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Abstract

Retinal imaging serves as a valuable tool for diagnosis of various diseases. However, reading
retinal images is a difficult and time-consuming task even for experienced specialists. The
fundamental step towards automated retinal image analysis is vessel segmentation and
artery/vein classification, which provide various information on potential disorders. To
improve the performance of the existing automated methods for retinal image analysis,
we propose a two-step vessel classification. We adopt a UNet-based model, SeqNet, to
accurately segment vessels from the background and make prediction on the vessel type.
Our model does segmentation and classification sequentially, which alleviates the problem
of label distribution bias and facilitates training. To further refine classification results,
we post-process them considering the structural information among vessels to propagate
highly confident prediction to surrounding vessels. Our experiments show that our method
improves AUC to 0.98 for segmentation and the accuracy to 0.92 in classification over
DRIVE dataset.

Keywords: Medical imaging, retina images, vessel segmentation, vessel classification, deep
learning, computer vision.

1. Introduction

Retinal imaging is the only feasible way to directly inspect the vessels and the central
nervous system in the human body in vivo, which can give us informative signs and indi-
cations on possible disorders. Fundoscopy has thus become an important method and the
routing examination to help diagnosis of many diseases, including diabetes, hypertension,
arterial hardening, and so forth (Chatziralli et al., 2012). Fundoscopy is easy to operate,
quick, accurate, and relatively low in cost. Medical doctors, not only ophthalmologists, are
considering a wider use of fundoscopy.

However, similarly to other types of medical images, retina images exhibit high com-
plexity and huge diversity (Jin et al., 2019). Sufficiently trained specialists are required
to handle ever-increasing requests to read such images. Moreover, reading retinal images
by specialists can potentially be error-prone under this highly demanded circumstance. To
that end, computer-aided diagnosis can be a promising technical break-through that auto-
matically analyzes such retina images.

Various high-level tasks of retinal image analysis, such as the calculation of central artery
equivalent, central vein equivalent, artery-to-vein diameter ratio (Huang et al., 2018b), as
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(a) (b) (c)

Figure 1: An example retina image from a public dataset (Staal et al., 2004; Hu et al.,
2013). (a) Raw image. (b) Vessel segmentation. (c) Artery (red) / Vein (blue)
classification.

well as the detection of retinal artery occlusion and retinal vein occlusion (Woo et al., 2016),
which can reveal risks of stroke, cerebral atrophy, cognitive decline, and myocardial infarct,
etc., are built on top of vessel segmentation and artery/vein (A/V) classification. A vast
amount of research efforts have been made for both components. For vessel segmentation,
most of the earliest attempts are based on the local information of retinal images (Cheng
et al., 2014; Roychowdhury et al., 2015), including intensity, color, some hand-crafted fea-
tures, etc. In recent years, UNet (Ronneberger et al., 2015)-based segmentation models
become more popular (Kim et al., 2017; Yan et al., 2018). As for A/V classification, a clas-
sic approach is applied to segmented vessels in retinal images (Huang et al., 2018a), where
some structural prior on vessels has been leveraged for better performance (Alam et al.,
2018; Srinidhi et al., 2019). Deep models are also explored and achieved the state-of-the-art
performance (Meyer et al., 2018). Meanwhile, lack of large-scale labeled datasets motivates
data augmentation with generative adversarial networks (Costa et al., 2018).

Although many approaches have been proposed in this area, their performances are not
satisfactory yet. This is because the retina images are usually complicated and full of noises.
It is hard to extract all vessels, including minor ones, while not introducing too many false
vessel pixels. Moreover, the available training data are very limited. In most of the public
datasets, the number of retina images for training is no more than 20. Furthermore, things
become more difficult when we need to classify the vessels into artery or vein, because this
further increases the unbalance between the numbers of pixels on artery or vein vessels and
the number of background (non-vessel) pixels.

In this paper, we propose a method for automatically analyzing retinal images, such
as the one in Fig. 1. Our method consists of two components: (i) A neural model, coined
SeqNet, that segments vessels and classifies each pixel into artery and vein, and (ii) post-
processing to refine initial classification by SeqNet. The main idea behind our neural model
is to jointly training the model, but yet segmentation and classification streams are sequen-
tial rather than simultaneous, as shown in Fig. 2. The segmentation stream only cares
about vessel extraction. Meanwhile, the classification stream utilizes segmentation results
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to immunize itself against cluttered backgrounds in input images. The existing methods
that simultaneously do segmentation and classification suffer from the severe bias in la-
bel distributions since background pixels are dominant in retinal images. We remedy this
imbalance by our sequential model, dividing the task into the background/vessel classifi-
cation (i.e. segmentation) task and artery/vein classification task, where we employ the
state-of-the-art model (Li et al., 2020) for the segmentation stream.

There may still be some errors in classification results. This is because fully convolu-
tional network-like models (such as UNet-based ones (Meyer et al., 2018; Hemelings et al.,
2019; Galdran et al., 2019)), or more generally convolution operations, are more suitable
to extract local features than handling global context. Hence all UNet-based models’ pre-
diction performances depend on local cues, such as color and contrast, rather than the
structure of the whole vessel system. This locality leads to many minor errors, as shown in
Fig. 6(a) and (b).

We thus incorporate the global context, i.e., the structure of the vessel system, into our
method via post-processing for further improving the performance. We divide extracted
vessels into many small segments and unifying the pixel-level predictions in each of them
into a single prediction, called intra-segment label unification. We also propose a new
strategy called inter-segment prediction propagation (PP). This strategy can further refine
classification results among neighboring segments by propagating predictions to neighboring
segments with judging whether they are connected with each other or just crossed two
different vessels.

Our main contribution is three-fold:

• We design a joint segmentation and classification model based on the UNet architec-
ture (Ronneberger et al., 2015), which sequentially handles respective tasks to balance
the label distributions for better training.

• We propose to post-process classification results for refining them by leveraging global
information, called intra-segment label unification and inter-segment prediction prop-
agation, which smooths each pixel’s label along the vessel system’s structure.

• We experimentally demonstrate that our method, including SeqNet and the post-
processing, achieves the state-of-the-art performance over two public datasets. The
code is available here1.

2. Methodology

Our method consists of SeqNet (Fig. 2) for initial segmentation/classification and PP for
refinement. Following sections details these two components.

2.1. SeqNet

Some existing methods for A/V classification actually formulate the problem as a ternary
classification task, where each pixel is labeled as either artery, vein, or background. This
can deteriorate the performance by imposing further imbalance among the labels, i.e., there

1. https://github.com/conscienceli/SeqNet
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Figure 2: The network architecture of SeqNet.

are much more background labels than artery/vein labels. Most state-of-the-art models
actually suffer from a poor segmentation ability, which is discussed in Section 3. Unlike
these methods, SeqNet sequentially applies segmentation into vessel/background and clas-
sification into A/V in a single network. Yet, training is done jointly.

As shown in Fig. 2, SeqNet mainly consists of two streams (the upper stream with the
blue and green blocks and the lower stream with the orange block). The upper stream is
for segmentation. We adopt IterNet (Li et al., 2020), which iteratively refines the segmen-
tation results by smaller UNets (the green block in Fig. 2) after initial segmentation by the
blue block. The state-of-the-art performance has been achieved with this model over the
mainstream datasets (Staal et al., 2004; Tang et al., 2011). In SeqNet, the green block is
repeated three times, following the original implementation in (Li et al., 2020). Both two
streams use separate cross entropy losses and are trained jointly with a batch size of 16.
For the target, IterNet uses the segmentation labels while the classification part uses the
A/V labels. Adam (Kingma and Ba, 2014) is used as the optimizer with a learning rate of
0.001.

With input retinal image x ∈ RW×H and refined vessel map v ∈ [0, 1]W×H by IterNet,
where W = 576 and H = 576 are the width and height the input image and vessel map, we
apply another full-size UNet block, which is shown in orange in Fig. 2, to classify each pixel
into artery/vein. The possible output labels are background, artery, and vein. We mask
background pixels in input image x by

x′ = x� v, (1)

where � is the element-wise multiplication. This masking reduces the complexity of the
input retinal image, so that the classification stream can fully focus on finding the differ-
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ences in color, thickness, shape, etc., among the vessels. We put a block layer before the
element-wise multiplication to prevent back-propagation from the classification stream to
the segmentation stream, so that each steam can be responsible to the respective task and
can be trained in a multi-task manner.

The output from the classification stream is merged with the segmentation result. Let
ol ∈ [0, 1]W×H , where l ∈ {background, artery, vein} denote the softmax output of the
classification stream.

2.2. Intra-segment Label Unification

There are mainly two types errors in classification results: The first one is inconsistency
along one single vessel, i.e., both artery and vein labels appear in a vessel, as shown in
Fig. 7, because the underlying convolutional network does not count the structure of the
vessel system, making decisions mainly based on local features, such as color and shape.
These local features can be easily influenced by environmental factors, e.g., illumination and
the retinal camera used. The second type of errors is mixed-up prediction that happens
mostly near the crossing and branching points, as shown in Fig. 8, because local features
corresponding to both vessel types may be observed. To remedy these two kinds of errors,
we design a post-processing algorithm, namely, intra-segment label unification for the label
inconsistency problem and inter-segment prediction propagation for the mixed-up prediction
problem.

Intra-segment label unification firstly generates a binary image p of detected vessels
from SeqNet’s output v by:

pk = 1{vk > θ}, (2)

where pk and vk are the k-th pixels in p and v, respectively; θ is a predefined threshold. We
then extract binary skeletons using a multiple-threshold method introduced in Appendix A,
as shown in Fig. 3(a). We detect all key-points, which includes the crossing points between
vessels and the terminal points (i,.e., start and end points) of vessels (Fig. 3(b)). Crossing
points are detected by looking for vessel pixels on the skeleton image that have more than
two neighbors, while terminal points only have no more than one neighbor. Skeletal pixels
between connected key-points are extracted as a segment as in Fig. 3(c).

Let S = {Si|i = 1, . . . , N} be the set of all N segments extracted from p, where Si is
the set of pixels in segment i. We compute the confidence cli that segment Si belongs to l
in {artery, vein} by

cli =
∑
k∈Si

(oartery,k − ovein,k), (3)

where olk is the value in ol corresponding to pixel k. cli can be viewed as unified label
confidence of Si corresponding to l, where actual prediction can be done by comparing cli’s,
i.e., Si is artery if cartery,i > cvein,i and vein otherwise.

2.3. Inter-segment Prediction Propagation

To address errors around crossing and branching points, we introduce additional post-
processing, coined inter-segment prediction propagation, in which the label of a segment is
propagated to its connected segments. This is based on the observation that classification
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(a) (b) (c)

Figure 3: An illustrative example of intra-segment label unification. (a) Extracted vessel
skeleton. (b) Detected key-points (magenta dot for the cup center and circle for
the cup area; blue for crossing points; yellow for terminal points). (c) Extracted
segments.

failures usually come with a low confidences on their labels and that they can be corrected
by the influences from their connecting segments with high confidence. Propagation should
happen depending on the similarity between connecting segments based on their shapes,
directions, etc. If two segments share similar shapes, are located nearby, and flows in similar
directions, it is highly possible that they belong to the same vessel. Therefore, the influence
between these segments should be strong.

Based on this observation, we update confidence cli of segment Si according to the
following rule:

cli ← cli + εijclj (4)

where j is the index of segment connected to i. ε is the coefficient to determine the influence
of Sj to Si, given by

εij = AijLijTijDij (5)

Let ui be the unit tangent vector of Si at a certain key-point, which is computed using
the key-point pixel position pi1 and the position pi5 of the fifth pixel along the skeleton,
i.e., ui = (pi5 − pi0)/‖pi5 − pi0‖. A involves the angle between ui and uj , defined as

Aij = FA(|α(ui,uj)− 180|) (6)

where α(ui,uj) is the angle formed by segments ui and uj and FA is given by

FA(x) =
(x−mA)2

m2
A

, (7)

where mA is the pre-defined maximum value decided by observing the vessel systems on
the training images. This function serves as normalization of x into [0, 1]. Aij gives 1 if the
tangent vectors are in the opposite directions (i.e., α(ui,uj) gives 180 degree).
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Figure 4: An illustrative example of prediction propagation. (a) Initial prediction with
several errors. (b)–(d) Resulting predictions after individual iterations.

L handles a potential missing connection between two segments, which is defined as

Lij = FL(α(ui,wij)), (8)

where wij is a unit vector from Si’s key-point to Sj ’s, and the angle computed by α is
normalized by FL in the same way as Eq. (7). Lij gives a value close to 1 if one of Sj ’s
key-point is on the line described by wij .

Thickness of vessels can also be a informative cue to retrieve connecting vessels since
they share a similar thickness when they are connected to each other. We encode this by
Tij , defined as

Tij = FT(β(Si, Sj)) (9)

where β(Si, Sj) gives the difference of mean thickness of Si and Sj , computed along the
skeleton pixels. Dij gives a small value if Si and Sj are far from each other. We defined
this as

Dij = FD(‖pi0 − pj0‖). (10)

Both FT and FD are defined in the same way as Eq. (7).
We apply this update rule to all extracted segments. The detailed algorithm is presented

in Algorithm 1 in Appendix. The label confidence ci evolves as shown in Fig. 4. We can
see that several iterations correct the predicted labels. Note that a segment has two end
points, while Aij , Lij , and Dij involve a single end point in each of segments Si and Sj . We
update the confidence for all four combinations of end points.

This propagation process is not allowed to change the segments in the cup area, which
is indicated by the magenta circle in Fig. 3(b). This is because vessels in this area are too
dense and hard to analyze their relationships, i.e., which segments are actually connected
together and which segments are merely crossing, etc. Also, higher brightness in the cup
area results in many segmentation failures, which may lead to the failure of PP.

3. Performance Evaluation

We use two popular public datasets, namely DRIVE (Staal et al., 2004), and the artery/vein
labels from (Hu et al., 2013), as well as LES-AV (Orlando et al., 2018), to evaluate our
method. We compare our method with two recent methods, i.e., uncertainty-aware (UA)
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Table 1: Performance evaluation on DRIVE dataset.

Methods Full Image
Center Center≥2 px Vessel

Acc. F1 Acc. F1

UA (Galdran et al., 2019) 0.966 0.888 0.888 0.923 0.923 0.741
FCN (Hemelings et al., 2019) - - - 0.940 - -
SeqNet w.o. post-processing 0.967 0.914 0.914 0.946 0.946 0.774
SeqNet w. post-processing 0.967 0.919 0.919 0.953 0.953 0.778

Table 2: Performance evaluation on LES-AV dataset.

Methods Full Image
Center Center≥2 px Vessel

Acc. F1 Acc. F1

SeqNet w.o. post-processing 0.978 0.858 0.858 0.916 0.916 0.776
SeqNet w. post-processing 0.978 0.874 0.874 0.930 0.930 0.785

(Galdran et al., 2019) and fully convolutional network (FCN) (Hemelings et al., 2019), on
the DRIVE dataset.

One problem is that existing methods use different evaluation strategies. Although most
of them use accuracy as the performance metric, but usually with different pixel masks,
including the whole image, the discovered vessel pixels, the ground-truth vessel pixels, the
major vessel pixels, etc. To remove the barrier of reproducing and testing A/V classification
methods, we adopt a newly-proposed evaluation procedure (Hemelings et al., 2019) which
includes a series of pixel masks, such as full image, center-line of discovered vessels, center-
line of major discovered vessels (width≥2 px), the amount of discovered vessels, etc.

Among these results shown in Table. 1 and Table. 2, we can see that our method
achieves a better AUC value than other models, as our model avoids deterioration of the
segmentation performance due to isolation of segmentation and classification. Also, our full
method (SeqNet & LU & PP) shows higher accuracy on both datasets.

4. Conclusion

In this paper, we propose SeqNet for accurate vessel segmentation and artery/vein classi-
fication in retinal images, together with a post-processing algorithm. SeqNet sequentially
does segmentation and classification but not simultaneously, which may deteriorate the
segmentation performance due to the problem of imbalanced label distribution. Our post-
processing algorithm then corrects classification results by propagating highly confident
labels to their surrounding vessels segments. Experimental results showed that our method
is effective and can achieve the state-of-the-art performance on two public datasets.
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Appendix A. Multiple Thresholds in Segments Extraction

In order to propagate the influence correctly, we have to extract the vessel segments accu-
rately. Otherwise, the vessel map may be erroneous, resulting in unreasonable propagation,
as shown in Fig. 5(a). Due to a missing important segment, a wrong label is propagated
to the segment on the right hand side. Therefore, we should make several different binary
skeleton with different thresholds and combine them into a complete vessel map. This is
also detailed in Algorithm 1.

Appendix B. Example Results of Intra-Segment Label Unification

Fig. 6(a) shows the direct output from the classification stream, in which we can see many
prediction errors. Figs. 6(b) and (c) are the results of vessel skeleton extraction and label
unification, respectively, where most label inconsistency in a single vessel segment have been
resolved.
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Figure 5: Multiple thresholds and the propagation results.

(a) (b) (c)

Figure 6: Example of label unification. (a) The initial prediction by SeqNet. (b) Vessel
skeleton extracted from initial prediction. (c) Label unification result.
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Appendix C. Common Prediction Errors

Figs. 7 and 8 respectively show two common errors in classification, i.e., inconsistency along
one single vessel segment and mixed-up prediction that happens around the crossing and
branching points in most cases.

(a) (b) (c)

Figure 7: Prediction errors happened along a vessel segment. (a) Ground-truth labels. (b)
Initial prediction by SeqNet. (c) Post-processed result.

(a) (b) (c)

Figure 8: Prediction errors happened around crossing or branching points. (a) Ground-
truth labels. (b) Initial Prediction by SeqNet. (c) Post-processed result.
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Appendix D. Post-Processing Algorithm

We detail the proposed post-processing in Algorithm 1, including multiple thresholds fusion,
segment extraction, label unification, and prediction propagation.

The thresholds we select in our implementation are 0.5, 0.3, and 0.1. They are in a
descending order because the higher threshold can result in a skeleton in higher confidence
by focusing more on major vessels, while the smaller thresholds covers minor vessels.

As introduced in Section 2.2, label unification is based on the confidence associated
with each segment, which is actually the sum of the prediction confidence of pixels in that
segment. The confidence value is also used in PP, which may need several iterations for a
better result. In our experiment, the number of iterations is set to 5.

Algorithm 1: Segment extraction, label unification, and prediction propagation.

Input: Initial prediction result P = {P1, P2, ..., Pn}
Output: Refined prediction result P ′ = {P ′1, P ′2, ..., P ′n}
/* Start searching segments in the vessel map */

segments ← None;
for tr in [0.5, 0.3, 0.1] do

BS ← Skeletonize(Binarify(P , threshold=tr));
keypoints ← FindEndPoints(BS) + FindCrossingPoints(BS);
segments ← segments + FindSegments(keypoints);

end
/* Start unify the segments */

for S in segments do
tS ← CalculateTotalConfidence(S) ; // using Eq. 3

UnifyResultAlongOneSegment(S);
end
/* Start prediction propgation */

count ← 0;
while count < 5 do

for S in segments do
tS ← UpdateConfidence(S, segments) ; // using Eq. 4,5

ChangeSegmentCategory(S, tS);
end
count ← count +1;

end
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Appendix E. Example Prediction Results

Figs, 9 shows an example result on the DRIVE dataset.

(a) (b)

(c) (d)

Figure 9: Prediction results for a single retinal image from the DRIVE dataset. (a) The
input image. (b) The corresponding ground-truth labels. (c) The output from the
uncert-aware method (Galdran et al., 2019). (d) The output from our method.
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