
Bayesian Online Prediction of Change Points (Supplementary Material)

We provide detailed descriptions of the algorithms used within the proposed framework together with improved
visualizations of the plots for the sake of clarity. Note that the presented plots can be reproduced using Python and
following the instructions given in the software repository1 (README file).

Parameters :Hazard function H(·).
Observation model prior hyperparameters Θprior.

for each new observation yt do
for rt = 0, . . . , R do

πt(rt) = p(yt|Θrt
t−1) . Compute p(yt|rt,Yrt) using sufficient statistics

for rt = 1, . . . , R do
αt(rt) = (1−H(rt − 1)) ∗ πt(rt) ∗ γt−1(rt − 1) . Compute growth probabilities

αt(0) = 0
for rt = 0, . . . , R do

αt(0) = αt(0) +H(rt) ∗ πt(0) ∗ γt−1(rt) . Compute change point probabilities
Θ0

t = Θprior

for rt = 1, . . . , R do
Update Θrt

t based on Θrt−1
t−1 and yt . Update observation model sufficient statistics

et = 0
for rt = 0, . . . , R do

et = et + αt(rt) . et = p(yt|Y1:t−1) normalizes αt(rt)

output γt(rt) = αt(rt)/et . denotes the run length posterior γt(rt) = p(rt|Y1:t)

Algorithm 1: Bayesian Online Change Point Detection (BOCPD). This algorithm has complexity O(D) per online
update. D denotes the maximum total duration. Note that it is parameterized in terms of the maximum run length R
instead of D (R+ 1 = D).

1Source code and data are available at a public repository. Download link: https://github.com/DiegoAE/BOSD

https://github.com/DiegoAE/BOSD


Parameters :Hazard function H(·).
Run length posterior γt(rt) computed in Algorithm 1.

for rt = 0, . . . , R do
p = 1
for lt = 0, . . . , R do

if rt + lt <= R then
g(lt, rt) = p ∗H(rt + lt) . Compute p(lt|rt) offline
p = p ∗ (1−H(rt + lt))

for t = 0, . . . , T do
for lt = 0, . . . , R do

wt(lt) = 0
for rt = 0, . . . , R do

wt(lt) = wt(lt) + g(lt, rt) ∗ γt(rt) . Recall that γ(rt) = p(rt|Y1:t)

outputs wt(lt) . denotes the posterior p(lt|Y1:t)

Algorithm 2: Residual time prediction for BOCPD. Note that given the run length posterior p(rt|Y1:t) for all time
steps the algorithm is independent of the actual observations. The computational complexity per online update is
O(D2). We have presented the run length inference (Algorithm 1) and the residual time inference (Algorithm 2) as
separate algorithms for the sake of clarity; however, we can easily combine them within the BOCPD framework to
obtain a fully online algorithm (assuming p(lt|rt) is precomputed).
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Figure 1: ECG segmentation



Parameters :Duration matrix D(·, ·) for each hidden state zt.
Transition matrix A(·, ·)
Observation model prior hyperparameters Θzt.prior.

for each new observation yt do
for zt = 1, . . . ,K do

for dt = 1, . . . , D do
for rt = 0, . . . , dt − 1 do

πt(rt, dt, zt) = p(yt|Θrt,dt,zt
t−1 ) . Compute p(yt|rt, dt, zt,Yrt)

for zt = 1, . . . ,K do
for dt = 1, . . . , D do

for rt = 0, . . . , dt − 1 do
αt(rt, dt, zt) = πt(rt, dt, zt) ∗ γt−1(rt − 1, dt, zt) . Growth probabilities

for zt−1 = 1, . . . ,K do
ηt(zt−1) = 0
for dt−1 = 1, . . . , D do

ηt(zt−1) = ηt(zt−1) + γt−1(dt−1 − 1, dt−1, zt−1)

for zt = 1, . . . ,K do
βt(zt) = βt(zt) + A(zt−1, zt) ∗ ηt(zt−1) . Change point probabilities

for zt = 0, . . . ,K do
for dt = 1, . . . , D do

αt(0, dt, zt) = D(zd, dt) ∗ πt(0, dt, zt) ∗ βt(zt) . Duration likelihood at a CP

Update Θrt,dt,zt
t based on Θrt−1,dt,zt

t−1 and yt . Update sufficient statistics
et = 0
for zt = 1, . . . ,K do

for dt = 1, . . . , D do
for rt = 0, . . . , dt − 1 do

et = et + αt(rt, dt, zt) . et = p(yt|Y1:t−1) normalizes αt(rt, dt, zt)

output γt(rt, dt, zt) = αt(rt, dt, zt)/et . denotes the posterior p(rt, dt, zt|Y1:t)

Algorithm 3: Bayesian Online Segment Detection. This algorithm has complexity O(K2 + KD2), where K
denotes the number of hidden states. We leave as an open question whether it is possible to achieve a better
complexity on D under certain conditions. As in the original BOCPD formulation we take advantage of observation
models whose likelihood can be computed incrementally through a set of sufficient statistics (i.e., exponential
family likelihoods). For arbitrary observation models we get O(D2) complexity for BOCPD and O(K2 +KD3)
for BOSD.
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Figure 2: Synthetic experiment
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Figure 3: Mice sleep staging through Bayesian online segment detection


