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Abstract

Detecting facial action unit (AU) activations is one of the key steps in automatic recognition
of facial expressions of human emotion and cognitive states. While there are different
approaches proposed for this task, most of these are trained only for a specific (sub)set of
AUs. As such, they cannot easily adapt to the task of detection of new AUs which are
not initially used to train the target models. In this paper, we propose a deep learning
approach for facial AU detection that can adapt to a new AU and/or target subject by
leveraging only a few labeled samples from the new task (either an AU or subject). We
use the notion of the model-agnostic meta-learning, originally proposed for the general
image recognition/detection tasks, to design our deep learning models for AU detection.
Specifically, each subject and/or AU is treated as a new learning task and the model
learns to adapt based on the knowledge of the previously seen tasks. We show on two
benchmark datasets (BP4D and DISFA) for facial AU detection that the proposed approach
can easily be adapted to new tasks. By using as few as one or five labeled examples from
the target task, our approach achieves large improvements over the baseline (non-adapted)
deep models.

1. Introduction

Facial Action Units (AUs) represent a set of facial muscle activation, where a number of AUs
(more than 36) are defined by Facial Action Coding System (FACS). Based on the combi-
nations of AUs, any possible facial expression can be described and further interpretations
of, e.g., emotional and cognitive states be made. For this reason, the detection of facial AUs
from face images is an important task in computer vision. However, the manual annotation
of AUs is difficult, time-consuming and tedious task. Furthermore, to perform an objective
and consistent labeling of AUs, the human experts with comprehensive understanding of
AUs are needed, which is costly. Moreover, manual annotation of AUs does not scale well
with large image datasets of human facial expressions, typically required for automated
systems for facial expression analysis. Though there are several benchmark datasets with
annotated AUs, such as DISFA Mavadati et al. (2013), BP4D Mavadati et al. (2013), CK+
Lucey et al. (2010), and MMI Pantic et al. (2005), the ultimate challenge arrives when faced
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with face images of new subjects and/or AUs that we wish to detect from their face images.
Usually, an AU detection model is trained for a number of available AU annotations. How-
ever, these models do not generalize well when tested on new tasks such as new subjects nor
can easily be adapted to new AUs, without a substantial number of ground truth labels. For
instance, to tackle this, several unsupervised re-learning approaches (e.g., Chu et al. (2016);
Wang and Wang (2018)) transferred the salient information of a new subject to the trained
model in order to have better prediction for a new subject. However, these approaches do
not use any labeled data from the new task (subject), and they typically require a lot of
data to adapt to a new task. Yet, in the real-life situations, the models that can easily and
in a fast way to the new tasks are required. Another challenge for existing AU detection
models is the imbalanced AU distribution. Many AUs have significantly more negative (no
AU activation) than positive (where the target AU is active) training examples. This easily
leads to highly biased models. More importantly, when the model needs be fine-tuned very
quickly, its adaptation is even more challenging due to this inherent imbalanced in the AU
data.

To tackle some of these challenges, this paper introduces a deep learning approach for
AU detection that can easily be adapted to new tasks (AUs and/or subjects) using the
notion of model-agnostic meta-learning C. Finn and Levine (2017). This approach is based
on the few-shot learning paradigm, designed to perform an efficient model adaptation using
only a few labelled examples of target tasks. This, in turn, can also be used to address the
challenge of imbalanced AU data by providing a few examples of positive/negative class
from the target tasks, which is typically not costly to obtain. The main contributions of
this paper can be summarized as follows:

• We propose a new approach for the AU detection where the model adaptation is
performed using the notion of model-agnostic meta-learning. Since this approach
uses only a few (balanced) shots of the target tasks during the model adaptation, it
naturally handles the challenge of model training when faced with highly imbalanced
data (as in the case of the AU activations).

• The proposed deep model for the AU detection can easily be adapted to a new subject
using only a few shots of target AUs of the target subject. The resulting personalized
model for the AU detection largely outperforms the non-personalized model.

• The proposed approach can easily be adapted for detection of AUs that were not used
to train the model. This is achieved using only a few shots (the positive/negative
examples) of the target AU in order to adapt the model parameters.

• The adaptation to the new task in the proposed approach is very fast, as it does not
require a heavy re-training of the deep network since only a few shots are used for
adaptation to (subject) or learning of (AUs) the new task.

10



Fast Adaptation of Deep Models for Facial Action Unit DetectionUsing Model-Agnostic Meta-Learning

Figure 1: BP4D Database

Figure 2: DISFA Database

Figure 3: The portion of the positive examples of each AU and for each subject in the two datasets
used in this paper. The evident and highly pronounced imbalance of these data is one of the factors
that make the task of learning models for facial AU detection challenging.

2. Related Work

This paper combines a deep facial AU detection model with the few-shot meta-learning for
fast model adaptation C. Finn and Levine (2017). In this section, we briefly review several
relevant works addressing these modeling tasks.

2.1. Facial Action Unit Detection Model

Most of the recent works on facial AU detection are based on deep convolutional networks.
For instance, Wei et al. Li et al. (2017a) leveraged an attention mechanism and combined
with individual regions of interest (ROIs) cropping as well as the temporal information
of expressions with several stacks of the LSTM models. Also, the multi-label learning
enabled them to learn relationships between various AUs. Shao et al. (2018) proposed
JAA-Net, which jointly learned both the AU detection and the corresponding best face
alignment for the AU, rather than fixing the alignment as a pre-processing step. Also,
they defined ROIs of AUs by having AU-specific local and global feature extractors based
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on hierarchical and multi-scale region layers with Deep Region and Multi-label Learning
(DRML) network proposed by Zhao et al. (2016) . All of these are jointly optimized to
facilitate the discovery of the salient local features for the AU detection. Similarly, Wei et
al. Li et al. (2017b) introduced Enhancing and Cropping (EAC) Net where E-net enhances
ROIs of the facial landmark features with attention map and c-net. These are designed for
the extraction of ”deeper” features using individual CNNs for each facial region through
facial regions cropping around the detected landmarks. However, this approach has a limited
generalization ability when applied to new subjects or a new AUs, which usually have data
distributions different from the training set.

To tackle the challenges of the data distribution shift, several approaches us the models
for domain adaptation and transfer learning. Can et al. Wang and Wang (2018) proposed
a generative adversarial recognition network (GARN) which adapts the model from the
source subjects to a target subject for personalized AU recognition in unsupervised way.
Likewise, Wen et al. Chu et al. (2016) attempted to personalize the facial AU analysis based
on SVMs. To match distribution between training and test subjects, Chu et al. (2016)
used the re-sampled training data that are most similar in distribution with that of a new
test subject, and those are used to re-train the target model in an unsupervised fashion.
They alternated between decision function and the selection coefficient by translating the
problem into a biconvex problem Gorski et al. (2007). Though both methods address the
AU detection problem without any test label, this method requires a lot of time to re-learn
the model for a specific test subject. Wang and Wang (2018) confines their adaptation to
the feature extraction level without using any labeled data and training again the feature
extractor with a new subject. In Zhang et al. (2018), the authors measure the discrepancy
between a new subject and training subjects to find the most similar distribution, and then
re-sample the most similar training subject in order to adapt their model to a new subject.

There have also been a few studies on learning the AU detection model without the AU
annotations. For instance, in a recent work, Zhang et al. (2018) proposed a method that
uses prior probabilities on AUs, obtained by leveraging the information about the facial
anatomy and emotion expressions. Though they achieved competitive results compared to
the supervised methods, their method needs auxiliary information to compensate for the
lack of the annotated data. However, this model has a limitation in cases when we have no
additional domain knowledge or we need to perform the model adaptation using only a few
data examples.

Different from the approaches mentioned above, this paper investigates the fast model
adaptation where the main assumption is that only a few labeled data is available for the
target task. Here, a new AU as well as a new subject are regarded as a new task.

2.2. A Few-Shot Learning

Few-shot learning is a general modeling framework for fast learning from rarely labeled
data. Considering the model is expected to learn and re as fast as possible, designing a
model that can be rapidly updated with only few labeled data is essential. However, it is
not easy to update the deep neural network with just few labeled samples for a new task
since the number of labeled data is insufficient to fine-tune it, which makes the model still
over-fitted to training tasks. To address this problem, many few-shot learning and even
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zero-shot learning studies such as Lee et al. (2017); Rios and Kavuluru (2018); Arora et al.
(2017) have been introduced. Zero-shot learning does not use any labeled data for a new
task but they requires side information such as relationship between seen and unseen task
or attribute of each task. Thus, it is also challenging to make such a semantic knowledge
as much as to label few samples.

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (MAML) C. Finn
and Levine (2017) introduced a model which is ready to go for fast adaptation with just few
labeled data based on gradient descent optimizer. MAML has the meta-learner who learns
the differences across training tasks as well as the learner who learns and optimize each of
tasks itself. Comparing other few-shot learning methods such as Ravi and Larochelle (2017)
which needs additional network as LSTM to train a classifier or Koch et al. (2015) which
obtains feature embedding with Siamese network and add non-parametric method for a new
task, MAML only need only one target network to train meta-learner and the learner as
described in Figure 6. Any model network can be used the one and only backbone network,
which makes it called model-agnostic.

Recently, Rudovic et al. (2019) suggested a personalisation method to estimate the en-
gagement level from videos with only few labeled data. They adopted Active Learning
policy from Woodward and Finn (2016) on their Reinforcement Learning model in order
to decide whether keeping estimation or asking new personalized labels from human anno-
tator given a new subject. This paper improves the efficiency for the use of labeled data
considering labeling cost.

Figure 4: Network architecture
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Figure 5: Sequence of learning network

Figure 6: Figure 4 is the backbone network used for the AU detection. Figure 5 is the sequence
of learning the backbone network in Figure 4. Each task-specific model (light yellow network) is
trained for each of training tasks according to a subject and AU. Based on per-task trained models,
the meta-learned model (red network) is obtained using the discrepancy across tasks. By adapting
the meta-learned model to a new task, the new task-specific model (dark yellow network) is achieved.
All of these networks have the same architecture as the the backbone network in Figure 4.

3. Methodology

As a meta-learning approach for the AU detection model, we adopt MAML C. Finn and
Levine (2017). The main idea of MAML is to initialize the weights of deep networks so
that it can be updated rapidly for a new task with just a few labeled samples. By adopting
MAML, the goal is to find a model that can be adapted quickly to a new task which can
be a new subject, a new AU, or both. The Sec. 3.1 describes the network architecture,
and the Sec. 3.2 details how we apply the MAML to the AU detection model. Lastly, the
Sec. 3.3 describes the baseline approach, i.e., when no benefit of meta-learning is made for
adaptation.

3.1. Model Network

Before passing through our own network, input images are pre-processed with Deepfakes Deep-
fakes to extract and crop the face region. The proposed deep network applied to the pre-
processed face images is illustrated in Figure 6. The encoder consists of 4 modules with 64,
48, 32, and 16 filters of 5 convolutions, respectively, followed by the batch normalization,
ReLU, and max-pooling layers. This is further followed by a fully-connected (FC) layer and
a sigmoid function, used to train the detectors for the target AU. Note that the proposed
detector is designed for detecting only one AU at the time, which is consequently adapted
for the detection of a new target AU using the meta-learning as explained below.
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Algorithm 1 MAML: Training phase

1: Input: p(T ), distribution over tasks
2: Require: α, β step size hyper parameters
3: Init: θ randomly repeat

until
4: ;

Sample tasks Ti p(T ) for i= 1, . . . , |T |
5: Create few-shot sample set DTi

= DTi
[tr] ∪DTi

[trv] for i= 1, . . . , |T |
6: for i=1,. . . ,|T |
7: Evaluate LTi

using θ and DTi
[tr]

8: Update θi = θ − α∇θLTi

9: Evaluate LTi
using updated θi and DTi

[trv]

10: end for

11: θ ← θ − β∇θ
|T |∑
i=1

LTi

12: convergence
13: Output: θ

Figure 7: Meta-learning model in training phase.
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Figure 8: Adaptation in test phase.

Figure 9: (Figure 7 is the per-task learning and meta-learning during the model training phase. Any
subject and AU can be considered a task except for one subject in our leave-one-subject-out setting
(for example, in this figure, the F019 from the BP4D dataset). The same tasks but different instances
are used in each of per-task update and meta-update. After the meta-parameter θ is updated as the
per-task θi for each task, each of these are used to compute the second loss from DTi [trv]. The
losses are summed up across all tasks to obtain the new meta-updated parameter θ. Figure 8 is the
adaptation phase. In our leave-one-subject-out setting, we leave all AUs of the one left subject as
test tasks. Figure 8 An example of AU24 of F019 – after the few-shot learning of the new given task,
our model adapt its meta-parameter best fitted for that task so that it can make better predictions
of the target AU.

3.2. Meta-Learned Facial AU Detection Model

Model-Agnostic Meta-Learning(MAML) C. Finn and Levine (2017) is gradient-based meta-
learning for multiple different tasks with few-shot learning. Figure 6 (b) illustrates the
overall sequence of training our model based on MAML. Each task-specific model (light
yellow network) is trained for each of training tasks, which corresponds to Alg. 1 (lines
7–11). Those per-task trained parameters are aggregated to train the meta-learned model
which is the red network. This whole meta-learning procedure is from line 4–12 in Alg. 1.
After having the optimal meta-learned model (red network), by adapting it to a new task,
the new task-specific model (dark yellow network) is obtained. More detailed training and
adaptation architecture can be found in Figure 9. Though we used a simple network depicted
in Figure 6, any model can be assembled in Figure 6 sequence which is model-agnostic. In
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the following, we explain in more detail how the per-task learning and meta-learning are
implemented.

3.2.1. Per-task Learning

Per-task learning can be seen as the traditional learning approach: choosing a backbone
model for the target dataset, and training the model to be best fitted for each training
task of the dataset. The difference with other methods is that we divide our training set
into tasks according to a subject and AU, and train each of them separately as shown in
Figure 9 whereas other methods use the whole training set to train their model. Alg. 1
describes per-task learning in line 7 to 11. Given the objective function L, the per-task loss
is computed using DTi [tr], which denotes a batch of training data for task Ti. Based on the
obtained loss, the initial weight θ is updated into θi, which is the optimal learned weight
for the target task Ti.

θi = θ − α∇θLTi (1)

3.2.2. Meta-learning

Our goal is to learn the optimal meta-weight that can quickly be adapted to a new task
in test time. To do so, in meta-learning phase, the model learns the discrepancy across
all learned per-task models. Based on every optimal θi from per-task learning, the loss is
re-computed. This is shown on line 10 of Alg. 1 and illustrated in Meta-update part of
Figure 9. To achieve this, we need another set of training data of each task, which is a
disjoint set DTi [tr] so that this another set can play a role of validation set for the new loss.
It should be noted that this validation set is still from the same training task. We denote
DTi [trv] as training-validation set in each training task Ti. The re-computed loss across all
tasks is summed up and based on this total loss, we obtain the meta-updated θ.

θ ← θ − β∇θ
|T |∑
i=1

LTi (2)

Note that the goal of the training phase is to output θ that can be fast adapted to a
new task, not to output θi for each of training tasks Ti. In adaptation phase, initialized by
the trained θ, the model can reach to the optimal θj quickly for a new task Tj .

In summary, the model minimizes the discrepancy across different tasks with meta-
learning as well as the individual loss for each task with per-task learning. Our model
defines each AU and subject as a task. Thus, in training phase, it learns how to adapt fast
across the different subjects and AUs. After then, given a new task with few labeled data,
it can be rapidly customized to the new task. One notable part is that we have only one
classifier for any AU as well as any subject. By having this architecture, 1) we can increase
the number of tasks to learn the discrepancy, 2) the task distribution can have higher
variance which makes the model learn meaningful diversity in terms of meta-learning, and
3) our model can be adapted fast both to new AU and new subject. The objective function
LTi in Eq. 1 and 2 is cross-entropy loss for binary classification in our model.

LTi = yTi log σ(xTi ; θTi) + (1− yTi)(1− log σ(xTi ; θTi)) (3)
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3.3. Baseline

To verify that the rapid and effective adaptation to a new task comes from the meta-learned
knowledge, we need a baseline which has no ability of meta-perception. To make such a
model, multi -tasks concept should be excluded in meta-update phase. In other words,
the same network as ours but standard deep learning process with only one task. More
importantly, since our model has only one classifier which can be adapted to any AU as well
as any subject, the baseline should be also a model with just one classifier for all available
tasks. However, existing approaches use a customized classifier for each AU, which makes
them improper as the baseline for our adaptation setting. Thus, we build our own baseline
model with one classifier for the whole training set without the task separation. We set
a label as negative if none of training AUs is detected in the given sample, and positive
otherwise. In other words, a sample is labeled as positive as long as at least one of AU is
detected. After training, the same adaptation methodology as in our model is applied to
the baseline for comparison.

4. Experiments

4.1. Datasets and Tasks

We have evaluated our model on two benchmark facial AU datasets - DISFA Mavadati et al.
(2013) and BP4D Mavadati et al. (2013).

4.1.1. BP4D

This dataset consists of data of 41 subjects (23 females and 18 males). For each subject,
there are 2-D and 3-D videos (we use only the former) of 8 sessions, where some of frames
are positive or negative annotation per AU. The total number of valid frames with label
is 140K. As in Shao et al. (2018), Li et al. (2017a), Li et al. (2017b), we also limited the
number of AUs to 12 AUs consisting of AU1, AU2, AU4, AU6, AU7, AU10, AU12, AU14,
AU15, AU17, AU23 and AU24.

4.1.2. DISFA

This dataset consists of data of 27 subjects (12 females and 15 males). Each subject has
a video of 4,845 frames where each of the frames has 0–5 intensity per AU. As in Shao
et al. (2018), Li et al. (2017a), Li et al. (2017b), we also limited the number of AUs as
8 AUs consisting of AU1, AU2, AU4, AU6, AU9, AU12, AU25 and AU26. Since our
model needs the balanced positive and negative sample ratio, in order to maximize positive
labeled samples, any intensity larger than 0 is regarded as positive. We have conducted two
experiments on DISFA. One is the standard setting as training with training set of DISFA
followed by adapting and evaluating with test set of DISFA. Another is training with whole
BP4D and then adapt and evaluate with DISFA in order to see how a new AU is rapidly
learned in our model as well as to see more distinct subject-adaptation result.
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4.1.3. Task

In each dataset, combinations of the above elaborated subjects and AUs are regarded as a
task in our model. For learning, it is crucial to have as many tasks as possible considering
the meta-knowledge comes from learning discrepancy across different tasks. Thus, as in
Wang and Wang (2018), by adopting leave-one-subject-out cross validation, we increased
the number of tasks. Thus, in BP4D, we have 12 AUs × 39 subjects = 468 different tasks
in training. In DISFA, 8 AUs × 26 = 208 tasks. And the last subject’s all AUs are adapted
and evaluated per-task.

As described in Sec. 3.2, there are two learning stages: 1) training with sets DT [tr] and
DT [trv], and 2)adaptation with sets DT [te] and DT [tea], where DT [tea] denotes the labeled
test data used to adapt to the test task, and DT [te] denotes unlabeled data used for the
model evaluation.

4.1.4. Per-task sampling

When sampling a set of batch data, it is crucial to keep balanced positive and negative
pairs of samples in order to prevent biased learning, adaptation, and evaluation. However,
as seen in Figure ?? (a), negative samples are dominant. To address this issue, we repeatedly
used the positive samples with small batch size that comes from few-shot learning. During
training, we need to select balanced N-positive and N-negative samples, denoted by (N+,
N-). It is required to have one set of (N+, N-) for D[tr] and another exclusive set of (N+,
N-) for D[trv] per one task, total 4N labeled samples. We set N = 5 for training no matter
how many few-shot learning we do during test phase since we can assume and indeed have
enough labeled training data.

On the other hand, in adaptation phase, we only need one set of labeled samples (K+,
K-) for D[tea] since we do not have to do meta-update but only per-task update is required.
Here, K varies depending on how many labeled data we can have for the given new task.
Unlabeled test data D[te] is used to evaluate the performance after adaptation.

4.1.5. Balancing samples per-task

For some AUs, there are very few positive labels, which makes it difficult to create balanced
pair when it is less than N or K. In such a case, we can think of two strategies - skip
that task or replace the insufficient portion of positive samples with negative samples. For
training phase, we adopt skipping the task. This is because 1) under the K = 5 shot
training, we miss only two tasks in BP4D and 13 tasks in DISFA from the total of 468 and
208 total tasks respectively, and 2) those skipped tasks can be learned and covered in some
degree from another AU or subject. For instance, assume a task consisting of AU1 and
subject 1 is omitted. Though AU1 is missed out of subject 1, our model can still exploit the
data of other subjects’ AU1 properties. Also, the subject 1’s personalized features could be
achieved from other tasks (subject 1 but other AUs combination). In test time, however,
the lack of positive samples are filled with negative samples since there is no other task but
the target task. For example, each of D[tea] and D[te] have ((K-m)+, (K+m)-) pair when
only K-m, which is less than K, positive samples are available.
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AU
1shot 5shot

base ours base ours

AU1 0.57 0.6 0.59 0.71
AU2 0.59 0.61 0.62 0.72
AU4 0.58 0.61 0.63 0.74
AU6 0.71 0.71 0.74 0.81
AU7 0.67 0.67 0.69 0.75
AU10 0.72 0.73 0.75 0.83
AU12 0.75 0.77 0.78 0.86
AU14 0.61 0.61 0.61 0.7
AU15 0.59 0.64 0.6 0.73
AU17 0.56 0.62 0.56 0.71
AU23 0.56 0.62 0.57 0.72
AU24 0.56 0.67 0.58 0.8
AVG 0.62 0.66 0.64 0.76

Table 1: Averaged accuracy across subjects reported per AU on BP4D. The results are after the
adaptation with 5 gradient steps.

AU
1shot 5shot

base ours base ours

AU1 0.64 0.68 0.66 0.74
AU2 0.69 0.74 0.7 0.8
AU4 0.61 0.65 0.62 0.72
AU6 0.77 0.8 0.8 0.87
AU9 0.77 0.81 0.8 0.88
AU12 0.72 0.76 0.75 0.83
AU25 0.73 0.73 0.75 0.79
AU26 0.68 0.69 0.71 0.75
AVG 0.7 0.73 0.72 0.8

Table 2: Averaged accuracy across subjects reported per AU on DISFA. The results are after the
adaptation with 5 gradient steps.

4.2. Experimental Setting

4.2.1. Implementation Details

When we apply meta-update to compute θ, we need to aggregate all different tasks, where
the number of tasks should be concerned. We chose 12 tasks for BP4D and 8 tasks for
DISFA. This number is set according to the total number of AUs in each dataset, as de-
scribed in Sec. 4.1. We implemented our experiments with K = 1, or 5 shot learning. In
other words, we adapt our trained model with 1-shot (1+, 1-) or 5-shot (5+,5-) samples
of a new task in test time, as these are easy to obtain in the real-world settings. Adam
optimizer was used with learning rate 0.03 for both α and β in Alg. 1
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4.2.2. Evaluation Method

As described in Sec. 4.2, a set of few-shot samples D[tea] is used for adaptation. After
that, we evaluate the adapted model with another balanced set D[te], which consists of
10 positive and 10 negative samples (used only for the model evaluation). We repeat this
K-shot adaptation and 10-shot evaluation for 500 times and average all results. If D[te]
cannot be formulated in completely balanced way because of lack of positive samples, we
replace the deficient positive samples with negative samples as described in Sec. 4.2. Since
we use a balanced set for evaluation, we report accuracy as our evaluation metric.

Figure 10: Averaged ACC across subjects per AU
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Figure 11: Averaged ACC across AUs per subject

Figure 12: Analysis of the adaptation for the BP4D and DISFA datasets. For both Figure 10
and Figure 11, results are after adaptation with 5-shot and 5 gradient steps. Figure 11 shows the
averaged accuracy across all subjects per AU (BP4D at the top, and DISFA at the bottom). The
proposed approach (ours) achieves better accuracy than the baseline on all AUs, as expected. Figure
12 is the averaged accuracy across all AUs per subject in each dataset (BP4D at the top, and DISFA
at the bottom). The averaged accuracy of the baseline is illustrated by the blue bar. The yellow
bar above the blue bar indicates the increase of the averaged accuracy by using our model.

4.3. Adaptation to New Subjects - Personalisation

For a new subject as a new task, while all AUs are used during training, we can regard
our model as a personalized model since it is adapted and optimized for the newly given
subject. The performance on BP4D dataset is shown in Table 1. During training, all BP4D
subjects except for one subject is trained. And then in adaptation, the one left BP4D
subject is tested. After this leave-one-subject-out experiment is done for every subject,
results are averaged across all the subjects per each AU. Table 2 shows the result of DISFA
dataset with the same protocol as in BP4D. The corresponding graph of each dataset can
be checked in Figure 12. On average, our model outperforms the baseline in both 1-shot
and 5-shot learning for each of two datasets, as expected. One notable part is that by
increasing the number of test samples from 1-shot to 5-shot, the gap between ours and
baseline becomes more significant. In other words, as more samples are given, the more
boosted meta-learned effects we can have. It can be interpreted as our model does know
better than baseline on how well utilizing given labeled samples of a new task through the
meta-learning knowledge. The same experiments but the result averaged across all AUs
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AU
1shot 5shot

base ours base ours

AU1 0.64 0.67 0.64 0.77
AU2 0.69 0.74 0.71 0.82
AU4 0.59 0.65 0.58 0.75
AU6 0.78 0.79 0.82 0.87
AU9 0.75 0.79 0.78 0.87
AU12 0.74 0.75 0.77 0.82
AU25 0.67 0.67 0.68 0.75
AU26 0.64 0.65 0.65 0.73
AVG 0.69 0.71 0.7 0.8

Table 3: Averaged accuracy per AU across all leave-out-out test subjects on DISFA. Results are
after adaptation with 5 gradient steps from the BP4D-trained model.

Figure 13: Averaged ACC across subjects per AU

are shown in Figure 12. For majority of subjects, our model achieves higher accuracy on
averaged AU detection performance.
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Figure 14: ACC change according to the number of gradient step

Figure 15: Analysis on domain transfer from BP4D to DISFA. In Figure 13, the accuracy [in %]
is averaged across subjects per AU, adapted and evaluated on DISFA from three different trained
models; BP4D baseline (grey), our BP4D (red), and our DISFA (blue). Figure 14 illustrates how
accuracy changes according to the number of the gradient steps. The accuracy is averaged across
AUs/subjects.

4.4. Adaptation to New AUs - Domain Adaptation

Even a completely new AU can quickly be learned with our meta-trained classifier since we
treat an AU as a task in the training. We verified this by training the model with BP4D
and adapting it with DISFA. AU9, 25, and 26, which exist only in DISFA not in BP4D, are
used as a new AU in test time. As well as the performance of adaptation on new AU, this
experiment can show how well our model can work for domain adaptation since we transfer
our dataset from BP4D in training time into DISFA during test time. Both baseline and
ours are trained with BP4D and then, 1 or 5-shot DISFA data is injected for adaptation.
Since the whole DISFA dataset can be seen as a new task, all tasks from BP4D can be used
during training. In other words, no leave-one-subject-out cross validation is needed as in
Adaptation to New Subjects. Table 3 reports that ours outperforms baseline with the same
pattern as in Adaptation to New Subjects where 5-shot shows more substantial difference
with baseline than 1-shot.

To check the effects of domain adaptation (in our case, the cross-dataset adaptation),
Figure 15 (a) illustrates comparison with DISFA-trained model of which training and test
subject is from DISFA under leave-one-subject-out cross validation. For AU1, 2, and 4 which
are co-existing AUs in both of datasets, our BP4D-trained model shows better accuracy than
our DISFA-trained model. This is because BP4D has more training tasks than DISFA, from
which our model can learn more meta-information in order to adapt well. For AU9, 25, and
26, which are new AUs to BP4D, our BP4D-trained model can achieve almost the same
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performance as our DISFA-trained model. In conclusion, considering average accuracy of
our BP4D is same as that of our DISFA, our model outperforms in few-shot domain transfer
learning. For some common AUs (AU1, 2, and 4), our BP4D can almost beat our DISFA for
completely previously unseen labels of AUs (AU9, AU25, and AU26), which is an evidence
of creating one powerful base classifier to make a baseline prediction for any AU.

Figure 15 (b) shows the BP4D-trained model and BP4D-trained baseline’s improvements
in relation to the number of gradient step for each of 1 and 5 shot adaptation. Our approach
accomplishes larger improvement than the baseline with both few-shot adaptations. Also,
our model shows better accuracy overall in 5 shot rather than in 1 shot whereas baseline
has almost no difference between 1 shot and 5-shot. This implies that our meta-learning
knowledge makes it possible to leverage few-shot samples more efficiently for adaptation
than the baseline. In addition, with just one gradient step, our model shows steep increase
in accuracy though it can keep improving with more steps. This evidences that our model
is trained in a way that enables to adapt very fast to a new task.

5. Conclusion

In this paper, we introduced a meta-learning approach for facial AU detection that can
quickly adapt to new subjects or AUs. The main idea of this approach is that by optimizing
the model prepared for adaptation rather than optimizing it fitted on specific task. We
showed that this approach can fully utilize a few labeled data of a new task to learn the
new task as well as largely improve the performance by just one gradient update. In the
future work, we will devise appropriate evaluation way to make comparison with other
related works on domain adaptation and transfer learning, applicable to the task of AU
detection.
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