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Abstract

A deep neural network (DNN) can assist in retinopathy screening by automatically clas-
sifying patients into normal and abnormal categories according to optical coherence to-
mography (OCT) images. Typically, OCT images captured from different devices show
heterogeneous appearances because of different scan settings; thus, the DNN model trained
from one domain may fail if applied directly to a new domain. As data labels are difficult
to acquire, we proposed a generative adversarial network-based domain adaptation model
to address the cross-domain OCT images classification task, which can extract invariant
and discriminative characteristics shared by different domains without incurring additional
labeling cost. A feature generator, a Wasserstein distance estimator, a domain discrim-
inator, and a classifier were included in the model to enforce the extraction of domain
invariant representations. We applied the model to OCT images as well as public digit
images. Results show that the model can significantly improve the classification accuracy
of cross-domain images.
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1. Introduction

The macular is a vital organ of the human body and its degeneration can result in visual
impairment and also blindness. Timely screening and early treatment can effectively re-
duce the blindness rate (van Velthoven et al., 2007). Optical coherence tomography (OCT),
which can image retinal structures in vivo, has been widely applied in diagnostic ophthal-
mology owing to its ease of use, lack of ionizing radiation, and high resolution (Lang et al.,
2013); there were more than 5 million OCT acquisitions in the US in 2014 (Wang et al.,

∗ Corresponding author

© 2020 J. Wang, Y. Chen, W. Li, W. Kong, Y. He, C. Jiang & G. Shi.



Domain Adaptation Model for OCT Images

2016). However, the large amount of data creates a burden for doctors to manually evalu-
ate individual images. Recent developments in computer-aided diagnostic systems (CADSs)
have aided in retinopathy diagnosis and reduced the workload for clinicians.

Nonetheless, there are several OCT devices developed by different manufactures that
vary in many aspects including imaging mode, image processing algorithm, hardware com-
ponents, etc. Consequently, images captured from different devices have different signal
distribution. Figure 1 shows two OCT images captured from different devices and their
grayscale histogram, where the first is from Cirrus (Carl Zeiss Meditec, Inc., Dublin, CA)
and the second is from Spectralis (Heidelberg Engineering, Heidelberg, Germany). Ana-
lyzing the images reveals that their appearance and signal distribution are quite different.
It might be easy for experienced clinicians to examine the images with different signal
distribution, but CADSs’ performance declines when the test data are under a different
distribution compared to the training data. It is an alternative to recollect and manually
label new domain data and retrain another model for this domain, but it is time-consuming
and expensive, particularly for medical images, where data are limited and collected from
different devices. Therefore, methods that can learn from the source dataset and adapt to
new target domain data, without additional labeling, are highly desirable.

Figure 1: Examples of images and image histograms from different devices: (a) (c) Cirrus;
(b) (d) Spectralis

In this study, we proposed a generative adversarial network (GAN)-based approach to
reduce domain discrepancy in different modalities of OCT images by learning the domain
invariant representations.
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GANs have attracted lots of attention in recent years because they can generate tar-
get images from random signals by training networks in an adversarial manner. the most
common GAN comprises a generator and discriminator; the generator aims to generate
real-image-like images to deceive the discriminator, which is trained to distinguish the gen-
erated image from the real image. The domain adaptation can be considered as generative
adversarial learning, as its generator learns to minimize the domain discrepancy distance
while its discriminator tries to distinguish the domain of the original input. However, when
the discriminator can perfectly distinguish target from source representations, the gradient
vanishing problem will happen. Inspired by (Shen et al., 2017), we applied Wasserstein
distance to provide more stable gradients in the adversarial learning process.

Several adversarial learning methods have been proposed to solve the domain shift prob-
lem in medical images (Chen et al., 2019b; Kamnitsas et al., 2017; Zhang et al., 2019; Ren
et al., 2018; Romo-Bucheli et al., 2020), where (Romo-Bucheli et al., 2020) proposed a cy-
cleGAN model to reduce covariate shift in OCT imaging for fluid segmentation task by
synthesizing translated images. However, according to our knowledge, there is no research
about domain adaptation on retinopathy detection from OCT images. The OCT devices
that are commonly used in clinics come from different manufactures, such as Cirrus, Op-
tovue, Topcon and Spectralis, thus domain shifts exited widely in the images, which heavily
hindered the popularization of CADSs for retinopathy detection. In this work, we pro-
pose a domain adaptation model for OCT images, namely DAOCT. This model consists
of a generator, two discriminators and a classifier, where discriminators estimate the dis-
crepancy between the source and target features, the generator is optimized to minimize
the estimated discrepancy in an adversarial manner, and the classifier is trained to detect
retinopathy. A Wasserstein-distance based adversarial loss is designed to effectvely train
this model. Finally, the generator can extract domain invariant features and the classi-
fier can recognize abnormal OCT images from any domain. We have tested this model on
our custom retina OCT images dataset and the public MNIST-USPS dataset pair. The
results demonstrate that the DAOCT significantly improves the classification accuracy of
retinopathy detection and digits recognition compared with other existing representation
learning-based approaches.

2. Related works

Domain adaptation is an effective way to solve the shortage of label information, which is
expensive and time-consuming to gather, especially for medical images. Model trained on
the labeled data from one device can work on a new dataset with different distributions by
reducing the domain dependencies between two dataset. There were lots of great domain
adaptation works have been done recent years. A deep domain confusion (DDC) method
was proposed (Tzeng et al., 2014) to minimize the divergence between two distributions
by minimizing the maximum mean discrepancy (MMD) metric (Gretton et al., 2012). The
MMD is a nonparametric metric that measures the distribution divergence between the
mean embedding of two distributions in reproducing kernel Hilbert space (RKHS). Another
excellent work was the DeepCORAL (Sun et al., 2016), which extends the correlation align-
ment (CORAL) method (Sun et al., 2016) to DNN to learn a nonlinear transformation that
aligns correlations of layer activations.
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Some other studies apply adversarial objectives to remove the domain discrepancy.
(Shen et al., 2017) proposed Wasserstein distance guided representation learning (WDGRL)
to reduces the distance between representations by minimizing the empirical Wasserstein
distance in an adversarial manner. (Tzeng et al., 2017) proposed adversarial discriminative
domain adaptation (ADDA) to reduce the domain distance by applying a standard GAN
loss. Multilinear conditioning and entropy conditioning were applied to build the condi-
tional domain adversarial networks (CDANs) by (Long et al., 2018) to better align different
domains. Joint domain alignment and discriminative feature learning was proposed by
(Chen et al., 2019a) to ensure that the domain invariant features obtain better intra-class
compactness and inter-class separability which can significantly mitigate the domain shift.

Owing to the excellent performance of domain adaptations on the unsupervised domain
shift mitigation, some domain adaption architectures have been applied on medical images
where domain discrepancy is present and label information is difficult to acquire. A domain
adaptation paradigm was proposed by applying an adversarial objective to adapt the Glea-
son score prediction model learned from annotated prostate whole-slide images (WSIs) to
other unlabeled prostate WSIs (Ren et al., 2018). The noise adaptation GAN (NAGAN)
was proposed by (Zhang et al., 2019) to solve the domain adaptation issue in OCT and
ultrasound images by training a NAGAN to transfer the noise style from source images to
that in the target domain; the NAGAN was trained in an adversarial manner with two dis-
criminators. A synergistic image and feature adaptation (SIFA) architecture was proposed
by (Chen et al., 2019b) to achieve cross-modality medical image segmentation of cardiac
structures. (Kamnitsas et al., 2017) achieved brain lesion segmentation from MR images
acquired using different scanners and imaging protocols.

In this study, we build a model to extract domain invariant representations from retina
OCT images captured from different settings. Inspired by the WDGRL, we combined the
Wasserstein distance with the domain distance of source and target representations to stably
reduce the domain discrepancy. The evaluation results demonstrate the efficiency of our
proposed method.

3. Method

The proposed DAOCT aims to extract invariant features to the covariate shift between
OCT images captured from different domains. In this section, methods used to train this
model are introduced.

3.1. Overview

Initially, we define a set of OCT images, annotated as normal or abnormal by experienced
clinicians, captured from Cirrus as the source domain. The images in source domain distri-
bution are labeled as Xs = {(xsi , ysi )}N

s

i=1, where ysi is one-hot vector denoting whether the
retina is healthy or not and Ns is the number of images. A set of OCT images captured
from Heidelberg were defined as target domain and followed the distribution T . The target
domain contains Nt unlabeled OCT images and is defined as Xt = {xtj}N

t

j=1. Unless other-
wise specified, we define the symbols s and t as the source and target domain, respectively,
in this manuscript and s ∈ Rxs and t ∈ Rxt , where R represent marginal data distribution.
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Figure 2: Architecture of DAOCT

The proposed DAOCT consists of a feature generator, a classifier, a Wasserstein dis-
tance estimator and an adversarial discriminator. The generator aims at domain invariant
feature extraction, the Wasserstein distance estimator and the domain discriminator aim at
minimizing the representation discrepancies and the classifier aims at screening retinopathy
in images from both s and t. The DAOCT architecture is presented in Figure 2. The feature
generator, denoted as G, attempts to map images from each domain into a latent represen-
tation z = G(x), which is expected to be domain invariant and category informative. The
extracted representations are fed to the Wasserstein distance estimator and the domain dis-
criminator, denoted as W and D, respectively. The W is used to evaluate the Wasserstein
distance between source and target representations as the Wasserstein distance can help
avoid the gradient vanishing problem and enable a more stable training process. D is used
to distinguish the original domain from its input. The classifier, denoted as C, attempts
to classify the images from the target domain into normal and abnormal categories. The
detailed information of the aforementioned architecture is as follows:

3.1.1. Feature generator

The feature generator G is designed for mapping an input image from either the source or
the target domain to a latent representation as follows:

z = G(x), x ∈ Xs ∪Xt, (1)

where G is a CNN with parameters denoted as θg. For simplification, the latent representa-
tion of any source or target domain is denoted as zs = G(xs) and zt = G(xt), respectively.

3.1.2. Discriminator

After the extraction of latent representations from the feature generator, we use the W and
D to estimate the distance between the source and target domain representation, specifically,
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W is applied to evaluate the Wasserstein distance and D is applied to distinguish which
domain the representation belongs to.

The Wasserstein distance was first applied to a GAN by (Arjovsky et al., 2017), helping
to stablilize the GAN training. In the present study, we used the Wasserstein distance
to estimate the distance between representation distributions Rzs and Rzt , which can be
computed by Equation (2).

W1(Rzs , Rzt) = sup
‖fw‖L≤1

ERzs
[W (z)]− ERzt

[W (z)] (2)

According to (Shen et al., 2017), if the parameterized family of W are all 1-Lipschitz,
then the empirical Wasserstein distance can be approximated by maximizing the domain
critic loss Lwd with respect to the parameter θw, as follows:

Lwd(x
s, xt) =

1

N s

∑
xs∈Xs

W (G(xs))− 1

N t

∑
xt∈Xt

W (G(xt)) (3)

Regarding the enforcing of the Lipschitz constraint, as (Gulrajani et al., 2017) high-
lighted, the weight clip proposed in (Arjovsky et al., 2017) causes capacity underuse and
gradient vanishing or exploding problems. Thus, they proposed a more reasonable alterna-
tive by enforcing gradient penalty Lgrad for the domain critic parameter θw, as follows:

Lgrad(ẑ) = (‖∇ẑW (ẑ))‖2 − 1)2 (4)

The gradients are penalized at feature representations ẑ which are defined not only at the
source and target representations pair as well as the random points along the straight line
between the pair. The Wasserstein distance between two representations can be estimated
by solving the problem:

max
θw
{Lwd − αLgrad} (5)

Domain discriminator D is trained to classify which domain is the origin of the data
point, and can be optimized by a standard classification loss LAD(xs, xt) with respect to
the parameter θd, where the labels indicate the origin domain, defined as:

LAD(xs, xt) = −Exs∼Xs [logD(G(xs))]− Ext∼Xt [1− logD(G(xt))] (6)

Finally, we can estimate the discrepancy between two domains by solving the problem

max
θw,θd
{Lwd − αLgrad + LAD} (7)

where α is a balancing coefficient. As the generator aims to extract domain invariant
features to fool D, it can be optimized by minimizing the LAM with respect to the parameter
θg:

LAM = −LAD (8)

The Wasserstein distance is applied to estimate the domain discrepancy, and it is con-
tinuous and differentiable in almost any situation. Thus, we can first train W and D to
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optimality (Shen et al., 2017). Fixing the optimal parameters of D and W and minimizing
the distance between representations, the feature generator can learn the feature repre-
sentations with reduced domain discrepancy. This representation learning process can be
achieved by solving the adversarial problem

min
θg
{LAM + λmax

θw,θd
[Lwd − αLgrad + LAD ]} (9)

where λ is a balancing coefficient and α should be set as 0 when performing the min-
imization because the gradient penalty should not affect the feature generator training
process. Finally, the feature generator can extract domain invariant representations.

3.1.3. Classifier

As the feature generator can only extract domain invariant representations, it can not
achieve our final goal of training a high-performance classifier for the target domain. Hence,
several additional layers were added to serve as a classifier (C). As the label of the target
domain is unavailable, C is trained with the source representations that have elaborated
label information. The classifier loss is calculated using the standard supervised loss which
is defined as follows:

Lcls(x
s, ys) = − 1

N s

Ns∑
i=1

l∑
k=1

I(ysi = k) · logC(G(xsi ))k, (10)

where l is the number of classes.

3.2. Overall objective

Finally, combining the aformentioned loss, we can obtain our overall objective function:

min
θg ,θc
{Lcls + LAM + λmax

θw,θd
[Lwd − αLgrad + LAD ]} (11)

where λ is a balancing coefficient and α should be set as 0 when optimizing the minimum
operation.

The detailed algorithm of the training process is given in Algorithm 1.

4. Experiment

The efficiency of the proposed method is evaluated on a public dataset and a private dataset.
The evaluation results demonstrate that the proposed method shows better performance
than some of the state-of-the-art methods, which also aimed at solving the domain shift
problem by extracting the domain invariant representations, including WDGRL (Shen et al.,
2017),DANN (Ganin et al., 2015), CADN (Long et al., 2018), JDDA-CORAL (Chen et al.,
2019a), JDDA-MMD (Chen et al., 2019a).
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Algorithm 1: Domain adaptation for optical coherence tomography

Input: The source domain sample xs and source category label ys, target domain
sample xt without label.

Data: minibatch size m; critic and discriminator training step: n; classifier and
generator training step: N ; coefficient: α; critic and discriminator learning rate:
γ1; classifier and feature generator learning rate: γ2.

Initialize feature generator, domain critic, discriminator, classifier with random weights
θg, θw, θa, θc ;
for T ← 1 to N do

Acquire source minibatch {xsi , ysi }
m
i=1, target minibatch {xtj}

m

j=1
from Xs and Xt ;

for t← 1 to n do
Zs = G(xs), zt = G(xt);
Sample random points z along straight lines between zs and zt pairs;
ẑ ← {zs, zt, z};
θw ← θw + γ1∇θw [Lwd(x

s, xt)− αLgrad(ẑ)];
θd ← θd + γ1∇θd [LAD(xs, xt)];

end
θc ← θc − γ2∇θcLcls(xs, ys);
θg ← θg − γ2∇θg [Lcls(x

s, ys) + LAM (xs, ys) + Lwdx
s, ys];

end
Return G,C;

4.1. Dataset

We tested our method on two datasets:
Digits recognition datasets. They are the most widely used benchmark datasets and

contain digit images ranging from 1 to 10 with different styles. We applied the MNIST-
USPS pair to evaluate our method. In this experiment, we assigned the MNIST (M) and
USPS (U) as the source and target domain, respectively, and adopted the standard training
set (60,000 pictures for M, 7,291 pictures for U), and the valuation dataset (10,000 pictures
for M, 2,007 pictures for U). The sizes of M and U were unified to 28×28 pixels, and
transferred to gray images.

Retinal OCT images. This custom dataset consists of retinal images captured from
two different OCT devices, Cirrus (Carl Zeiss Meditec, Inc., Dublin, CA) and Spectralis
(Heidelberg Engineering, Heidelberg, Germany), both of which are widely applied in clin-
ics. Images captured from these devices are different in many aspects, such as signal dis-
tributions, noise style, shown in Figure 1, resolutions (1536×1024 pixels for Cirrus images,
765 × 496 pixels for Spectralis images) and so on. We applied the images captured from
Ciruss (denoted as Z) as the source domain because they have detailed label information
which was acquired in (Wang et al., 2019). The Z consisted of 7,096 abnormal and 5,738
normal samples captured from 710 subjects and labeled by two specialists, where 472 images
were randomly chosen as the evaluation set and the remaining were assigned as training
set (scans from the same person were kept in the same set). Another set of retinal OCT
images captured from the Spectralis (denoted as H) was assigned as target domain. The H
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consisted of 12,427 images captured from 678 subjects, same as the source domain dataset.
1,007 images of H were randomly selected as the evaluation set, which were labeled by a
specialist with more than 10 years’ experience in clinical retinopathy detection experience,
and the remaining images, with no label information, were used to train the model. To
prevent overfitting, the training dataset of the source domain, which was used to train the
retinopathy classifier, was augmented by horizontal mirroring and contrast enhancement.
The contrast enhancement is defined by Equation (12), where I denotes the destination
image, i is the source image, and v (v = 10 in this study) indicates the degree of contrast
enhancement. The image sizes of Z and H were unified to 112× 112 pixels and the images
were converted to grayscale to reduce the computation complexity.

I = log 2(1 + v ∗ i)/ log 2(v + 1) (12)

4.2. Network architecture

The overall network architecture is provided in Figure 2, consisting of G, C, W and D. G,
the core architecture of our network, is a convolutional neural network as show in Figure 2
which applies residual block to ease the gradients flow. Specifically, only the first and the
last max-pooling layer were available for the digits classification task as the input size was
different for the two tasks. The C consists of a fully connected (FC) layer with two outputs,
denoting whether the retina is sick or not. Both W and D consist of two FC layers, where
W has one output to estimate the Wasserstein distance between two domains and D has
two outputs to denote the domain of the original input.

4.3. Experiment setup

We compared our method with some related works, such asWDGRL (Shen et al., 2017),
DANN (Ganin et al., 2015), CADN (Long et al., 2018), JDDA-CORAL (Chen et al., 2019a),
JDDA-MMD (Chen et al., 2019a), which also focused on learning the domain invariant
representations to reduce the domain discrepancy by symmetric ways. The JDDA proposed
a two-stream network and combined a center loss in the domain adaptation process to make
the intra-class representations more compact and increase the distance between inter-class
representations. In their work, the authors have proved that the combination of JDDA
with CORAL and MMD enables the achievement of a better performance. Thus we only
compared our method with the JDDA-CORAL and JDDA-MMD. There are other effective
domain adaptation methods, such as Pixel-GAN (Bousmalis et al., 2017), DupGAN (Hu
et al., 2018) and the NAGAN (Zhang et al., 2019), which are not used in the comparison
because they focus on synthesizing target-like images according to source images to reduce
the domain shift; our approach can be easily integrated into these works.

Our experiments were implemented via TensorFlow and trained with Adam optimizer.
Following (Long et al., 2013), it is impossible to perform cross validation in this experiment,
since labeled and unlabeled data are sampled from different distributions, we found the best
results of all methods through grid search on the hyper-parameter space. The batch size
was set as 64, 32 for each domain, and the learning rate was fixed as 10−4. In order to
equally compare all the methods, the classifier was combined with all comparison methods
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to perform the classification task, the feature generators of all comparison methods were
replaced by the proposed feature generator.

The proposed approach could be implemented according to Algorithm 1. Additional
training steps n were selected for additional optimization for the W and D to achieve the
Nash Equilibrium faster. In our experiment, n was set as 10. Following (Shen et al., 2017),
we penalized the gradients at the representations of two domains and random points along
the straight line between the source and target pairs; the coefficient α was set as 10.

4.4. Results and discussion

We evaluated the proposed architecture on the digits dataset and the retina OCT images
dataset, as shown in Table 1. To better demonstrate the efficiency of the trained models,
we tested them on both target and source evaluation set (the result of the source evaluation
set was reported in parentheses in Table 1). The source-only model means that the model
was only trained on labeled source dataset. It is evident that our method outperforms all
methods compared on both classification tasks. The WDGRL, with more reliable gradient,
obtained better results than the JDDA-based methods. It can be inferred that the combi-
nation of Wasserstein distance and adversarial loss can better enforce the extraction of the
domain invariant features.

It should be noted that when testing the source evaluation set, our proposed method
only has a minor accuracy reduction while other domain adaptation methods have a larger
accuracy reduction compared with the source only method, especially on the retina OCT
images. It demonstrates that when performing domain adaptation, the WDGRL and JDDA-
based methods tend to extract target domain representations, and our proposed method
tries to extract domain invariant representations. Thus we can conclude that our proposal
is more effective in removing the domain shift of OCT and digit images. Furthermore, we
found that the target images classification accuracy of source-only model on the MNIST
→ USPS task significantly improved compared with that reported in existing works, i.e.
UDAR (Hou et al., 2019), Pixel-GAN (Bousmalis et al., 2017), DupGAN (Hu et al., 2018).
These methods are not included into the former comparison as they focused on synthesizing
target-like images according to source images to reduce the domain shift rather than learning
the domain invariant representations. However, these works have also carefully designed
the architecture of the feature generator to extract effective representations. The result
is shown in Table 2. It can be noticed that our method obtains an improvement on the
accuracy, i.e. nearly 32% higher than the UDAR (Hou et al., 2019) that also applied
residual architecture in their model. This result confirmed that our feature generator is
more effective in extracting category informative features, which can overcome part of the
domain shift before domain adaptation training.

Ablation Study We evaluate the contributions of the discriminator (LAD) and the
Wasserstein distance estimator (Lwd) separately. The result was shown in Table 3. It can
be found that both the Lwd and LAD work effectively in reducing the domain distance,
where Lwd works a little better when they were applied alone. But according to the table,
the result can be further improved when applying these two components at the same time,
it confirmed the effectiviness of the proposed loss strategy. We also tested the effectiviness
of the proposed the feature generator architecture by comparing it with the multi-layer
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Table 1: Evaluation results (accuracy %) of several domain adaptation models on target
datasets. (The evaluation results on the source dataset is reported in parentheses)

Method MNIST→USPS Cirrus→Spectralis

Source only 0.9612(0.9939) 0.8669(0.947)
WDGRL 0.9756(0.9908) 0.9374(0.872)
JDDA CORAL 0.9314(0.9798) 0.9156(0.8671)
JDDA MMD 0.9368(0.985) 0.9255(0.8575)
CADN 0.9696(0.9958) 0.8292(0.7223)
DANN 0.9273(0.9953) 0.8699(0.6631)
DAOCT 0.9804(0.9914) 0.9553(0.9307)

Table 2: Evaluation results of several source-only models on target dataset

Method MNIST→USPS

UDAR (Hou et al., 2019) 0.634
Pixel-GAN (Bousmalis et al., 2017) 0.789
DupGAN (Hu et al., 2018) 0.8675
DAOCT (proposed) 0.9612

Table 3: Effectives of each key component in DAOCT, evaluation accuracy (%) on target
dataset. ’FG’ means feature gennerator proposed in this study, and multi-layer
perceptron is set as default feature generator

Method Source only Lwd LAD FG Accuracy

MNIST→USPS

X 0.9301
X 0.9656

X 0.9371
X X 0.9667
X X X 0.9804

Cirrus→Spectralis

X X 0.8669
X X 0.9374

X X 0.9359
X X 0.8758
X X X 0.9553
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Figure 3: t-SNE of digits classification
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Figure 4: t-SNE of OCT images classification
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perceptron. We applied the proposed feature generator and multi-layer perceptron on two
tasks under the same loss strategy as shown in Table 3. It can be inferenced from the
result that the proposed feature generator did a beeter job in extracting domain invariant
and discriminative features as the accuracies were significantly improved when applying the
custom feature generator on both two tasks.

Feature visualization We plot the t-SNE visualization of the digits classification tasks
to analyze the representations distributions, as shown in Figure 3, where the red and blue
spots represent the source and target domain in separate, respectively, and each cluster
represents a category. According to the figures, we can observe that the WDGRL and
JDDA is effective in reducing the domain shift in some extent, but the performances are
not so perfect as the source and target domains of some clusters are still far apart. We can
observe that the blue and red spots of all the clusters align better in Figure 3(d), which
means the proposed method was more effective in reducing the domain distance of the
MNIST and USPS datasets.

We also plot the t-SNE visualization to demonstrate the efficiency of the proposed model
on the retina OCT images, as show in Figure 4, where the red and blue spots represent
normal and abnormal samples of the source domain, resprectively, and purple and green
spots represent the normal and abnormal samples of the target domain,respectively. It
can be concluded that our proposed method obtains the best performance in reducing the
representations’ distance between the source and target domains as the distance between
red (blue) and purple (green) spots is closer in Figure 4(d), which represents the t-SNE
visualization of our method. The results also demonstrate that our proposed method can
increase the distance between different categories in target domain as the distances between
the green and purple spots are farther than the other comparison methods.

5. Conclusion

Domain shift is an important issue in machine learning, particularly for medical images
which are often captured from different devices. In this paper, we proposed an adversarial
learning-based network, which consists of a feature generator, two discriminators and a
classifier, to extract domain invariant and category informative representations from OCT
images having different signal distributions. The Wasserstein distance was combined with
the adversarial loss to optimize the network effectively. We tested our network on the Z→ H
and M→ U tasks and compared the results with those of some related works, demonstrating
the effectiveness of the proposed network architecture and loss. The feature visualizations
indicate that our method can approximate representations from different domains while
maintaining the distance among categories. The test results on source evaluation datasets
provide further evidence that our method can effectively reduce the domain shift.
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