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Abstract

For safety-critical black-box optimization tasks, observations of the constraints and the objective are often
noisy and available only for the feasible points. We propose an approach based on log barriers to find a local
solution of a non-convex non-smooth black-box optimization problem min f0(x) subject to f

i(x)  0, i =
1, . . . ,m, guaranteeing constraint satisfaction while learning an optimal solution with high probability. Our
proposed algorithm exploits noisy observations to iteratively improve on an initial safe point until convergence.
We derive the convergence rate and prove safety of our algorithm. We demonstrate its performance in an
application to an iterative control design problem. 1 2

1. Introduction

Motivation Machine learning algorithms are increasingly being deployed for safety-critical emerging
applications such as autonomous driving, personalized medicine and robotics. In such scenarios, safety
and reliability of these algorithms is crucial. When the model is unknown, too complex or unreliable, it is
common to adopt a black-box bandit setup; our goal is to include safety in these learning techniques.

Related work In the optimization literature, several constrained optimization algorithms exist guaranteeing
feasibility of the iterates given just local information about the constraints. These include Feasible Sequential
Quadratic Programming (FSQP) (Jian et al., 2005; Luo et al., 2012; Tang et al., 2014), the Method of Feasible
Directions (MFD) (Zoutendijk, 1960), and their variations. However, all these methods require first and/or
second order information and do not consider the presence of noise. On the other hand, there are many
works on derivative-free optimization, including non-convex and non-smooth problems (Balasubramanian
and Ghadimi, 2018; Nesterov and Spokoiny, 2017; Ghadimi and Lan, 2013; Lan, 2013), based on finite
difference gradient estimation techniques. However, these methods do not guarantee the feasibility of the
points where measurements are taken with respect to unknown constraints. This issue can be addressed
by interior point methods, where a barrier function is optimized. However, existing work on interior point
methods typically require second order information.

Safe learning with zero-th order (bandit) information has been considered in Bayesian Optimization
(Berkenkamp et al., 2016; Sui et al., 2015) for non-convex constrained problems. As these works aim
to compute a global optimum, they have to solve a nontrivial non-convex subproblem at each iteration.
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European Union’s Horizon 2020 research and innovation programme grant agreement No 815943.

2. In the interest of space, we refer to a companion ArXiv preprint https://arxiv.org/abs/1912.09466 for the proofs.
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Problem Unconstrained & smooth objective Known linear constraints &
smooth objective

Single unknown smooth con-
straint & smooth objective

Several unknown non-
smooth constraints &
non-smooth objective

Feedback 2-point bandit feedback 2-point bandit feedback 1-point bandit feedback 1-point bandit feedback
Safety - Yes (known constraints) Yes Yes
Optimality
condition

Stationary point:
Ekrf(xT )k2  ⌘

⌘-stationary point: 8u 2 D

Ehrf(xT ), xT � ui  ⌘

⌘-approximate KKT point ⌘-approximate KKT point
of the smoothed problem

Number
of mea-
surements

O

⇣
d
⌘4

⌘
or O

⇣
d

⌘3.5

⌘
+Õ

⇣
d4

⌘2.5

⌘

(Balasubramanian and Ghadimi,
2018)

O

⇣
d
⌘4

⌘

(Balasubramanian and
Ghadimi, 2018)

Õ

⇣
d3

⌘7

⌘

(Usmanova et al., 2019)
Õ

⇣
d2

⌘9

⌘

(this work)

Table 1: Upper bounds on number of zero-th order oracle calls for non-convex smooth optimization algorithms.

Moreover, for most common kernel functions, these algorithms require a number of measurements that is
exponential on the dimensionality. This makes Safe Bayesian Optimization methods not always applicable to
high dimensional problems. Moreover, appropriately choosing a prior distribution and the kernel parameters
might not be a trivial task. Gradient based local methods usually do not suffer from these drawbacks.

First order methods in application to barrier functions in the recent past were considered to have
exponential runtime bounds due to the bad behavior of any barrier on the boundary of the feasible set.
However, in the recent work (Hinder and Ye, 2019) the authors demonstrated that for smooth problems a
gradient descent algorithm with adaptive step size on a log barrier function can be tractable, i.e., present
attractive polynomial runtime convergence. Motivated by safe learning problems, the recent work (Usmanova
et al., 2019) extended this approach by (Hinder and Ye, 2019) to smooth non-convex optimization problems
with zero-th order noisy measurements. However, the bound on the number of measurements was valid only
in the case of a single smooth constraint function. In this paper, generalizing the approach of (Usmanova
et al., 2019), we develop a safe algorithm for the non-smooth non-convex constrained optimization problems
subject to an arbitrary number of constraint functions. In Table 1, a comparison of our algorithm with existing
methods for unconstrained and constrained zero-th order non-convex optimization is provided. In the first
two algorithms a 2-point bandit feedback is assumed, i.e., it is possible to measure at several points with
the same noise realization. In our algorithm we assume a more realistic and more challenging setup with
changing noise at each measurement.

Safe learning is widely used in control of unknown dynamical systems. For example, the work by (Dean
et al., 2019) exploited system identification and robust optimal control to learn the safe linear quadratic
regulator (LQR) subject to constraints on the state and input trajectories. There are many works aiming at
guaraneeing safety while learning the optimal policy and dynamics in non-linear control, such as Fisac et al.
(2018); Berkenkamp et al. (2016); Gillula and Tomlin (2012). Often Bayesian optimization approach is used
to solve the above problems. However, Bayesian optimization might not enjoy acceptable scalability with
dimensionality, thus limiting its applicability to control. Non-smoothness can also appear in some control
problems such as bipedal walking, etc (Ames, 2014). In this paper, we consider an application of our method
to safe learning for model-free control. We test our algorithm on a low dimensional control system, but
theoretically the dependence on the dimensionality is only polynomial and the algorithm can be applied for
higher dimensional problems.

Our contributions Our contribution is to propose an algorithm to find an approximate local solution to
non-convex non-smooth cost functions subject to non-convex non-smooth constraints. Furthermore, we prove
the safety of the approach and derive its convergence rate in expectation in terms of the variance of the noise.
Our algorithm is based on the log barrier gradient descent approach. Our convergence is with respect to an
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approximate stationary point of the smooth approximation of the problem. In the special case, where both the
cost function and the constraints are smooth, we establish convergence to an approximate KKT point of the
initial problem. We validate the performance of our algorithm in application to a simple model-free control
problem.

2. Problem statement

Notations and definitions. Let k·k denote the l2-norm on Rd. A function f : Rd ! R is called L-Lipschitz
continuous if |f(x)� f(y)|  Lkx� yk2. It is called M -smooth if the gradients rf(x) are M -Lipschitz
continuous, i.e., krf(x)�rf(y)k2  Mkx� yk2. A random variable ⇠ is zero-mean �

2-sub-Gaussian if
8� 2 R E

⇥
e
�⇠
⇤
 exp

⇣
�2�2

2

⌘
, which implies that Var [⇠]  �

2 (this can be shown using Tailor expansion).

By Sd and Bd we denote the unit sphere and the unit ball in Rd, respectively. We denote the characteristic

function of a set X ✓ Rd by IX =

(
0, x 2 X
+1, x /2 X

.

Problem formulation We consider safe non-convex non-smooth constrained optimization problem

min
x2Rd

f
0(x)

subject to f
i(x)  0, i = 1, . . . ,m, (1)

where the objective function f
0 : Rd ! R and the constraints f

i : Rd ! R are unknown L-Lipschitz
continuous functions, and can only be accessed at feasible points x. We denote by D the feasible set
D := {x 2 Rd : f i(x)  0, i = 1, . . . ,m}.

Assumption 1 The set D has a non-empty interior, and there exists a known starting point x0 for which
f
i(x0) < 0 for i = 1, . . . ,m.

This assumption is common in works on safe learning (Berkenkamp et al., 2016; Sui et al., 2015) or on
model-free LQR problems (Fazel et al., 2018; Abbasi-Yadkori et al., 2019).

Information. We assume access to noisy measurements of all cost and constraint function values for any
requested feasible point x 2 D. In particular, the measurements are given by F

i(x, ⇠i) = f
i(x) + ⇠

i
, 8i =

0, . . . ,m with zero-mean sub-Gaussian noise ⇠
i. The ⇠

i’s are i.i.d. across different measurements.

Goal. The goal of the algorithm is to find an approximate local optimum, using only noisy zeroth-order
information. Moreover, it has to guarantee safety, i.e., constraint satisfaction with high probability for all
points at which measurements are taken. For differentiable non-convex objective and constraints, the notion
of local optimality is captured by KKT condition. In this setting, we show that our algorithm converges to an
⌘-approximate KKT point for any ⌘ > 0 with constants ⌧1, ⌧2 > 0, that are fixed and independent on ⌘:

�
i
,�f

i(x) � 0, 8i = 1, . . . ,m (⌘-KKT.1)

�
i(�f

i(x))  ⌧1⌘, 8i = 1, . . . ,m (⌘-KKT.2)
krxL(x,�)k2  ⌧2⌘, (⌘-KKT.3)

where L(x,�) := f
0(x) +

Pm
i=1 �

i
f
i(x) is the corresponding Lagrangian function. For non-differentiable

non-convex objective and constraints, local optimality conditions are less understood. In this case, we show
convergence to an approximate KKT point of a corresponding smoothed problem. The smoothing will be
described in the approach below. In Corollary 4, we connect the solution of the smoothed problem with an
approximate KKT point of the initial problem for the case of differentiable cost function and constraints.
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3. Proposed approach

We propose to construct a log barrier for the smooth approximation of problem (1), and then apply the zero-th
order stochastic gradient descent with an adaptive step size to minimize it. To estimate the gradient of the
smoothed function we sample points around the current iterate, and take measurements at these points. A
measurement is denoted as safe if the point at which it is taken is feasible with high probability.

3.1. Zero-th order gradient estimation.

Our algorithm uses a randomized zero-th order gradient estimator for cost and constraint functions. For a
point xk the gradient is estimated taking nk samples uniformly at random on the unit sphere Sd.

G
i(xk, ⌫) :=

nkX

j=1

Ĝ
i
j(xk, ⌫)

nk
, Ĝ

i
j(xk, ⌫) := d

F
i(xk + ⌫skj , ⇠

i+
kj )� F

i(xk, ⇠
i�
kj )

⌫
skj (2)

for i = 0, . . . ,m, where all {[⇠i+kj , ⇠
i�
kj ]}j=1...,nk are i.i.d. sub-Gaussian random variables, ⌫ > 0 is the

sampling radius, skj are the sampled unit vectors. For the sampling radius ⌫ � 0 define the ⌫-smoothed
estimate of the function f(x) by f⌫(x) := Ebf(x+ ⌫b), where b is uniformly distributed on the unit ball Bd

Then Esk,⇠kG
i(xk, ⌫) = rf

i
⌫(xk) (Flaxman et al., 2005; Nesterov and Spokoiny, 2017; Balasubramanian

and Ghadimi, 2018). This shows that in expectation we can get a gradient of the smooth estimate f⌫(x) of
non-smooth function f(x) using randomized gradient estimator. Hazan et al. (2016) showed the first two of
the following properties of f⌫(x):

1) The gradient rf⌫(x) is Lipschitz continuous with constant M⌫ satisfying M⌫  L
⌫ .

2) 8x 2 Rd |f⌫(x)� f(x)|  ⌫L.

3) The function f⌫(x) is Lipschitz continuous with L⌫  L, which implies krf⌫(x)k  L for differen-
tiable f⌫(x). (For the proof of this property see Appendix A.)

3.2. Smoothed log barrier function.

We address the safe learning problem using the log barriers approach. Define f
c(x) = maxi=1,...,m f

i(x),
which is in general non-smooth and non-convex. The logarithmic barrier with parameter ⌘ > 0 of the initial
problem with the constraints replaced with f

c(x) above is defined as B⌘(x) = f
0(x)� ⌘ log(�f

c(x)). We
define the locally smooth barrier function and its gradient using smoothed functions f0

⌫ (x) and f
c
⌫(x):

B⌘,⌫(x) = f
0
⌫ (x)� ⌘ log(�f

c
⌫(x)), (3)

rB⌘,⌫(x) = rf
0
⌫ (x) + ⌘

rf
c
⌫(x)

�f c
⌫(x)

, (4)

It is evident that the gradient of the barrier grows to infinity while converging towards the boundary and
hence, the barrier function cannot be smooth. Local smoothness of barrier function refers to existence of
a value M2,⌫(x) that bounds the change in barrier gradient krB⌫,⌘(x)�rB⌫,⌘(y)k

kx�yk for a ball around point x,
where M2,⌫(x) is determined later in Appendix H in (26). Our goal is to design an algorithm that converges
to a locally optimal point x⇤ of the smoothed log barrier B⌘,⌫(x), which is basically an unconstrained
approximation of constrained smoothed problem: f0

⌫ (x)+ Ifc
⌫ (x)0. Then, we show that this point x⇤ satisfies

⌘-approximate KKT conditions for the smoothed problem minfc
⌫ (x)0 f

0
⌫ (x).
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3.3. Log barrier gradient estimator.

First, we need to propose a way to estimate rB⌘,⌫(xk) = rf
0
⌫ (xk) + ⌘

rfc
⌫ (xk)

�fc
⌫ (x)

. To estimate rf
0
⌫ (xk)

and rf
c
⌫(xk) we can use G

0(xk, ⌫) defined by (2), and G
c(xk, ⌫) defined similarly but with F

c(xk, ⇠k) =
maxi F i(xk, ⇠ik) instead of F i(xk, ⇠ik). However, to estimate the denominator we propose to use a lower
confidence bound on �f

c
⌫(xk), constructed as follows. Given � > 0 for i = 1, . . . ,m define F̂

i(xk) :=Pnk
j=1 F

i(xk,⇠
i�
jk )

nk
+ �p

nk

q
ln 1

� . We show in Appendix C that P{f i(xk)  F̂
i(xk)} � 1 � �. We define by

F̂
c
⌫ (xk) := maxi=1,...,m F̂

i(xk) + ⌫L an upper confidence bound on f
c
⌫(xk) and by ↵̂k := |F̂ c

⌫ (xk)| a lower
confidence bound on both |f c(xk)| and |f(xk)|. More precisely, P {↵̂k  min{|f c

⌫(xk)|, |f c(xk)|}} � 1��.

The proofs of the above statements are shown in Appendix C. Then, we propose to estimate rB⌘,⌫(xk) by

gk := G
0(xk, ⌫) + ⌘

G
c(xk, ⌫)

↵̂k
. (5)

Later in Fact 2, we bound the deviation kgk�rB⌘,⌫(xk)k with high probability. Next, to define our algorithm
we need to make a second assumption.

Assumption 2 Let D0 ✓ D be the subset defined by D
0 =

�
x 2 Rd : f c

⌫(x) + ⌘  0
 
. There exists l > 0

such that the norm of the gradient rf
c
⌫(x) is lower bounded on D \D0 by l, i.e, 0 < l  krf

c
⌫(x)k  L.

Assumption 2 is needed to demonstrate that close to the boundary of the constraint set the term in the barrier
gradient related to constraints becomes large enough to push the step direction away from the boundary back
to the feasible set. A slightly modified Margensian Fromowitz Constraint Qualification (MFCQ) that holds
for all points leads to the satisfaction of Assumption 2. We show this in Appendix B.

The proposed stochastic zero-th order algorithm is defined in Algorithm 1 below:

Algorithm 1 Stochastic Zero-th Order Logarithmic Barrier Method (ZeLoBa)
1: Input: x0 2 D, number of iterations K, ⌘ > 0 , L, l > 0, C = 7l

54L , ⌫ = C⌘
L , {nk}Kk=1 defined in Lemma 1

2: while k  K do
3: Sample nk vectors skj , j = 1, . . . , nk independently from the uniform distribution on Sd;
4: Take nk noisy measurements of each function f

i(x), i = 0, . . . ,m at points F i(xk, ⇠
i�
kj ), F

i(xk + ⌫skj , ⇠
i+
kj );

5: Compute an estimator gk of rB⌘,⌫(xk) using (5);
6: Compute �k = 1

kgkk min
�

↵̂k

2Lk2/5 ,
1

k3/5

 
;

7: xk+1 = xk � �kgk, �k+1 = ⌘
↵̂k+1

;
end

8: Sample R from a discrete random distribution P{R = k} = �kkgkkPK
k=1 �kkgkk

9: Output: xR

In the above, l is the constant defined in Assumption 2. Our algorithm is defined for fixed ⌘. In practice
interior point methods often use decreasing ⌘. Our algorithm can be used for inner iterations of the classical
log barrier method with decreasing ⌘.

4. Safety and convergence analysis

From the algorithm we require the safety of the iterates, f c(xk)  0, and the safety of the measurements,
f
c(xk + ⌫skj)  0, with high probability. Also, we require convergence to a stationary point of the smoothed

function in expectation. Here, we show that these properties hold for ZeLoBa algorithm.
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4.1. Safety.

Given the required accuracy ⌘, the smoothing parameter ⌫ (which is also the sampling radius) has to
be conservative enough to guarantee constraint satisfaction at any measured point xk + ⌫skj of ZeLoBa
algorithm. Thus, we need to show that the iterates xk always keep a sufficient distance ⇤ > 0 from the
boundary, namely �f

c
⌫(xk) � ↵̂k � ⇤. To show the above, we first need to bound the deviation of gk from

rB⌘,⌫(xk). Define the deviation by ⇣k := gk � rB⌘,⌫(xk). The deviation ⇣k is dependent on deviations
�0

k := G
0(xk, ⌫) � rf

0
⌫ (xk),�

c
k := G

c(xk, ⌫) � rf
c
⌫(xk), thus, we bound these latter terms first. We

denote ⌃ := (d+ 1)
q

ln 1
� + ln(2K + 1)

�p
2� + L⌫

�
. From the sub-Gaussian property of the noise ⇠

i±
kj

and L-Lipschitz continuity of f i(x), i = 0, . . . ,m, we have:

Fact 1 For deviations �j
k = G

j(xk, ⌫)�rf
j
⌫ (xk), j = {0, c}, we have Ek�j

kk2 
d2

nk

⇣
L
2 + 2�2

⌫2

⌘
.

For all points xk with k  K we have P
⇢
8k = 1, . . . ,K k�j

kk  ⌃
⌫
p
nk

�
� 1� �.

For the proof see Appendix D. Using this result, we can get the following bound on ⇣k:

Fact 2 For deviation ⇣k = gk �rB⌘,⌫(xk), we have Ek⇣kk  (d+1)(
p
2�+L⌫)

⌫
p
nk

⇣
1 + 2⌘

↵̂k

⌘
.

For all k  K we have P
n
8k = 1, . . . ,K k⇣kk  ⌃

⌫
p
nk

⇣
1 + 2⌘

↵̂k

⌘o
� 1� �.

For the proof see Appendix E. From the above facts, observe that if we keep the iterates xk away from the
boundary, ↵̂k � ⇤ > 0, we can bound the deviation ⇣k. Luckily, the Log Barrier gradient approach with
sufficiently large number of measurements in ZeLoBa ensures this property, as shown in the following lemma.

Lemma 1 Under Assumption 2, if the initial point satisfies �f
c
⌫(x0) � 2C⌘ with C = 7l

54L , then for all
iterates xk of ZeLoBa algorithm with nk � 4⌃2(C+1)2

⌫2C2L2 we have P{↵̂k � C⌘ 8k  K} � 1� �.

Proof sketch: The idea is to show that the satisfaction of ↵̂k � C⌘ and �f
c
⌫(xk) � 2C⌘ for iteration k

implies the same bounds for the next iteration k + 1 with high probability. To prove this, we divide the
condition �f

c
⌫(xk) � 2C⌘ into two following cases. Case 1. �f

c
⌫(xk) � 4C⌘, i.e., xk is far from the

boundary of the constraint set. Then, in the next iteration �f
c
⌫(x) cannot decrease more than twice due to the

choice of the step size and L-Lipschitz continuity of �f
c
⌫(x). Thus, for xk+1 the bound �f

c
⌫(xk+1) � 2C⌘

holds. Case 2. �f
c
⌫(xk)  4C⌘, i.e., xk is close enough to the boundary. In this case, we show that �gk

pushes xk+1 away from the boundary. That is, �gk is the descent direction for f c
⌫ : hgk,rf

c
⌫(xk)i � 0.

This is because gk defined in (5) can be expressed as a sum of ⌘
↵̂k

rf
c
⌫(xk) and rf

0
⌫ (xk) + ⇣k, and the

first term will be dominating. Indeed, close to the boundary the factor ⌘
↵̂k

is large and krf
c
⌫(xk)k is lower

bounded krf
c
⌫(xk)k � l > 0 due to Assumption 2. Moreover, the step size �k is sufficiently small to

guarantee that f c
⌫(xk+1) will not increase compared to f

c
⌫(xk) due to the M⌫-smoothness. Consequently,

�f
c
⌫(xk+1) � 2C⌘ holds for both cases. This implies ↵̂k+1 � C⌘ with high probability. Everything above

holds conditioned on the previous iteration k. Carefully combining the conditional probabilities along
k = 1, . . . ,K, we get the result of the lemma. The full proof can be found in Appendix F.

The above lemma implies that the sampling radius ⌫ = C⌘
L  ↵̂k

L is safe. Hence, our algorithm is safe:

Proposition 2 Let Assumptions 1,2 hold and nk � 4⌃2(C+1)2

⌫2C2L2 . Then all iterations xk and measurement
points xk + ⌫skj generated by ZeLoBa algorithm are safe, namely, P{f c(xk)  0 8k  K} � 1� � and
P{f c(xk + ⌫sk,j)  0 8k  K} � 1� �.

For the proof see Appendix G.
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4.2. Convergence.

Theorem 3 Under Assumptions 1,2, for nk � 4⌃2(C+1)2

⌫2C2L2 and K � 1
⌘5 iterations of ZeLoBa algorithm

we have EkrB⌘,⌫(xR)k  ⌘(C1 + C2 lnK), with C1 =
2L(B⌘,⌫(x0)�minx B⌘,⌫(x))

C + L
C

�
1 + 1

C

�
and C2 =

1
4C

�
1 + 1

C

�
+ L

2C . This implies that for the pair (xR,�R) in expectation ⌘-approximate KKT condition holds:

P{�R,�f
c
⌫(xR) � 0} � 1� �, (⌘-KKT.1)

P{�R(�f
c
⌫(xR))  3⌘} � 1� �, (⌘-KKT.2)

EkrxL(xR,�R)k2  (C1 + C2 lnK)⌘. (⌘-KKT.3)

The total number of measurements required is NK = nk ·K = O(d
2

⌘9 ).

Proof sketch: The proof is based on standard non-convex analysis techniques. The log barrier B⌘,⌫(x)

is only locally smooth with smoothness parameter M2,⌫(xk)  M⌫

⇣
1 + 2⌘

↵̂k

⌘
+ 4L2⌘

↵̂2
k

for all the points
within the ball with radius �k around xk. Using the local smoothness, we bound the improvement in barrier
value B⌘,⌫(xk+1)�B⌘,⌫(xk) for each iteration k. Summing this together for all k  K provides the bound
on

PK
k=1

�k
kgkkkrB⌘,⌫(xk)k. This expression represents scaled ERkrB⌘,⌫(xR)k for R defined at Step 8

of ZeLoBa algorithm. That is, we get EkrB⌘,⌫(xR)k  (C1 + C2 lnK)⌘ for K � 1
⌘5 . By construction,

rB⌘,⌫(xR) equals to rxL(xR,�R) for the smoothed problem, that implies (⌘-KKT.3). (⌘-KKT.1) follows
from Proposition 2. (⌘-KKT.2) follows from �R = ⌘

↵̂R
and Lemma 1. The full proof is in Appendix H.

Remark: The obtained bound on the number of measurements, O(d
2

⌘9 ), is 1
⌘2 times worse compared to

Usmanova et al. (2019). This comes as a price for non-smoothness. This difference agrees with the difference
1
⌘2 in upper bounds in other works on zero-th order optimization such as Duchi et al. (2015).

Corollary 4 If the initial objective and constraints are differentiable, then the result obtained in Theorem 3
entails satisfaction of the approximate KKT condition for the initial problem (1).

Proof We define �̂R 2 Rm, where �̂
i
R =

(
0 , i /2 argmaxi F̂ i(xR),

⌘
�F̂ c

⌫ (xR)
, i 2 argmaxi F̂ i(xR)

. We can easily see that

condition ⌘-KKT.1 holds with high probability by construction: �f
c
⌫(xR) � ↵̂R � 0. Condition ⌘-

KKT.2 holds for all i /2 argmaxi F i(xR) since �̂
i
R is just equal to 0. For i 2 argmaxi F̂ i(xR), we

have ⌘
�F̂ i(xR)

(�f
i(xR))  ⌘ + ⌘

F̂ i(xR)�f i(xR)

�F̂ i(xR)
 ⌘ + ⌘

�
p

ln 1/�/
p
nk

↵̂R
 3⌘. Finally, we can verify that

condition ⌘-KKT.3 holds as follows, using krf
i
⌫(x)�rf

i(x)k  ⌫Ld (Nesterov and Spokoiny, 2017):

EkL(xR, �̂R)k = Ekrf
0(xR) +

mX

i=1

�̂
irf

i(xR)k = E
�����rf

0(xR) +
⌘rf

i(xR)

�F̂ c
⌫ (xR)

�����

 E
����rf

0
⌫ (xR) +

⌘rf
i
⌫(xR)

�F̂ c
⌫ (xR)

����+
��rf

0(xR)�rf
0
⌫ (xR)

��+ ⌘

�����
rf

i(xR)

�F̂ c
⌫ (xR)

� rf
i
⌫(xR)

�F̂ c
⌫ (xR)

�����

 krB⌘,⌫(xR)k+ ⌘

✓
1 +

⌫Ld

↵̂R

◆
 krB⌘,⌫(xR)k+ ⌘(d+ 1)  ⌘(C1 lnK + C2 + d+ 1).

In case of non-smooth objective and constraints, we do not know yet how to relate directly the result of
Theorem 3 to the original problem (1). This is a direction of the future research.
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Figure 1: a) Left. Maximum constraint value (top) and the objective value (bottom) for 20 experiments; b) Middle.
Control trajectory with U0; c) Right. Final control trajectory obtained by ZeLoBa with ⌘ = 0.001.

5. Experiments

We consider the application to safe iterative controller design. Consider the basic unicycle dynamics
ẋ = v cos ✓, ẏ = v sin ✓, ✓̇ = !. Here the states q = [x, y, ✓] describe the spatial coordinates x, y and the
direction angle ✓. The control inputs u = [v,!] describe the speed and the angular velocity. Since the simple
Euler discretization is valid only when the sampling period dt is sufficiently small, we use a discretized model
of the unicycle based on direct integration of the dynamics (Nino-Suarez et al., 2006; Adinandra et al., 2012):

qt+1 =

2

4
xt+1

yt+1

✓t+1

3

5 = qt +

2

4
2vt + �(!t) cos(✓t +

dt
2 !t)

2vt + �(!t) sin(✓t +
dt
2 !t)

dt!t

3

5 , �(!t) =

(
sin(dt2 !t), !t 6= 0
dt
2 , !t = 0

.

We choose a memoryless linear feedback law ut+1 = Uqt, where U 2 R3⇥2 is the optimizing parameter.
The state sequence determined by U is denoted by qt(U), t = 1, . . . , T where T is the planning horizon. The
goal is to lead the vehicle from a starting point qA to a goal destination qB while avoiding collision with
high-probability. The cost function is defined as

PT
t=1 kqt(U)� qBk2. The constraints are formulated such

that the trajectory does not collide with the the ball shaped obstacle placed at (xC , yC)T with radius 1. The
resulting constrained optimization problem is as follows:

min
U2R3⇥2

1

T

TX

t=1

kqt(U)� qBk2

subject to 1�
��(xt(U), yt(U))T � (xC , yC)

T
��2  0, t = 1, . . . , T.

In the zero-th order oracle approach, we assume no knowledge of the dynamics, the constraints or the cost
functions. We only assume noisy measurements of the cost function and the constraints. Thus, we address this
problem using the ZeLoBa algorithm. We set the parameters of the algorithm to ⌫k = min{ ⌘

L ,
↵̂k
L } for safety,

L = 40 set by trial, nk = 7, K = 500, and initialize the algorithm with a safe control policy. The algorithm
iteratively improves the controller while avoiding the constraints. The total number of measurements is
NK = 3500. In Figure 1 a) below we demonstrate the achieved results of 20 trials of the stochastic ZeLoBa
algorithm with the fixed initialization. In none of the trials the constraints were violated. In Figure 1 b) we
show the trajectory generated by U0 controller. In Figure 1 c) we demonstrate an example of the trajectory
generated by the final controller obtained during one of the trials of stochastic ZeLoBa algorithm.
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