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Abstract

To successfully train a cell segmentation network in fully-supervised manner for a particular
type of organ or cancer, we need the dataset with ground-truth annotations. However, high
unavailability of such annotated dataset and tedious labeling process enforce us to discover
a way for training with unlabeled dataset. In this paper, we propose a network named
CellSegUDA for cell segmentation on the unlabeled dataset (target domain). It is achieved
by applying unsupervised domain adaptation (UDA) technique with the help of another
labeled dataset (source domain) that may come from other organs or sources. We validate
our proposed CellSegUDA on two public cell segmentation datasets and obtain significant
improvement as compared with the baseline methods. Finally, considering the scenario
when we have a small number of annotations available from the target domain, we extend
our work to CellSegSSDA, a semi-supervised domain adaptation (SSDA) based approach.
Our SSDA model also gives excellent results which are quite close to the fully-supervised
upper bound in target domain.
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1. Introduction

Convolutional Neural Network (CNN) based approaches like Fully Convolutional Network
(FCN) (Long et al., 2015), U-Net (Ronneberger et al., 2015), UNet++ (Zhou et al., 2018)
give very promising results in biomedical image segmentation tasks as well as in cell seg-
mentation problems (Sirinukunwattana et al., 2016). However, to successfully train these
fully-supervised methods, we need at least a few amount of annotated data i.e., images with
their corresponding pixel-level ground-truth labels (Kumar et al., 2017; Zeiler and Fergus,
2014). Unfortunately, such well-annotated datasets, even if very small-sized, are highly rare
in biomedical domain. Also, collecting an unannotated dataset first, and then doing the
manual labeling with the help of experts is also an expensive, time-consuming and tedious
process (Xu et al., 2017; Chen et al., 2019a). How if we could train a deep CNN model for
cell segmentation without any further needs for the annotations? Domain Adaptation, a
subclass of Transfer Learning, provides solution in such scenarios.

A multi-level adversarial network based domain adaptation approach for semantic seg-
mentation was proposed by Tsai et al. (2018). Hoffman et al. (2017) proposed an unsu-
pervised domain adaptation model utilizing both of pixel-level and feature-level adapta-
tion. Isola et al. (2017) applied conditional GAN (Mirza and Osindero, 2014) for image-to-
image translation problems. Chen et al. (2019b) proposed a cross-domain consistency loss
based pixel-wise adversarial domain adaptation algorithm. Zhang et al. (2018) proposed
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Figure 1: Images from different domains look dissimilar while their pixel-level segmentation
outputs are similar. In this figure, source domain and target domain images come from
Kidney Renal Clear cell carcinoma (KIRC) and Triple Negative Breast Cancer (TNBC)
respectively.

a fully convolutional adaptation network for semantic segmentation. For different types
of biomedical image segmentation, several adversarial network based approaches also have
been proposed. A multi-connected domain discriminator based UDA model for brain le-
sion segmentation was proposed by Kamnitsas et al. (2017). Dong et al. (2018) introduced
another UDA framework for cardiothoracic ratio estimation through chest organ segmen-
tation. Mahmood et al. (2019) proposed a cell segmentation approach in which a large
dataset is generated using synthesization. Hou et al. (2019) also synthesized annotated
training data for histopathology image segmentation. Huo et al. (2018) proposed an end-
to-end CycleGAN (Zhu et al., 2017) based whole abdomen MRI to CT image synthesis and
CT splegonmegaly segmentation network.

In this paper, we consider the unannotated dataset, i.e. for which we want to predict
the labels, as target domain. Then, with the help of another related but different annotated
dataset, referred as source domain, we apply adversarial learning (Goodfellow et al., 2014)
based domain adaptation technique for cell segmentation problem. Thus, our proposed
framework, learns from labeled source domain and adapts to the unlabeled target domain.
We very carefully observed that, images from different cell datasets, even if collected from
different organs or cancer types, exhibit dissimilarity although their corresponding segmen-
tation ground-truth labels are quite similar (see Figure 1). In summary, ground-truth labels
for cell segmentation are domain-invariant.

In this work, we first propose a unsupervised domain adaptation model for cell segmen-
tation. Because of our aforementioned observation, we apply our domain adaptation in the
output space rather than in the feature space. With the help of adversarial learning, we
train a robust biomedical image segmentation network to generate source-domain look-alike
outputs for target images. Additionally, we use a decoder network to make target images
and target predictions correlated to each other as much as possible. Finally, we extend our
unsupervised domain adaptation technique to semi-supervised domain adaptation (SSDA)
considering that we have some annotations available from the target domain.

Conducting extensive experiments on two cell segmentation datasets we conclude that,
our proposed UDA method, CellSegUDA, outperforms both of a fully-supervised model (Ron-
neberger et al., 2015) trained on source domain and evaluated on target domain, and a base-
line UDA model (Dong et al., 2018). Experimental result (see Section 3) also shows that,
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Figure 2: Complete architecture of CellSegUDA. Segmentation network generates segmen-
tation outputs, from which decoder reconstructs input images. Discriminator distinguishes
between source domain outputs and target domain outputs.

accuracy of our SSDA strategy appears very close to the upper bound of fully-supervised
model trained in target domain.

Thus, the main contributions of this paper are: 1) We propose an adversarial learning
based unsupervised domain adaptation (UDA) approach to solve cell segmentation problem
for unannotated datasets. 2) Our proposed method is simple as it does not depend on
any data synthesization or data augmentation. 3) Our proposed UDA framework can be
easily extended to semi-supervised domain adaptation (SSDA) in the scenario where a small
portion of the target domain is labeled. 4) Extensive and comprehensive experiments on
two datasets have demonstrated the superiority of the proposed methods.

2. Methodology

Formally, in our cell segmentation problem, we have cell histology patches as input X of
size H ×W × 3. Then, we want to predict the segmentation output Ŷ of size H ×W × 1.
Depending on the domain, we may also have pixel-wise ground-truth label Y of size H ×
W × 1 which is basically a binary mask.

Then, in unsupervised domain adaptation problem, we have a source domain with Ns

annotated images {(Xs, Ys)}, and a target domain which has Nt unannotated images {(Xt)}.
In the case of semi-supervised domain adaptation problem, we assume that our target
domain consists of N l

t images with annotations {(X l
t , Yt)}, and Nu

t unannotated images
{(Xu

t )}. Our ultimate goal is to learn a cell segmentation model that accurately produces
the segmentation output in the target domain.
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2.1. CellSegUDA

We refer our cell segmentation unsupervised domain adaptation (UDA) model as CellSegUDA
which is shown in Figure 2. CellSegUDA consists of three modules: Segmentation network
(S), Decoder (R), and Discriminator (D).

Segmentation network (S) Our segmentation network S takes images X as input and
produces the segmentation prediction Ŷ of the same size as input, hence Ŷ = S(X). This
segmentation network can be thought as the generator module of a GAN (Goodfellow et al.,
2014) framework.

We train S to generate the segmentation predictions Ŷs similar to the ground-truth
labels Ys in source domain. We can not compute any pixel-level loss for target predictions
since ground-truth labels are not available for target images in UDA. In practice, we found
dice-coefficient loss to be more effective than binary cross-entropy loss for cell segmentation
tasks. Therefore, we choose dice-coefficient loss as our segmentation loss:

Lseg(Xs) = 1− 2.Y ′
s .Ŷ

′
s

Y ′
s + Ŷ ′

s

, (1)

where Y ′
s and Ŷ ′

s are flatten Ys and Ŷs respectively.
Training S with only the annotated source data teaches S to make accurate predictions

for source images. However, this segmentation network will generate incorrect outputs for
target images as there are visual discrepancies between source images and target images.
Because of our observation that cell segmentation outputs are domain-invariant, we require
S to produce target domain predictions as much as close to the source domain predictions.
In other words, we want to make the distribution of target predictions Ŷt closer to source
predictions Ŷs. Thus, we define adversarial loss as:

Ladv(Xt) = − 1

H ′ ×W ′

∑
h′,w′

log (D(Ŷt)), (2)

where Ŷt = S(Xt), and H ′ and W ′ are height and width of discriminator output D(Ŷt). This
adverserial loss helps S to fool the discriminator so that it considers Ŷt as source domain
segmentation outputs.

Segmentation loss and adversarial loss altogether guides S to generate target domain
predicitions Ŷt which look similar to source domain ground-truths. However, it is highly
probable that these target predictions are not well-correlated with corresponding target
input images. The ability of reconstructing images from the predictions with similar visual
appearance as input images will ensure that there is a correlation between the input image
and segmentation output.

Decoder (R) To ensure that our target domain predictions spatially correspond to the
target domain images, we use a decoder network R in CellSegUDA. In a similar way to Xia
and Kulis (2017), we consider our segmentation network S as an encoder. Then, decoder R
reconstructs target images from the corresponding predictions. Thus, S and R altogether
works as an autoencoder.
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Using our decoder network R, we first reconstruct target input images Xt from Ŷt. Then,
we calculate the reconstruction loss as:

Lrecons(Xt) =
1

H ×W × C
∑
h,w,c

(Xt −R(Ŷt))
2
, (3)

where, R(Ŷt)) is the output of decoder for Ŷt, and C is the number of channels of input
image X.

Thus, we minimize the following total loss while training our segmentation network:

Ls(Xs, Xt) = Lseg(Xs) + λadvLadv(Xt) + λreconsLrecons(Xt), (4)

where, λadv and λrecons are the weights to balance corresponding losses.

Discriminator (D) Since we want to generate similar predictions for both of source images
and target images, we incorporate a discriminator D in CellSegUDA. This discriminator
takes source domain prediction or target domain prediction as input, and then distinguishes
whether the input, i.e. prediction, comes from source domain or target domain. To train
D, we use following cross-entropy loss:

Ldis(Ŷ ) = − 1

H ′ ×W ′

∑
h′,w′

z. log (D(Ŷ )) + (1− z). log (1−D(Ŷ )), (5)

where z=0 when D takes target domain prediction as it’s input, and z=1 when input comes
from source domain prediction.

2.2. CellSegSSDA

In semi-supervised domain adaptation (SSDA) problem, we must make sure the best usages
of available target domain annotations Yt while training our segmentation network S. In
such scenarios, we extend our CellSegUDA framework to CellSegSSDA, a cell segmentation
semi-supervised domain adaptation model.

In CellSegSSDA, for unannotated target images we do the same as CellSegUDA. How-
ever, when we encounter an annotated target data (X l

t , Yt) while training, we additionally
compute the segmentation loss Lseg(X l

t) in the similar manner to Equation (1). Then, while
computing the total loss we incorporate Lseg(X l

t) so that the segmentation network learns
to generate the predictions closer to target ground-truths. Therefore, Equation (4) is now
modified as below:

Ls(Xs, X
l
t) = Lseg(Xs) + Lseg(X l

t) + λadvLadv(X l
t) + λreconsLrecons(X

l
t) (6)

2.3. Implementations

In our work, we use U-Net (Ronneberger et al., 2015) as both of our segmentation network
and decoder. We choose U-Net so that our proposed segmentation framework can be directly
applied in other biomedical domains. We preferred U-Net over UNet++ (Zhou et al., 2018)
because of the less number of parameters. Following DCGAN (Radford et al., 2015), we
designed our discriminator consisting of five convolutional layers. To train CellSegUDA and
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CellSegSSDA, we followed the training strategy from GAN (Goodfellow et al., 2014). Adam
optimizer (Kingma and Ba, 2014) with learning rate 0.0001, 0.001 and 0.001 are used in
segmentation network, discriminator and decoder respectively. We empirically choose 0.001
and 0.01 as λadv and λrecons respectively. We do not use any data augmentation in our
experiments.

3. Experiments

3.1. Datasets

Dataset-1 (KIRC) This dataset is taken from Irshad et al. (2014) in which images are
extracted at 40x magnification from whole slide images (WSI) of Kidney Renal Clear cell
carcinoma (KIRC). This dataset, referred as KIRC, consists of 486 H&E stained histology
images of 400×400 pixel size with annotations made by expert pathologists and research fel-
lows. In our experiments, we randomly split KIRC into 80% for training, 10% for validation
and 10% for testing.
Dataset-2 (TNBC) Naylor et al. (2018) generated this dataset by collecting slides from
Triple Negative Breast Cancer (TNBC) patients at 40x magnification. For a total of 50 H&E
stained histology images of pixel size 512×512, labeling was performed by expert pathologist
and research fellows. We follow the same data splitting as KIRC for this dataset which we
refer as TNBC.
Visual differences among datasets Although both datasets consist of H&E stained
histopathology images, they are collected from two different organs and different institu-
tions. KIRC images are collected from TCGA portal (image acquiring tools are unknown
to us), whereas TNBC images were acquired at Curie Institute using Philips Ultra Fast
Scanner 1.6RA. Organ difference, institutional difference, and using different imaging tools
and protocols cause the visual difference among the images from these two datasets. See
Figure 1, where TNBC image looks dimmer than KIRC image.

3.2. Experimental results

Experiment-1 (KIRC → TNBC) In our first experiment, we choose KIRC as source
domain and TNBC as target domain, denoted by KIRC→ TNBC. We start with our unsu-
pervised domain adaptation (UDA) model CellSegUDA which gives much better accuracies
than a UDA baseline DA-ADV (Dong et al., 2018). We also choose a fully-supervised model
U-Net (Ronneberger et al., 2015) to get an idea how it performs when directly applying
transfer learning, i.e. training with only KIRC and then test it on TNBC without any
modifications, which is also considered as the lower-bound of experimental performance.
This poor performance of transfer learning (see the first row of Table 1) happens because of
the visual domain gap between source training images and target test images, also known
as domain shift problem. Figure 3(c) shows the visualization result of applying transfer
learning in which many of the cells are missed out when comparing to the ground-truth.
Then, training U-Net with TNBC-train and testing it on TNBC-test gives us the upper-
bound (last row of Table 1). Table 1 shows that, CellSegUDA gives 6.36 higher IoU%
than source-trained U-Net model. We see that, CellSegUDA also has 4.09 higher IoU%
than UDA baseline DA-ADV. We check the effect of our decoder network R by training
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Table 1: Segmentation results for Experiment-1 and Experiment-2. IoU denotes intersection
over union. Here, unsupervised domain adaptation (UDA) baseline is denoted as DA-ADV.
CellSegUDA w/o recons, CellSegUDA and CellSegSSDA refer to our proposed UDA model
without reconstruction loss, proposed UDA with reconstruction loss, and proposed semi-
supervised domain adaptation method respectively. CellSegSSDA(source 100% + target
n%) denotes n% annotations available in TNBC-train and KIRC-train for experiment-1
and experiment-2 respectively. Results are from testing on TNBC-test and KIRC-test for
experiment-1 and experiment-2 respectively.

Experiment-1 Experiment-2
KIRC → TNBC TNBC → KIRC

Method IoU% Dice score IoU% Dice score

U-Net (source-trained) (Ronneberger et al., 2015) 52.66 0.6875 54.82 0.7056

DA-ADV (Dong et al., 2018) 54.93 0.7079 55.43 0.7107

CellSegUDA w/o recons 56.56 0.72 56.91 0.7224

CellSegUDA 59.02 0.7394 57.09 0.7242

U-Net (source 100% + target 10%) 60.74 0.7534 56.89 0.7194

CellSegSSDA (source 100% + target 10%) 60.96 0.7557 58.81 0.7377

U-Net (source 100% + target 25%) 61.67 0.7607 59.32 0.7405

CellSegSSDA (source 100% + target 25%) 62.94 0.771 59.73 0.7443

U-Net (source 100% + target 50%) 56.73 0.7208 59.95 0.7464

CellSegSSDA (source 100% + target 50%) 63.59 0.7748 60.32 0.7494

U-Net (source 100% + target 75%) 59.06 0.7394 61.63 0.7592

CellSegSSDA (source 100% + target 75%) 64.96 0.7862 61.01 0.7541

U-Net (target-trained) 66.57 0.7985 62.04 0.7621

CellSegUDA without reconstruction loss, denoted as CellSegUDA w/o recons in Table 1.
We find that, reconstruction loss really makes our segmentation network more accurate (see
Figure 3(e)-(f) for visualization). Figure 3(g) also shows that we can reconstruct input
images using our decoder from corresponding segmentation prediction, thus we believe that
our prediction is well-correlated with its input.

Then, we assess our semi-supervised domain adaptation method CellSegSSDA for KIRC
→ TNBC. Source dataset, KIRC, is the same as UDA experiments. However, now we treat
TNBC as partially labeled. We train CellSegSSDA considering 10%, 25%, 50% and 75%
images from TNBC-train dataset has annotations available. Then, testing on TNBC-test
gives us increasing IoUs and dice scores. This happens because more true positive cells
can be identified and some false positive cells can be removed by CellSegSSDA as we train
it with more target annotations (see Figure 3(h)-(j)). We observe that, the accuracy of
CellSegSSDA approaches to the upper-bound (only lower by 1.61 IoU%) as we train with
more annotations from target domain. We also compare CellSegSSDA with fully-supervised
model U-Net to demonstrate the superiority of our SSDA model. This time, to train U-Net,
we combine full KIRC dataset with the same 10%, 25%, 50% and 75% of TNBC-train we
chose to train CellSegSSDA. As domain adaptation helps to reduce the domain shift prob-
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Figure 3: Visualization of segmentation for KIRC→TNBC. (g) shows that reconstructed
target image (output from decoder) is quite similar to the input image which proves the
efficacy of our proposed network. In (e)-(f) and (h)-(i), blue arrows indicate some missing
cells of previous method. In (h) and (i), yellow arrows indicates false positives which
are removed by following CellSegSSDA(50%) and CellSegSSDA(75%) respectively. Figure
shows that, CellSegSSDA can identify more cells as the percentage of available annotations
increases. This average-dense cell histopathology image in (a) is chosen so that the reader
can easily find out the visual differences without further zooming-in.

lem, we see that CellSegSSDA outperforms fully-supervised model in all of the cases.

Experiment-2 (TNBC → KIRC) We conduct another experiment in the similar way to
Experiment-1 by selecting TNBC as source and KIRC as target domain. This experiment
also reflects the excellence of CellSegUDA and CellSegSSDA compared to other approaches
in terms of segmentation accuracies (see last two columns of Table 1). Similar to experiment-
1, we also see that segmentation accuracies of CellSegSSDA increase as more target images
are annotated. Segmentation visualization from this experiment is shown in Figure 4. From
this experiment, we once again observe that CellSegUDA performs better than CellSegUDA
w/o recons which proves the validity of our decoder and the effectiveness of reconstruction
loss (see reconstructed image in Figure 4(g)).

4. Conclusion

In this work, utilizing adversarial learning we propose a novel unsupervised domain adap-
tation (UDA) framework for segmenting cells in unannotated datasets. Prominent experi-
mental results validate the effectiveness of our UDA model. Finally, assuming we have a few
annotations available, we extend our work to semi-supervised domain adaptation (SSDA).
To make our UDA model further accurate, we are planning to generate and utilize pseudo
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Figure 4: Visualization of segmentation for TNBC→KIRC. In (f) and (j), blue arrows
indicate missing cells of previous method. In (f) and (h)-(i), yellow arrows indicate a false
positive which is removed by following method. Similar to Figure 3, we chose this average-
dense cell histopathology image for readability purposes.

ground-truth masks for target domain in future. We expect our proposed UDA and SSDA
approach to be very useful in other biomedical image segmentation tasks.
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