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Abstract

Automatic segmentation of white matter hyperintensities (WMHs) in magnetic resonance
imaging (MRI) remains highly sought after due to the potential to streamline and alleviate
clinical workflows. WMHs are small relative to whole acquired volume, which leads to
class imbalance issues, and instability during the training process of many deep learning
based solutions. To address this, we propose a method which is robust to effects of class
imbalance, through incorporating multi-scale information in the training process. Our
method consists of training an encoder-decoder neural network utilizing a Siamese network
as an auxiliary loss function. These Siamese networks take in pairs of image pairs, input
images masked with ground truth labels, and input images masked with predictions, and
computes multi-resolution feature vector representations and provides gradient feedback in
the form of a L2 norm. We leverage transfer learning in our Siamese network, and present
positive results without need to further train. It was found these methods are more robust
for training segmentation neural networks and provide greater generalizability. Our method
was cross-validated on multi-center data, yielding significant overall agreement with manual
annotations.

Keywords: Semantic Segmentation, White Matter Hyperintensities, Siamese Networks,
Medical Imaging, Magnetic Resonance Imaging, Label Imbalance, Transfer Learning.

1. Introduction

White matter hyperintensities (WMH) in magnetic resonance (MR) images of a presumed
vascular origin are understood to manifest due to a combination of local macroscopic tissue
structure erosion and increased water content due to inflammation (Bakshi et al., 2005).
Quantitative analysis of WMH in MR imaging is typically conducted in order to diagnose,
and evaluate effectiveness of treatments. Typically, analysis is conducted manually utiliz-
ing specific criteria (Polman et al., 2011), visual scales (Pantoni et al., 2002), or manual
delineations (Egger et al., 2017). The most informative analysis are manual delineations,
as they provide volumetric information of lesion load and spatial distribution. However,
acquisition of manual delineations are laborious, and are subject to high inter- and intra-
rater variability. Reported voxel-wise agreement (F1 score) between radiologists have been
reported to range from a low of 0.66 (Egger et al., 2017) to a high of 0.83 (Steenwijk et al.,
2013).
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Recent advances in semantic segmentation in medical imaging has been largely in part
to advent of deep learning methodologies. Most notably, U-Net style encoder-decoder fully
convolutional networks (FCNs) has seen significant adoption in research community (Ron-
neberger et al., 2015). This is exemplified, as the top 11 teams of the MICCAI 2017 Grand
Challenge for automatic segmentation of WMH all used U-Net inspired architectures. Typ-
ically, these architectures are trained utilizing a loss function which explicitly compares
predictions to ground truths. However, WMHs are inherently class imbalanced due to their
small size relative to acquired image. This skewed distribution affects training as predic-
tions tend towards majority class. In a systematic study on impact of class imbalance
on convolutional neural networks concluded that performance degrades, and is not just a
relationship of number of training samples (Buda et al., 2018). Milletari et al. address
class imbalance in their implementation of V-Net, which extends the U-Net from 2D to 3D
domain, by utilizing a modification of Dice similarity coefficient as a loss function (Milletari
et al., 2016). Investigations by Fidon et al. highlight potential limitations, namely that the
loss function does not take advantage of multi-scale information (Fidon et al., 2017). Sudre
et al. present a rebalancing strategy to allow more robust dice loss function (Sudre et al.,
2017). Li et al. utilize a post-processing method in which predictions in the first and last
10% of the brain volume along the axial plane were discarded (Li et al., 2018).

1.1. Contribution

Figure 1: Overview of proposed training setup.

To overcome these challenges, this work proposes to utilize an auxiliary Siamese network
to train a FCN segmentation model. Through this, multi-scale information is accounted
for, which is not present in loss functions that explicitly compare predicted masks to ground
truths. An U-Net style FCN with dense block convolutions was trained by only the gradients
defined by an auxiliary Siamese network. Inspiration was drawn from the task of person
re-identification (Re-ID), in which explicit comparison between images is not viable, and
Siamese networks are typically used to encode information and measure similarity (Geng
et al., 2016). Early layers of the VGG19 network (Simonyan and Zisserman, 2014) were
used in our Siamese network, and feature mappings were sampled at different resolutions.
For the loss function, we draw inspiration from style transfer implementations which utilize
content loss, in which feature mappings are flattened into column vectors and compared
by their squared Euclidean distance (Gatys et al., 2015). The Siamese network measures
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the content similarity between pairs of masked input images; the input image multiplied by
ground truth and input image multiplied by predicted mask. We developed this method
on the dataset provided for MICCAI 2017 WMH Grand Challenge to have a standardized
comparison to submitted entries. To verify generalization, we validate our results on man-
ually segmented white matter lesions from the Canadian Atherosclerosis Imaging Network
(CAIN). We compare our method by training the same FCN segmentation network, but
trained using several loss for imbalanced segmentation tasks.

2. Method

Figure 2: Generator Diagram.

2.1. Generator

The design of the segmentation model is focused on a fully convolutional encoder-decoder
structure inspired by U-Net (Ronneberger et al., 2015). Formulation of convolution block
consists of sequence of (2D) convolution, followed by batch normalization (Simonyan and
Zisserman, 2014), and leaky ReLU activation (alpha = 0.1) (Xu et al., 2015). Choice of
leaky ReLU over basic ReLU was to avoid “dying ReLU” problem in which some neurons
become inactive and only output zero (Lu et al., 2019). All down sampling operations
were conducted utilizing (2D) max pooling operations. Upsampling operation utilize (2d)
transpose operations as shown in original U-Net (Ronneberger et al., 2015).

2D convolutions were utilized due to empirical results observed during the MICCAI
2017 WMH Grand Challenge, in which, submissions that utilized dilated or 3D convolutions
placed near mid to low rankings (Kuijf et al., 2019). Choice of kernel size did not appear
to affect performance, as such 3x3 kernels were utilized to reduce on number of parameters
to optimize. Dense blocks similar to ones in DenseNet were utilized, due to their properties
to alleviate the vanishing-gradient problem, strengthen feature propagation, and encourage
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feature reuse (Huang et al., 2017). Initial dense block consisted of 32 filters, with the number
of filters doubling with each max pooling operation. Number of dense block operations in
the encoder portion was found by grid search and monitoring performance on a hold-out
validation set, with a mirrored number of dense block plus one bottleneck dense block for
the decoder, as shown in Figure 2.

Figure 3: Discriminator Diagram.

2.2. Discriminator

The discriminator consists of a two path Siamese network. For every prediction mask gen-
erated by the segmentation network, the corresponding input image and ground truth mask
is inputted into the discriminator. The masks are then multiplied to the input image, as
shown in the two paths in Figure 3. Intention of multiplying the masks and input image
together is to highlight the regions of interest and to allow network to jointly evaluate in-
formation from both images. We utilize weights from VGG19 network trained on ImageNet
in our network (Simonyan and Zisserman, 2014). Choice to utilize VGG19 is due to the
linear structure of the network progressively decreasing resolution of the convolution layer,
thereby increasing receptive field. We sample the feature mappings at the max pooling
layers of VGG19 network. We iteratively tested the number of feature mappings used and
it was found that the first two max pooling layers yielded the best results, in which feature
mapping dimensions were 112x112x64 and 56x56x128. Features in deeper layers are more
domain specified towards natural images in ImageNet, and as such were unsuitable for this
task. As well, the receptive field in deeper layers were also likely to be too large for this
task, reflecting the small size of WMHs. In Equation (1), the function fc(.) is the transfor-
mation function representing the encoding of the masked images through the network and
flattening to become feature vector representations. The feature vectors are then compared
to each other by their squared Euclidean distance. Given as the following:

lmse(fc(x · y), fc(x · y′)) =
1

L

L∑
i=1

(
fc(x · y)− fc(x · y′)

)2
(1)
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Where, x is the input image, y is the ground mask, y’ is the predicted mask, and L is
the length of the feature vector.

3. Experiment

3.1. Dataset

The training data used was provided by MICCAI as part of their 2017 grand challenge for
WMH segmentation (Kuijf et al., 2019). The training set that was released publicly for
development consisted of 60 MR image volumes from three institutes. Both T1 and fluid-
attenuated inversion recovery (FLAIR) MR images were available, but in this implementa-
tion, only FLAIR images were used to correspond to acquired modality in cross-validation
set. Of the 60 volumes, 48 volumes were randomly selected to be used to train, 6 volumes
were used for validation of the aforementioned hyperparameters, and 6 volumes were used
for cross-validation. We ensure even sampling between all centers when splitting data.

To cross-validate, 50 FLAIR volumes from Canadian Atherosclerosis Imaging Network
(CAIN) were manually segmented by experienced raters using ITK-SNAP segmentation
software (version 3.6.0) (Yushkevich and Gerig, 2017). All white matter lesions were man-
ually delineated in a superior-to-inferior slice progression in the axial dimension. Once all
white matter lesions were outlined on the axial plane, sagittal and coronal reconstructions
were used to verify the segmentation and margins of the lesions.

3.2. Implementation Details

3.2.1. Preprocessing

Whole volume was taken and normalized to an intensity between 0 and 1 by dividing by
maximum intensity. The axial slices were then taken and resampled to 224 x 224 using de-
fault parameters of resize in python skikit-image library (Van der Walt et al., 2014). Images
were then concatenated with itself twice in order to convert single channel intensity image
into 3-channel RGB image. In order keep uniformity on all models, preprocessing steps
outlined for VGG19 model were used (Simonyan and Zisserman, 2014). During training,
random rotation augmentations up to a range of 30 degrees were applied to the image,
utilizing generator functions in Keras.

3.2.2. Training

For all models, 100 epochs were used during training with a batch size of 8 images and 100
batches per epoch. The ground truth was soft-binerized, meaning 0 values were set to 0.1
and 1 values were set to 0.9. Choice of this was to avoid exploding gradients when utilizing
sigmoid as final output. Our initial learning rate was set to 0.001, and we utilize Adam
optimizer with parameters set to β1 = 0.9 and β2 = 0.999 (Kingma and Ba, 2014). The
models were developed on Keras-Tensorflow 2.0, and was trained in a single NVIDIA GTX
1080 Ti GPU.
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3.2.3. Performance Metrics

Five metrics outlined by MICCAI 2017 WMH Grand Challenge for evaluation were used
in order to have a standardized comparison to submitted entries (Kuijf et al., 2019). To
measure performance in terms of class imbalance, we also define a normalized ratio which
is the number of positive pixels in the ground truth, compared to the total image volume
called the positive class density (PCD):

PCD =
Sum(#ofPositiveP ixels)

Product(V olumeDimensions)
X100

This is to address the variation of the volume dimensions of acquired images. We utilize
this metric as a normalized means to compare volume agreement between predicted masks
and ground truths.

3.2.4. Benchmarks

We compare our proposed method to several loss functions commonly used in imbalanced
semantic segmentation tasks. Dice loss as proposed by Milletari et al. makes modification
the Dice score coefficient by introducing ε to allow for stability during training (Milletari
et al., 2016). ε was set to 1 for benchmark comparison. Salehi et al. make modifications
to this by proposing Tversky loss, in which α and β terms are introduced as additional
weightings for false positives and false negatives respectively (Salehi et al., 2017). In this
investigation, α and β were set to 0.3 and 0.7. To account for the bias of the Dice metric
for larger volumes, Sudre et al. propose generalized Dice loss, in which the Dice loss is
re-balanced by the squared volume of the ground truth (Sudre et al., 2017). For each of
the aforementioned loss functions, we train the generator model with the same settings as
mention prior in training section.

4. Results

In this section, we will describe the results of our proposed model to models trained with the
mentioned benchmark loss functions. Visual inspection of segmentation masks, as shown in
Figure 4, shows an overall greater sensitivity for lesion detection for proposed model. Models
trained with Dice loss and Tversky loss appear to be under segmenting, as highlighted by
the large number of false positives present in the first row of Figure 4. When validated on
images derived from the same distribution as training set, the generalized Dice model and
our proposed model appear to have similar performances on the MICCAI holdout. However,
when evaluated with images outside the distribution of the training set, as shown in the last
row of Figure 4, each of the benchmark models segment only a few of the lesions, missing
the significant lesions on the bottom left. Whereas, our proposed model segments most of
the lesions present. We observe this trend reflected in the average performances described
in Table 1, namely that while the benchmark models have comparative performances on
dataset derived from same distribution, when validated on a dataset outside the distribution,
our proposed model shows significant improvement.

To observe the effects of class imbalance on the models, we assign bins to each volume
in the CAIN independent validation set according to their positive class density and plot
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Figure 4: Prediction samples

Table 1: Summary of Performance Metrics

Model Dice ↑ HD 2 ↓ AVD 3 ↓ L-Recall ↑ L-F1 ↑
Dataset: MICCAI Holdout Validation

Dice Loss 0.73(±0.07) 9.33(±3.17) 17.54(±10.77) 0.46(±0.18) 0.55(±0.18)

Tversky Loss 0.78(±0.06) 5.39(±2.28) 10.79(±9.33) 0.53(±0.13) 0.63(±0.14)

Gen. Dice 0.80(±0.06) 4.43(±1.61) 5.57(±5.33) 0.61(±0.18) 0.68(±0.17)

Siamese Loss 0.79(±0.06) 9.14(±9.96) 11.82(±7.52) 0.79(±0.14) 0.62(±0.17)

Leaderboard1 0.81 5.63 18.58 0.82 0.79

Dataset: CAIN Independent Validation

Dice Loss 0.45(±0.22) 26.76(±16.67) 55.69(±38.24) 0.48(±0.20) 0.47(±0.16)

Tversky Loss 0.43(±0.24) 28.8(±20.54) 52.52(±29.36) 0.47(±0.25) 0.48(±0.21)

Gen. Dice 0.44(±0.27) 21.40(±17.50) 56.33(±28.79) 0.50(±0.28) 0.51(±0.25)

Siamese Loss 0.52(±0.18) 24.26(±16.40) 39.76(±27.77) 0.75(±0.15) 0.54(±0.13)
1 MICCAI 2017 WMH Grand Challenge Leaderboard. Available at https://wmh.isi.uu.nl/

results/
2 HD refers to modifed Hausdorff distance (95th percentile) (mm)
3 AVD refers to average volume difference (%)
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versus the average volume difference between predicted volume and ground truth. Figure 5
depicts relatively low volume difference for our proposed model for most of bins. It is
noted that two outliers exists in the 0.0 - 0.03 bin, in which the average volume difference is
greater than 100%, indicating over-segmentation. For the benchmark models, there appears
to be some volumes where the average volume difference is 100%, indicating no lesion was
detected. Our proposed model on the other hand, detects at least some agreement to the
ground truth.

Figure 5: Average Volume Difference versus Positive Pixel Density

5. Discussion

In the previous section, we observe our proposed model generalizing well to data outside
the distribution of the training set. We attribute this to the discriminator allowing for
more contextual optimization of the generator weights. By evaluating the masked input
images, texture features derived from the Siamese network allow for better comparison of
information inherent in the pathology. The information taken at multiple depths of the pre-
trained network represents the activation at multiple receptive fields, allowing for the latent
vector to have a multi-scale representation. Whereas, overlap based optimization functions
compare only masks, no additional information significant to the pathology is considered.

For this implementation, the core of the Siamese network is the VGG19 network pre-
trained on ImageNet (Simonyan and Zisserman, 2014). Through tuning hyperparameters,
as mentioned above, we found that the optimal layers to sample from were in the earlier
layers, in which can be visually understood as edges and blobs (Zeiler and Fergus, 2014).
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Fundamentally, ImageNet is a different domain from the medical images used in this im-
plementation, namely ImageNet consists of natural colored images. We explore the aspect
of fine tuning the VGG19 network to shift the domain more towards the present task as
summarized in Table 2. The generator and discriminator were trained in a min-max fash-
ion inspired by GAN type architectures (Goodfellow et al., 2014). Pre-trained weights of
the Siamese network were unfrozen, and a small learning rate of 0.00001 was used for fine
tuning. The objective of the generator was to minimize the L2 loss, while the discriminator
sought to maximize it.

Table 2: Summary of Trained and Transfer Learned Siamese Networks

Model Dice ↑ HD 1 ↓ AVD 2 ↓ L-Recall ↑ L-F1 ↑
Dataset: MICCAI Holdout Validation

Trained SL 0.51(±0.14) 24.49(±14.07) 32.32(±18.65) 0.23(±0.17) 0.24(±0.16)

Siamese Loss 0.79(±0.06) 9.14(±9.96) 11.82(±7.52) 0.79(±0.14) 0.62(±0.17)

Dataset: CAIN Independent Validation

Trained SL 0.26(±0.21) 61.12(±43.00) 137.55(±384.34) 0.16(±0.13) 0.15(±0.13)

Siamese Loss 0.52(±0.18) 24.26(±16.40) 39.76(±27.77) 0.75(±0.15) 0.54(±0.13)
1 HD refers to modifed Hausdorff distance (95th percentile)
2 AVD refers to average volume difference (Percentage)

The result of fine tuning the weights yielded less than satisfactory results. Primarily,
one reason could be due to the VGG19 network being highly parameterized, there is a lack
of sufficient data samples to optimize the weights, despite the use of a low learning rate for
fine tuning. Other reasons could be attributed to the GANs nature of the model. Since a
min-max setup was used to optimize the weights, vanishing gradients could have affected the
optimization of the model. A variety of other factors such as game setup and loss function
selection could have attributed, however analysis of these design paradigms are beyond the
scope of this paper and will be investigated in future works.

6. Conclusion

We present a training method which utilizes an auxiliary Siamese network to train a FCN
segmentation model. Through this we found greater generalizability when compared to
FCN model trained on loss functions which only evaluate only segmentation masks. By
utilizing a Siamese network to evaluate the content loss between the masked images at
each training step, we feedback multi-scale information in the training process. We found
that this method allows for greater sensitivity, allowing for more robust evaluation across
datasets and raters.

In this work, we leverage the use of transfer learning for our task, however we ac-
knowledge the limitations in namely the domain specificity of the network and the over-
parametrization contributing to computation overhead. We attempt to fine-tune the Siamese
network through a min-max GANs setup, but found the results unsatisfactory. Future works
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intends explore more of the design paradigms to allow for more efficient use of latent vector
space and further refinement of features.
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