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1 Proof of Lemma 1

Consider the maximization problem of (Eq.(14),
Manuscript) using Q(xn) as in (Eq.(18), Manuscript) to
obtain the updated Π(t+1) from Π(t).
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Since above maximization process has following con-
straint,
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Then, to apply the KKT condition, the partial derivatives
of the Lagrangian w.r.t Π(t)(j, `) and λj becomes
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Now, assume that the parameter satisfying KKT condition
is Π(t+1). Then,
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Using (3) and (4),
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However, we can change (5) to an expression that contains
(Eq.(16), Manuscript).
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2 Experimental Details

2.1 Output dimension reduction

As a separate contribution, we also address one additional
limitation of N-DUDE. Namely, the original N-DUDE has
an output size of |S| = |X̂ ||Z|, which can quickly grow
very large when the alphabet size of the data grows. For
example, even for DNA sequence that has alphabet size of
4, the output size of pk(w, ·) becomes |S| = 44 = 256 as
shown in Figure 1. Such exponential growth of the output
size may cause overfitting and inaccurate approximation
for the induced posterior (Eq.(9), Manuscript).
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Figure 1: The original output layer of N-DUDE for DNA
data.

In order to make ICE-N-DUDE more scalable with large
alphabet size, we considered two output dimension reduc-
tion methods as shown in Figure 2, shown with the DNA

example. First, Figure 2(a) shows reducing the output size
to |X̂ ||Z| = 16 by implementing |Z| different output lay-
ers having |X | outputs. Note all 256 mappings in Figure 1
can be enumerated by combining the partial mappings for
each Zi given in Figure 2(a). Second, Figure 2(b) shows
further reducing the output size to |X̂ |+ 1 = 5. That is,
by simplifying the denoising to either “saying-what-you-
see” (i.e., s(Zi) = Zi) or “saying-one-in-X̂ , we can work
with this reduced output size. With this reduction, the
unnecessary variance in the model could reduce and the
summation in (Eq.(9), Manuscript) would always involve
only two mappings, hence, the approximation quality of
DKL(Q̃(xn;Π(t))‖p(xn|Zn;Π(t))) could improve. In
fact, in our experimental results, we observed the second
reduction yields much better denoising as well as the chan-
nel estimation results, hence, all of our results regarding
N-DUDE employ the second reduction structure.
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Figure 2: The reduced output layer of N-DUDE for DNA
data.

2.2 Training details for binary image denoising

In the binary image denoising experiment, we used the
first 10 images in PASCAL and all 8 images for Standard
for estimating the channel before carrying out the denois-
ing in each set. For ICE-N-DUDE and ICE-CUDE, the es-
timated channel by ICE was plugged-in, and the network
parameters were fine-tuned for each image separately.
For a fair comparison, N-DUDE(Π) and CUDE(Π) were
also first trained with the same images as ICE and BW,
before fine-tuning for each image.

2.3 True channels

We used three different asymmetric Π’s in binary image
denoising experiments with each Π having an average
noise level of 0.1, 0.2, and 0.3.

Π0.1 =

[
0.88 0.12
0.09 0.91

]
Π0.2 =

[
0.83 0.17
0.23 0.77

]
Π0.3 =

[
0.72 0.28
0.33 0.67

]



For the DNA experiment, we used 4× 4 asymmetric Π
as below.

ΠDNA =


0.8122 0.0034 0.0894 0.0950
0.0096 0.8237 0.0808 0.0859
0.1066 0.0436 0.7774 0.0724
0.0704 0.0690 0.0889 0.7717
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