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Abstract

Training deep convolution neural network requires a large amount of data to obtain good
performance and generalisable results. Transfer learning approaches from datasets such
as ImageNet had become important in increasing accuracy and lowering training samples
required. However, as of now, there has not been a popular dataset for training 3D vol-
umetric medical images. This is mainly due to the time and expert knowledge required
to accurately annotate medical images. In this study, we present a method in extracting
labels from DICOM metadata that information on the appearance of the scans to train a
medical domain 3D convolution neural network. The labels include imaging modalities and
sequences, patient orientation and view, presence of contrast agent, scan target and cover-
age, and slice spacing. We applied our method and extracted labels from a large amount of
cancer imaging dataset from TCIA to train a medical domain 3D deep convolution neural
network. We evaluated the effectiveness of using our proposed network in transfer learning
a liver segmentation task and found that our network achieved superior segmentation per-
formance (DICE=90.0%) compared to training from scratch (DICE=41.8%). Our proposed
network shows promising results to be used as a backbone network for transfer learning to
another task. Our approach along with the utilising our network, can potentially be used
to extract features from large-scale unlabelled DICOM datasets.
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1. Introduction

With the abundance of medical images routinely taken at hospitals, imaging-based machine
learning approaches had become a centre of development in diagnostic radiology. Methods
based on deep learning had promising results in many areas of diagnostic radiology such
as tumour segmentation and classification (Gonzalez et al., 2018; Song et al., 2018; Nielsen
et al., 2018). Despite successes, performances of neural networks in the medical domain are
often limited by small development set. To alleviate the problem, transfer learning from
pre-existing datasets were used to improve performance. Transfer learning is the process of
taking existing pre-trained network architecture designed for an existing dataset (typically
over a million) and then fine-tuned against on data for another task. The current most pop-
ular dataset used for transfer learning is ImageNet, which consists of over 14 million natural
images with 20 thousand classes (Russakovsky et al., 2014). Popular ImageNet architec-
tures such as ResNet, Inception and DenseNet had had success in medical imaging task,
particular in radiographs and ophthalmological images such as a retina scan (Rajpurkar
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et al., 2017; Gulshan et al., 2016). However, since most diagnostic imagery consists of 3D
volumetric images, transfer learning from the natural domain are not feasible. Since 3D
networks architecture generally is more prone to over-fitting due to having more parameters,
this had often lead to some studies to treat each 2D slices of a 3D volume independently to
leverage transfer learning, hence discarding the potential useful structural information.
Despite many radiological imaging datasets are available in the public domain from channels
such as CodaLab (https://competitions.codalab.org) and The Cancer Imaging Archive
(TCIA) (Clark et al., 2013), there has not been a large-scale 3D dataset that is available
to use for training a network similar to ImageNet. One primary reason is that medical
images are inherently more complex than natural images, and would require a significant
amount of time and specialised medical knowledge to annotate. The recent effort by Chen
et al. (2019) had developed a general multi-domain network (MED3D) based on publicly
available volumetric segmentation datasets had shown superior performance in several or-
gan segmentation tasks compared to training from scratch, further emphasises the need for
a large-scale dataset. One limiting factor of MED3D is that it requires segmentation anno-
tations which could be impractical on a large scale due to the time needed for annotating
volumetric images. An alternative method is needed to build such network and dataset for
transfer learning in the medical domain.
One potential avenue to explore is the use of digital imaging and communications in medicine
metadata (DICOM). DICOM is the standardised format for storing and transferring medi-
cal images in clinics. Along with the imagery, DICOM metadata stores patient information
and acquisition parameters of the scan. For example, information on the type of imaging
modality, types of MRI sequences used, patient position during the scan, and the use of
contrast agent could potentially provide enough distinct features to describe the appearance
of the images for a neural network to learn. In this study, we explore whether we can au-
tomatically or semi-automatically extract labels from DICOM metadata of a large amount
of DICOM images from publicly available datasets to train a general medical domain con-
volution neural network.

The main contributions of this study are as follows1:

• We acquired and semi-automatically labelled a large public MRI and CT dataset
available from TCIA by using the information provided in the DICOM headers.

• We trained a 3D convolution neural network on a large amount of volumetric radio-
logical scans to classify modality, imaging sequence, view, presence of contrast agent,
and the coverage of the body part.

• We demonstrated the effectiveness of using our proposed network for transfer learn-
ing of a liver segmentation task. We found a high performance gained compared to
training a 3D convolution neural network from scratch.

1. To facilitate future development and application of our network and data. Source code, dataset and
labels will be made publicly at https://github.com/du1388/3d-radnet
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2. Methodology

This study aims to develop and train a general medical domain network from a large amount
of 3D volumetric data that could be used for transfer learning to other medical imaging
tasks. To achieve this, we acquired and analysed a large collection of cancer imaging data
from the TCIA database to extract useful labels to train a convolution neural network called
the 3D-RADNet. We then tested the effectiveness of the network in transfer learning by
using the network as an encoder for segmentation of the liver.

2.1. Data Acquisition and Label Extraction

TCIA is an online database that hosts a large number of medical images of cancer. All
images are in DICOM format and organised into different collections based on the type
of diseases. For this study, we downloaded all collections that contain MRI and CT scans
and can be redistributed under the creative commons attribution 3.0 unsupported license
(https://creativecommons.org/licenses/by/3.0/. A list of all the TCIA collections
acquired for this study are given in Appendix A Tables A1 and A2. Once all the scans were
acquired, we extracted all the standardised DICOM metadata from all scan series in the
collections for analysis.

2.1.1. MRI Sequences

The appearance of an MRI image is dependent on the MRI sequences used for the acqui-
sition. Commonly used diagnostic sequences can be classified into three types: spin-echo
(SE), inversion recovery (IR) and gradient-echo (GR). This is specified in the DICOM
attributes Scanning Sequence (0018,0020) under the same classification. Two main SE se-
quences, T1-weighted (T1 - SE) and T2-weighted (T2 - SE) are commonly used in diagnostic
scans. The differences between weighing can be determined by the attributes Repetition time
(0018,0080) and Echo time (0018,0081), where a T1-weighted scan have a short repetition
time (TS) and short echo time (TE), and vice versa. For IR sequences, fluid-attenuated
inversion recovery (FLAIR) and short tau inversion recovery (STIR) are most commonly
used. The weighting of IR sequences can be determined by the TE time of the sequence. In
addition to scanning sequence and TS/TE times, series (0008,103E) and study description
(0008,1030) can also be used to identify types of sequences. However the descriptions are
not standardised and can vary greatly depending on the convention used by the imaging
centre and vendor. Due to a high amount of different variants and different name con-
ventions of GR sequences, it is difficult to group the sequences accordingly. Therefore We
decided not to use GR in our analysis. Other types of functional imaging sequences such as
functional MRI, magnetic resonance angiography, diffusion and perfusion-weighted imaging
was also excluded in our study due to vast differences in appearances. Time-series images
such as dynamic-contrast were also excluded to avoid biases as there will be a high amount
of the same scan present in training.

2.1.2. Scan view

The anatomically plane in which the scan was taken can be identified by the attributes
Patient Image Position (0020,0032) and Patient Image Orientation (0020,0037). Patient
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image position specifies the (x,y,z) coordinates of the upper left-hand corner of the image,
whereas image orientation describes the direction cosine of the first row and the first column
with respect to the patient. For most standard patient orientation of scans,a image orien-
tation of [1,0,0,0,1,0], [1,0,0,0,0,-1], [0,1,0,0,0,-1] corresponds to axial, coronal and sagittal
view respectively. For non-standard orientations, the view can be determined by Patient
position (0018,5100) attributes. However, the occurrence of a non-standard view is rare.
Hence we excluded all the cases from our analysis.

2.1.3. Contrast agent

The presence of a contrast agent in MRI and CT imaging can significantly affect the appear-
ance of the image. The use of contrast agent are recorded in the attributes Contrast/Bolus
Agent (0018,0010).

2.1.4. Scan coverage label

The scan coverage of the body was explored to provide structural information of the image
to the network. As scans protocols are often standardised in practice, extracting the target
and coverage of the scan can systematically be obtained by comparing the study and series
description, type of cancer given by TCIA and size of the scan. The label scheme for the
coverage is shown in Figure 1. For each body parts/organs, the scan must cover the entirety
of the target to be considered. For upper head and neck, it must include the sphenoid sinus,
nasopharynx and oropharynx. Lower head and neck, it must cover from the larynx to apex
of the lung.

2.1.5. Image Processing

All scans with less than 16 slices were excluded from the study to ensure there are sufficient
slices for the network. To address heterogeneous voxels sizes and slice spacing across the
scans, all scans were linearly resized to 48x192x192, which is the input size of the network.
For scans with less than 48 slices, the scans were centred and filled with blank slices up
to 48 slices. The effective slice spacing after resizing was recorded, and all resized scans
with spacing higher than 1.5cm were excluded. All scans were then normalised by min-max
normalisation and discretised to 256 grey levels.

2.2. 3D-RADNet Network

The proposed 3D-RADNet takes an input image of 48x192x192 and outputs five outputs
classifying the image modality/sequences, view, contrast, scan coverage and slice spacing.
For the network architecture, we adapted a ResNet50 structure to take 3D inputs (He
et al., 2015). The network then connected to a fully connected layer of 1000 neurons
and then branches into five separate layers corresponding to each of the outputs. For
modality/sequence, view and contrast, softmax activation was used. Sigmoid activations
were used of the scan coverage layer, and linear activation was used for slice spacing. The
parameters of the network were optimised using cross-entropy loss and root-mean-squared
with by ADAM optimiser.
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Figure 1: Scan coverage of labels used, and extracted labels from the DICOM metadata.

2.3. Liver segmentation

To evaluate the effectiveness of transfer learning in the proposed 3D-RADNet, we applied
the network to segment the liver in the LiTS challenge dataset (https://competitions.
codalab.org/competitions/17094. The LiTS challenge dataset consists of 131 abdominal
CT scans with detailed delineation of the organ. Due to different slice spacing across the
scans, all scans were linearly interpolated into 5mm spacing. The framework for transfer
learning is described in Figure 2. The framework consists of two steps, the liver region
proposal, and the training of the segmentation network. A sliding window of 48 slices with
a stride of 8 slices was applied to extract patches of the potential region covering the liver.
The extracted areas are evaluated with the 3D-RADNet to identify the regions containing
the liver. As multiple patches from the sliding window can arise from one case, a threshold
of 0.9 was used as cut off for selection. If no patches were greater than 0.9, the maximum
score was used. The selected regions were then used for subsequent training. The decoder
for the segmentation network was based on the VNet structure with up-sampling and skip-
connection (Milletari et al., 2016). The parameters of the network were optimised using
dice loss with by ADAM optimiser. To determine the impact of modification of the 3D-
RADNet on the performance of segmentation, we trained different networks by freezing
different residual blocks of the network. In addition, we also evaluate the impact of training
sample in 3D-RADNet for transfer learning liver segmentation by training the network with
random subsets of the training data.

3. Results

Of the 57 datasets acquired from TCIA, a total of 63276 (6544 unique subjects) individual
MRI and CT image series were analysed. 45609 series were excluded from the study (in-
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Figure 2: Transfer learning framework for liver segmentation task.

consistent/invalid slice position or spacing: 14575; the number of slices less than 16: 3768;
missing series descriptions: 2041; excluded MRI sequences: 10887; Time-series: 14338).
STIR sequence was also excluded from the study because of a low number of scans found.
The remaining 17667 (4453 unique subjects) series were split into a training, validation and
testing set for training the network. The summary of the data is shown in Table A3.

3.1. 3D-RADNet

The classification results of the 3D-RADNet are summarised in Table 1. Of all the clas-
sifications, the presence of contrast agent had the worse accuracy (84.8%) with all other
classification achieving over 90% in the testing set. A mean absolute error of 3.1mm and
root mean square error of 4.2mm was obtained in the testing set for slice spacing regression.

3.2. Transfer Learning and Liver Segmentation

For the training of the segmentation network, the dataset was split 70:15:15 into training
(n=92), validation (n=19) and testing set (n=20). Table 2 shows the impact of performance
by the degree of modification of the 3D-RADNet for liver segmentation. The best segmen-
tation performance was obtained from the network trained with all encoding 3D-RADNet
layers frozen (DICE = 90.0%). Retraining the encoding res-block 3 and 4 achieved the
second-highest score (DICE = 84.3%). Lowest segmentation performance was seen from
training the network from scratch and from initialised with 3D-RADNet weights without
freezing any layers. This was further illustrated in Appendix A Figure A1 where it can be
seen that the networks failed to generalised to the validation set. For the best performing
network, the impact of reducing training samples on the segmentation performance was
analysed. As expected, Table 3 shows that performance decrease with training samples
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with a Dice score of 80% achieved with 20% training data (n=18). For all networks, the
validation set was kept the same.

Table 1: Classification performance of 3D-RADNet on the testing set

Samples Accuracy AUC Recall Precision

Modality/Sequence
CT 117 100% 100% 100% 100%
T1 - SE 51 97.8% 98.1% 92.2% 94.0%
T2 - SE 101 96.8% 98.8% 99.0% 91.7%
T1 - FLAIR 27 99.7% 100% 100% 96.4%
T2 - FLAIR 20 97.5% 96.5% 60% 100%
Total 316 95.9%
View
Axial 267 99.4% 100.0% 99.3% 100%
Coronal 32 100% 100% 100% 100%
Sagittal 17 99.4% 100.0% 100% 89.5%
Total 316 99.4%
Contrast
Contrast 100 84.8% 91.7% 86.0% 71.7%
No Contrast 216 84.8% 91.7% 84.3% 92.9%
Scan Coverage
Brain 200 98.4% 99.9% 97.5% 100%
Upper Head-Neck 42 98.7% 99.7% 90.5% 100%
Lower Head-Neck 38 98.7% 98.7% 89.5% 100%
Lung 64 98.4% 98.8% 93.8% 98.4%
Breast 82 98.7% 99.6% 96.3% 98.8%
Liver 52 99.1% 99.7% 98.1% 96.2%
Kidney 52 98.7% 99.8% 100% 92.9%
Intestine 46 98.1% 100.0% 89.1% 97.6%
Pelvis 55 98.1% 99.9% 96.4% 93.0%
Total 316 91.5%

4. Discussion

In this study, we developed and trained a medical-domain 3D convolution neural network
that can be used as a backbone network for transfer learning. We achieved this by acquiring
a large amount of cancer imaging dataset from TCIA. We devised a scheme to extract
labels from DICOM metadata to train the network. The labels extracted include imaging
modalities and sequences, view, presence of contrast agent, slice spacing and scan coverage.
Of all the labels, extracting the scan coverage was the most time-consuming part. As
datasets from the TCIA came from a range of different centres and institutes, it was difficult
to learn the structure of the cases. However, in practice, this would not be a problem
when applied to a single centre as you would know the scanning protocols beforehand. To
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Table 2: Impact of liver segmentation performance by freezing different layers of the network
and comparison of performance to no transfer learning is also given.

Modification Mean DICE Mean IOU Median DICE Median IOU

Froze all layers 90.0% 80.7% 90.0% 81.8%
Froze to block 3 72.1% 59.7% 81.0% 68.1%
Froze to block 2 84.3% 76.8% 90.3% 82.3%
Froze to block 1 77.6% 65.1% 81.8% 69.3%

Weights only 44.8% 38.1% 43.0% 27.4%
No transfer learning 41.8% 38.0% 43.0% 27.3%

Table 3: Impact of liver segmentation performance by percentage of training samples

% Training Data Mean DICE Mean IOU Median DICE Median IOU

100% (n=92) 90.0% 81.6% 90.1% 82.0%
80% (n=74) 84.7% 75.0% 89.0% 80.0%
60% (n=55) 84.2% 73.9% 87.2% 77.3%
40% (n=37) 87.0% 77.9% 90.9% 83.4%
20% (n=18) 80.0% 69.30% 86.5% 76.1%

evaluate the effectiveness of our network for transfer learning, we applied the network to
a liver segmentation task. The results show that transfer learning by using our network
achieved significantly higher performance than training from scratch in 3D networks. This
is expected as the higher number of variables in 3D compared to 2D networks means would
be more prone to over-fitting. This was also reflected in that the network only generalised
well when the layers of the network were fixed regardless of transfer learning.
In comparison to earlier work by Chen et al. (2019), our network achieved a lower but
comparable performance (DICE=90.0%) compared to MED3D (DICE=94.6%) that was
trained on segmentation datasets. One difference in our approach was that we did not
refine the segmentation mask from the initial segmentation. As we wanted to evaluate the
raw performance of segmentation from the whole image. We would expect the performance
to increase by refining the mask from expanding the region by using the initial segmentation
mask.
One major limitation of our work is that the network architecture used for the 3D-RADNet
is a 3D adaptation of ResNet50 which developed for 2D natural images. ResNet may not be
optimal for volumetric medical images. Alternative network architecture tailed for medical
images may increase the performance of the network.
In conclusion, we presented an approach to extract labels from DICOM metadata that
describes the appearance of the images to train a general medical domain network. The 3D-
RADNet shows promising potential to be used as a backbone network for transfer learning
to another task. Our approach, along with the network, can potentially be used to extract
features from large-scale unlabelled DICOM datasets.
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Appendix A.

Table A1: List of TCIA dataset used for the training of the proposed 3D-RADNet network

TCIA Sets Modality Location Patient

AAPM RT-MAC (Cardenas et al., 2019) MRI Head-Neck 55
Brain-Tumor-Progression MRI Brain 20
(Schmainda and Prah, 2018)
C4KC-KiTS (Heller et al., 2019) CT Kidney 210
Breast-MRI-NACT-Pilot MRI Breast 64
(Newitt and Hylton, 2016)
CPTAC-CCRCC (CPTAC, 2018a) MRI, CT Kidney 63
CPTAC-GBM (CPTAC, 2018c) MRI, CT Brain 63
CPTAC-HNSCC (CPTAC, 2018d) MRI, CT Head-Neck 55
CPTAC-LUAD (CPTAC, 2018e) MRI, CT Lung 32
CPTAC-PDA (CPTAC, 2018f) MRI, CT Pancreas 68
CPTAC-UCEC (CPTAC, 2018h) MRI, CT Uterus 60
CT COLONOGRAPHY (Smith et al., 2015) CT Colon 825
Head-Neck Cetuximab (Bosch et al., 2015) CT Head-Neck 111
ISPY1 (Newitt and Nola, 2016) MRI Breast 222
IvyGAP (Nameeta et al., 2016) MRI, CT Brain 39
LGG-1p19qDeletion (Erickson et al., 2017) MRI Brain 159
LungCT-Diagnosis (Grove et al., 2015) CT Lung 61
Lung-Fused-CT-Pathology (Rusu et al., 2017) CT Lung 6
NSCLC-Radiomics-Genomics (Aerts et al., 2014) CT Lung 89
Pancreas-CT (Roth et al., 2015) CT Pancreas 82
Pelvic-Reference-Data (Yorke et al., 2019) CT Pelvis 58
Prostate Fused-MRI-Pathology MRI Prostate 28
(Madabhushi and Feldman, 2016)
PROSTATE-DIAGNOSIS (Bloch et al., 2015b) MRI Prostate 92
PROSTATE-MRI (Choyke et al., 2016) MRI Prostate 26
PROSTATEx (Litjens et al., 2014) MRI Prostate 346
QIN Breast DCE-MRI (Huang et al., 2014) MRI Breast 10
QIN LUNG CT (Kalpathy-Cramer et al., 2016) CT Lung 47
REMBRANDT (Scarpace et al., 2015) MRI Brain 130
RIDER Lung CT (Zhao et al., 2009) CT Lung 32
SPIE-AAPM Lung CT Challenge CT Lung 70
(Armato et al., 2015)
TCGA-BLCA (Kirk et al., 2016b) MRI, CT Bladder 120
TCGA-BRCA (Lingle et al., 2016) MR Breast 139
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Table A1 continues: List of TCIA dataset used for the training of the proposed 3D-RADNet
network

TCIA Sets Modality Location Patient

TCGA-CESC (Lucchesi and Aredes, 2016a) MR Cervix 54
TCGA-COAD (Kirk et al., 2016e) CT Colon 25
TCGA-ESCA (Lucchesi and Aredes, 2016b) CT Esophagus 16
TCGA-GBM (Scarpace et al., 2016) MRI, CT Brain 262
TCGA-HNSC (Zuley et al., 2016) MRI, CT Head-Neck 227
TCGA-KICH (Linehan et al., 2016a) MRI, CT Kidney 15
TCGA-KIRC (Akin et al., 2016) MRI, CT Kidney 267
TCGA-KIRP (Linehan et al., 2016b) MRI, CT Kidney 33
TCGA-LIHC (Erickson et al., 2016a) MRI, CT Liver 97
TCGA-LUAD (Albertina et al., 2016) CT Lung 69
TCGA-LUSC (Kirk et al., 2016a) CT Lung 37
TCGA-OV (Holback et al., 2016) MRI, CT Ovary 143
TCGA-STAD (Lucchesi and Aredes, 2016c) CT Stomach 46
TCGA-UCEC (Erickson et al., 2016b) MRI, CT Uterus 65

Table A2: List of TCIA dataset used for the testing of the proposed 3D-RADNet network

TCIA Sets Modality Location Patient

Anti-PD-1 MELANOMA (Patnana et al., 2019) MRI, CT Skin 47
BREAST-DIAGNOSIS (Bloch et al., 2015a) MRI, CT Breast 88
CPTAC-CM (CPTAC, 2018b) MRI, CT Skin 92
CPTAC-SAR (CPTAC, 2018g) MRI, CT Extremities 22
HNSCC (CPTAC, 2018d) MRI, CT Head-Neck 55
QIN-BRAIN-DSC-MRI (Schmainda et al., 2016) MRI Brain 49
Soft-tissue-Sarcoma (Vallières et al., 2015) MRI Skin 51
TCGA-LGG (Pedano et al., 2016) MRI, CT Brain 199
TCGA-PRAD (Zuley et al., 2016) MRI, CT Prostate 14
TCGA-READ (Kirk et al., 2016d) MRI, CT Kidney 3
TCGA-SARC (Roche et al., 2016) MRI, CT Extremities 5
TCGA-THCA (Kirk et al., 2016c) CT Neck 6
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Table A3: Breakdown of the training and testing set

Training set Validation set Testing set

n=12000 n=3305 n=316
Modality/Sequence
CT 5149 1556 117
T1 - SE 2187 652 51
T2 - SE 3477 1017 101
T1 - FLAIR 463 207 27
T2 - FLAIR 724 273 20
View
Axial 8424 2202 267
Coronal 1298 426 32
Sagittal 2278 677 17
Contrast
Contrast 8619 2407 216
No Contrast 3381 898 100
Scan Coverage
Brain 4966 1677 200
Upper Head-Neck 1070 266 42
Lower Head-Neck 953 191 38
Lung 1002 271 64
Breast 1011 303 82
Liver 2818 693 52
Kidney 3544 846 52
Intestine 2179 504 46
Pelvis 3901 845 55
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Figure A1: Training and validation losses during training
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