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Abstract

This paper proposes a Convolutional Neural Network (CNN) inspired by Multitask Learn-
ing (MTL) and based on speech features trained under the joint supervision of softmax
loss and center loss, a powerful metric learning strategy, for the recognition of emotion
in speech. Speech features such as Spectrograms and Mel-frequency Cepstral Coefficients
(MFCCs) help retain emotion related low-level characteristics in speech. We experimented
with several Deep Neural Network (DNN) architectures that take in speech features as input
and trained them under both softmax and center loss, which resulted in highly discrim-
inative features ideal for Speech Emotion Recognition (SER). Our networks also employ
a regularizing effect by simultaneously performing the auxiliary task of reconstructing the
input speech features. This sharing of representations among related tasks enables our net-
work to better generalize the original task of SER. Some of our proposed networks contain
far fewer parameters when compared to state-of-the-art architectures. We used the Uni-
versity of Southern California’s Interactive Emotional Motion Capture (USC-IEMOCAP)
database in this work. Our best performing model achieves a 3.1% improvement in overall
accuracy and a 5.3% improvement in class accuracy when compared to existing state-of-
the-art methods.

Keywords: Spectrogram, MFCC, speech emotion recognition, multitask learning, center
loss

1. Introduction

Standard procedure in a majority of Natural Language Processing (NLP) solutions such as
voice activated systems, chatbots etc., is to first convert speech input to text using Auto-
matic Speech Recognition (ASR) systems and then apply NLP techniques to understand the
said text Seide et al. (2011). Human-computer interaction gets better as computers improve
in predicting the current emotional state of the human speaker Imrie and Bednar (2013),
in order to be capable of distinguishing between different contextual meanings of the same
word. ASR resolves variations in speech from different users using probabilistic acoustic and
language models Hinton et al. (2012), which results in speech transcriptions being speaker
independent. This might be good enough for most applications, but is an undesired result
for systems which rely on knowing the intended emotion to function correctly.
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Since the last decade, Deep Learning techniques have contributed significant break-
throughs in Natural Language Understanding (NLU). Deep Belief Networks (DBN) for
SER, proposed by Kim et al. (2013) and Zheng et al. (2014), showed a significant improve-
ment over baseline models Jin et al. (2015); Ververidis and Kotropoulos (2008); Mao et al.
(2009); Ntalampiras and Fakotakis (2011); Hu et al. (2007); Neiberg et al. (2006); Wu and
Liang (2011) that do not employ deep learning, which suggests that high-order non-linear
relationships are better equipped for emotion recognition. Chernykh and Prikhodko (2017)
trained DNNs on a sequence of acoustic features calculated over small speech intervals
along with a probabilistic-natured CTC Loss function, which allowed the consideration of
long utterances containing both emotional and unemotional parts and improved recogni-
tion accuracies. Lee and Tashev (2015) used a Bi-directional LSTM model to train feature
sequences and achieved an emotion recognition accuracy of 62.8% on the IEMOCAP Busso
et al. (2008) dataset, which is a significant improvement over DNN-ELM Han et al. (2014).
Satt et al. (2017) used deep CNNs in combination with LSTMs to achieve better results
on the IEMOCAP dataset. Our previous paper Yenigalla et al. (2018) substituted speech
transcriptions with phoneme sequences and spectrograms, retaining more of the emotion
content in speech and beating the previous state-of-the-art results.

Yadav and Rai (2018) proposed very deep VGG CNNs trained under the joint super-
vision of softmax and center loss to obtain highly discriminative deep features and deliver
highly in inter-class segregation and intra-class compactness, ideal for Speaker Identification
and Verification tasks. Liebel and Körner (2018); Ruder (2017) have employed the powerful
regularization technique of MTL in speech, language and vision related tasks to provide the
network with an inductive bias, leading to a preference for model hypotheses that general-
izes across different tasks. The IEMOCAP Busso et al. (2008) experimental dataset used in
this work suffers from class imbalance. The emotion Neutral covers almost half the data set,
and the number of training samples per class is also restricted. Training a model with such
data requires it to not only learn highly discriminative deep features from a limited dataset
but also be general enough to identify emotion in new unheard speech inputs, as otherwise
the models tend to overfit. To overcome these problems, in this paper, we have extended
our work from Yenigalla et al. (2018) to use parallel CNNs with center loss, regularized
by an auxiliary task. As deep networks tend to overfit Srivastava et al. (2014) we have
employed the use of parallel CNNs, thus extending the network in width without increasing
computational costs. While we also considered contrastive loss Chen and Salman (2011)
and triplet loss Bredin (2017) for this work, both result in a substantial increase in data
size as they group inputs into pairs and triplets respectively, whereas center loss adds no
significant overhead to the training process. We have introduced an autoencoder inspired
auxiliary task into our work with an aim to learn a representation as close as possible to the
input speech feature. The idea here is that if the network simultaneously performs more
than one task it will need to learn a representation that captures all tasks, thus reducing
the odds of overfitting on the original task of SER.

2. Proposed Methods

In this paper we consider speech features such as spectrogram and MFCC, which provide
a deep neural network the necessary low level features required to accurately distinguish

45



Emotion Recognition

Figure 1: Model architecture

among different emotions. Experiments have been performed to show the effectiveness of
center loss in generating intra-class compactness. Steps such as widening the network with
the use of parallel CNNs and performing an auxiliary task to regularize the training process
have also been taken to mitigate overfitting and achieve accuracies greater than existing
state-of-the-art methods.

2.1. Model Architecture

2D filters in CNNs help capture 2D feature maps in a given input. Spectrogram and MFCC,
which are representations of speech over time and frequency, contain additional information
not available in just text, thus giving us further capabilities in our attempts to improve
emotion recognition.

Figure 1 details the shared 2D CNN architecture which takes in speech features as inputs.
The architecture is an extension of our previous work on SER Yenigalla et al. (2018). 200
2D kernels are used for each of the 4 parallel convolution paths. These number of kernels
and parallel CNN paths were observed to be optimal based on results on the validation
data. Figuring out the optimal kernel size is a difficult and time taking task, which may
depend on several factors all which cannot be clearly defined. To prevent choosing one
single kernel size that could possibly be sub-optimal we decided to use kernels of different
sizes, each of which is fixed for a single parallel path, to take advantage of the different
patterns picked up by each kernel. The sizes of each of the 4 kernels in their respective
parallel CNN paths are 4 x 6, 6 x 8, 8 x 10 and 10 x 12. These dimensions were also chosen
after extensive experimentation and analysis of results on validation data. The features
generated in the said convolution layers are then fed to their respective max-pool layers,
which extracts 200 x 4 features from each parallel convolution path as the pool size is
exactly half along the width and height of the convolution output. The extracted features
are flattened, concatenated and then fed to two independent Fully Connected (FC) layers,
which utilize Batch normalization.
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We experimented with dropout rates varying between 25% and 75% for both the FC
layers. The activation function used in the convolutional and FC layers is the Rectified
Linear Unit (ReLU). These 2 FC layers are independently turned on and off based on the
configuration of the network being trained, whereas the architecture prior to the FC layers
are shared. The upper independent FC layer feeds its output to the Mean Square Error
(MSE) loss (Decoder) layer when performing the auxiliary task, whereas the lower one feeds
it to the softmax and center loss layers. The upper decoder layer consists of even more FC
layers and a final output layer, which is dimensionally same as the input, producing the
reconstructed speech features. The sigmoid activation function is applied to this output
layer. MSE, relative to the input, is used here to calculate reconstruction loss. The softmax
layer represents the output layer where each node represents one of the four emotion classes.
Both softmax activation and cross-entropy loss functions are applied to this softmax layer.
The center loss layer attempts to reduce intra-class separation. The different loss layers from
which the gradients are back-propagated are configured based on the network. “Adadelta”
optimization technique is used during training.

2.2. Feature Extraction

As the length of the utterances in the IEMOCAP dataset vary, we decided to limit its
duration to 6 seconds (75th percentile of all audio lengths). Utterances shorter than 6
seconds are zero-padded.

The presented models in this paper use spectrogram and MFCC as input to a 2D CNN.
We used the ”librosa” python package to compute the spectrogram and cepstral coefficients.
As speech signals in the IEMOCAP corpus are sampled at 16 KHz, the sampling rate for
spectrogram generation was also set to 16 KHz. Length of the “hann” and Fast Fourier
Transform (FFT) windows is set to 2048, while the hop-length of the Short Term Fourier
Transform (STFT) is set to 512. The Librosa python package then maps the obtained
spectrogram magnitudes to the mel-scale to get mel-spectrograms. The hyper parameters
and the python package used for MFCC generation are similar to the ones described above
for spectrogram. These speech features are mel-scaled, putting emphasis on the lower
end of the frequency spectrum over the higher ones, thus imitating the perceptual hearing
capabilities of humans. 128 and 40 coefficients per window were generated for spectrogram
and MFCC respectively. The input shapes of both spectrograms and MFCC were fixed on
to after extensive experimentation, analysis of results on validation data and fine-tuning
during the training process.

2.3. Joint Supervision

Center loss, which is widely used in face recognition tasks and known to minimize intra-
class variations while maintaining separation between features of different classes, is used
along with softmax loss during training. Center loss was preferred over its peers such as
contrastive loss and triplet loss as it had the minimum overhead. Center loss is formulated
as:

LC =
1

2

n∑
i=1

f(xi)− cyi
2 (1)
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where f(xi) denotes the deep feature extracted from the last hidden layer and cyi ∈ Rd

denotes the ythi class center of deep features. As both softmax and center losses have jointly
supervised the training process, the joint loss function is written as:

L = LS + λ1 ∗ LC (2)

where LS and LC represent softmax and center loss respectively and λ1 represents the
balance factor between the two. Different values in the range 0.001 to 5 were applied to λ1,
the best results being achieved at a value of 4.

2.4. Reconstruction as Regularizer

When training a model for any task, the aim is to learn a good representation, which ideally
is able to separate important information from data-dependent noise and also generalize
well. Training for a single task increases the risk of overfitting to that task, whereas a
model that trains on multiple related tasks simultaneously is able to learn better features
by averaging the different noise patterns among all tasks. The secondary task in our work
is inspired by an autoencoder and aims to reconstruct the input speech feature. It works
towards minimizing the sum of the squared differences between the outputs of the logistic
units and the input pixel intensities. This joint loss function, supervised by both softmax
loss and the auxiliary task’s “reconstruction loss” can be represented as:

L = LS + λ2 ∗ LA (3)

where LS and LA represents softmax loss and MSE respectively. The loss function for
the model that performs the auxiliary task in addition to being jointly supervised by both
softmax and center loss can be represented as:

L = LS + λ1 ∗ LC + λ2 ∗ LA (4)

with both λ1 and λ2 being fine-tuned during the training process. The task of re-
constructing the input speech feature was chosen to be the auxiliary task as, intuitively,
the network would benefit from encoding important patterns present in the input speech
feature, thus introducing an inductive bias, causing the model to capture a more general
representation of our main SER task.

3. Dataset

We used USC’s IEMOCAP Busso et al. (2008) database in this work. The IEMOCAP
corpus comprises of five sessions where each session includes the conversation between two
people, in both scripted and improvised topics and their corresponding labeled speech text.
Each session is acted upon and voiced by both male and female voices and is without
any speaker overlap among different sessions. Being consistent with prior research, only
improvised data is used in this work as scripted text shows strong correlation with labeled
emotions and can lead to lingual content learning, which can be an undesired side effect.
While performing 5-fold cross validation, the data from 4 sessions is used for training in
each fold. The data from the 5th session is split so as to use one speaker for validation
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while the other for accuracy testing. In our experiments, we have considered only 4 of them
(Anger, Happiness, Sadness and Neutral) so as to remain consistent with earlier research.
The final experimental dataset extracted from the original IEMOCAP data comprised of
4 classes named Neutral (48.8% of the total dataset), Happiness (12.3%), Sadness (26.9%)
and Anger (12%). As there is data imbalance between different emotional classes we present
our results on overall accuracy and average class accuracy.

4. Discussion

In congruence with previous research efforts, we show the effectiveness of the proposed
methods for emotion detection with our benchmark results on IEMOCAP dataset. In
Table 1 we present our 5-fold cross-validation experimental results. Both overall and class
accuracies are presented for better comparison, where overall accuracy is measured based
on total counts irrespective of classes and class accuracy is the mean of accuracies achieved
in each class.

Table 1: Comparison of model accuracies (*S = Softmax Loss, A = MSE (Auxiliary task),
C = Center Loss)

Model Input Overall Accuracy Class Accuracy
Lee and Tashev (2015) Spectrogram 62.8 63.9
Satt et al. (2017) Spectrogram 68.8 59.4
Yenigalla et al. (2018) Spectrogram 71.2 61.9
S MFCC 70.5 61.2
S+A MFCC 72.9 65.4
S+C MFCC 73.4 66.1
S+A+C MFCC 74.1 66.7
S Spectrogram 71.2 61.9
S+A Spectrogram 73.1 65.2
S+C Spectrogram 73.6 66.5
S+A+C Spectrogram 74.3 67.2

Table 1 provides the results achieved on the SER task. We experimented with models
that work with different combinations of softmax loss, center loss and auxiliary task based
loss (MSE), which take in either spectrogram a or MFCC as input. Compared to the
softmax only model we achieved better results with the addition of center loss and/or
auxiliary task. We observed improvements in the S+A models as the introduction of the
secondary task as a regularization method led to better SER accuracies. The same was
observed with S+C, proving that targeting improvement in intra-class compactness led to
improved discriminative abilities of deep features. Our best performing S+A+C models
beat the state-of-the-art Yenigalla et al. (2018) accuracies with the spectrogram based
model outperforming by 3.1% for overall accuracy and 5.3% for class accuracy. L1 variation
of equation (1) was also experimented with to achieve similar accuracies. To show the
effectiveness of using center loss to create intra-class compaction, we have carried out a
qualitative experiment where we visualize and compare 2D t-SNE Maaten and Hinton (2008)
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(a) (b)

Figure 2: (Spectrogram Input): Softmax only vs Softmax + Center Loss

(a) (b)

Figure 3: (MFCC Input): Softmax only vs Softmax + Center Loss

projections of randomly selected 250 points from each of the 4 classes (Anger, Happiness,
Sadness and Neutral) using the IEMOCAP dataset. These data points are extracted from
the last hidden layers of the S only and S+C models for both spectrogram and MFCC. These
embeddings were taken after training both the models for the same number of epochs.

In Figure 2 and 3, we can see that models trained under softmax loss only had their
embeddings scattered. Although fairly distinct structures can be observed, the separation
between classes is not clear enough and some overlap can also be seen among the different
classes except Happiness. On the other hand, the images representing the jointly supervised
models (Models S+C for spectrogram and MFCC) show compact and distinct clusters
proving the intuition behind using center loss to reduce intra-class separation. The number
of parameters in our state-of-the-art beating S+C models is 0.26 million compared to 0.69
million in Satt et al. (2017) reducing the parameter size by 62%, thus also making our
networks lighter with respect to memory requirements.

As the data used in this work suffers from class imbalance and is also limited in size,
it is important to make sure the model doesn’t overfit the training data. To encourage
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the model to learn a more generalized set of features, we have introduced the autoencoder
inspired auxiliary task of reconstructing an as close as possible representation of the input
speech feature. This secondary task is performed in addition to joint supervision by softmax
and center loss. During training, this secondary task uses the input speech feature as the
reconstruction target and attempts to minimize the MSE between the input to the CNN
network and the output of the sigmoid layer. As the output of the sigmoid layer is always
between 0 and 1 we scale down the values of the input speech feature to also lie between 0
and 1. This application of auxiliary task along with joint supervision by softmax and center
loss helps achieve superior performance compared to S+C only models.

Table 2: MSE on auxiliary task of input reconstruction with different model configurations
(trained for same number of epochs)

Model Input MSE (10−4)
A MFCC 21.32
S+A MFCC 03.62
S+A+C MFCC 03.47
A Spectrogram 18.31
S+A Spectrogram 03.23
S+A+C Spectrogram 03.29

Table 2 shows the performance of the auxiliary task of reconstructing the input speech
feature for different configurations of the network on the test set. Relative to the network
which simply tries to reconstruct the input, A only, a clear improvement in loss can be seen
in networks which also perform SER with softmax and center loss, suggesting that this joint
supervision has also positively affected the performance of the auxiliary task.

5. Conclusion

In this paper we have proposed a CNN based architecture that works with speech fea-
tures and is trained under the joint supervision of softmax loss and center loss, while also
performing the auxiliary task of input speech feature reconstruction. We achieved greater
inter-class separation and intra-class compactness by introducing center loss to the learning
process, which to the best of our knowledge has not been used in SER tasks. The addition of
an auxiliary task to the learning process helped regularize the model, generating even more
general deep features and further improving SER accuracies. Our proposed S+C model is
significantly smaller ( 62%) with respect to the number of parameters it contains when com-
pared to state-of-the-art architecture in Satt et al. (2017), while our S+A+C (spectrogram)
model outperforms the benchmark results by over 3% and 5% for overall and class accura-
cies respectively. When tested in live scenarios our model’s inference time was around 30
micro-seconds suggesting that the proposed model can be used for real-time emotion related
applications such as conversational chat-bots, social robots etc., where identifying emotion
and sentiment hidden in speech may play a role in better conversation.
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