEA models, whose parameters are also learned from data. We use
one positive constant per joint damping with parameterization similar to J1, J2 in Eq. 11, but with
b = 0 because each joint damping constant can be 0.

4.2.1. EVALUATION

Table 2: Comparison between models trained to optimize LID on the sine motion dataset on the real robot,
in terms of the number of training epochs required to reach convergence, sine motion joint position (q)
tracking, sine motion joint velocity (q̇) tracking, and generalization performance: end-effector position (x)
and velocity (ẋ) tracking NMSE on an end-effector tracking task (unseen task/situation during training).

Model
Sine Tracking (NMSE) End-Effector Tracking (NMSE)

# Training Epochs q Tracking q̇ Tracking x Tracking ẋ Tracking

Default Model N/A 0.001 0.009 0.000 0.016
MLP 2 0.000 0.011 0.003 0.513

DeLaN 4 0.001 0.013 Unstable Unstable
DiffNEA Symm 3 0.001 0.012 0.000 0.013
DiffNEA SPD 3 0.001 0.013 0.000 0.014
DiffNEA Tri 2 0.001 0.013 0.000 0.012
DiffNEA Cov 2 0.001 0.012 0.000 0.015

Both MLP and DeLaN models converge to average training NMSE less than 0.1, while the
DiffNEA models converge to average training NMSE 0.35, down from the default model with av-
erage NMSE 0.74. However, as can be seen in Table 2, the trained DeLaN model is unstable during
the end-effector tracking task, while the trained MLP model has a large end-effector velocity (ẋ)
tracking NMSE due to oscillations. On the other hand, trained DiffNEA models still perform rea-
sonably, showing its better generalization capability. We attribute the imperfect training of DiffNEA
models to unmodelled dynamics of the real system, such as static friction.

5. Conclusion and Future Work

In this paper, we incorporate physical constraints in learned dynamics by adding structure to the
learned parameters. This enables us to learn the dynamics of a robot manipulator in a computational
graph with automatic differentiation, while keeping the learned dynamics physically plausible. We
evaluate our approach on both simulated and real 7 degrees-of-freedom KUKA IIWA arm. Our
results show that the resulting dynamics model trains faster, and generalize to new situations better
than other state-of-the-art approaches.

We also observe that moving to the real robot creates new sources of discrepancies between the
rigid body dynamics and the true dynamics of the system. Factors such as static friction cannot be
sufficiently captured by our model, and point to interesting future directions.
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