
Supplemental Material

1 Proof of Algorithm 1
Proof. The proof follows standard techniques (such as [1]) once we rewrite our al-
gorithm as FTRL in the space of RMK . First we extend the loss vector l̂t ∈ RK
to a vector Lt ∈ RMK by padding zeros to irrelevant coordinates. Formally, Lt =
l̂t(it)e(jt−1)K+it where e1, . . . , eKM are standard basis vectors in RMK . Further let
Gt = −

∑t
s=1 Ls be the negative cumulative loss estimator up to time t. Define

Ψ∗(G) = maxP∈Ω 〈P,G〉 − 1
ηΨ(P ), which is the convex conjugate of the function

1
ηΨ(P ) + 1Ω(P ) where 1Ω(P ) is 0 if P ∈ Ω and∞ otherwise. With these notations
we then have

Pt = arg min
P∈Ω

〈
P,

t−1∑
s=1

Ls

〉
+

1

η
Ψ(P )

= arg max
P∈Ω

〈P,Gt−1〉 −
1

η
Ψ(P ) = ∇Ψ∗(Gt−1).

Next, note that the loss estimators are unbiased since E[l̂t(i)] = E
[
pjtt (i)× lt(i)

p
jt
t (i)

]
=

E[lt(i)] for all i ∈ [K].
We can thus rewrite the regret as Reg = E

[
〈P∗, GT 〉+

∑T
t=1 〈∇Ψ∗(Gt−1), Lt〉

]
where P∗ = arg maxP∈Ω E [〈P,GT 〉]. Recalling the Bregman divergence associated
with Ψ∗ defined as

DΨ∗(G,G′) = Ψ∗(G)−Ψ∗(G′)− 〈∇Ψ∗(G′), G−G′〉 .

we further rewrite the regret as

Reg = E

[
〈P∗, GT 〉+

T∑
t=1

(Ψ∗(Gt−1)−Ψ∗(Gt) +DΨ∗(Gt, Gt−1))

]

= E

[
〈P∗, GT 〉+ Ψ∗(G0)−Ψ∗(GT ) +

T∑
t=1

DΨ∗(Gt, Gt−1)

]
.

The first three terms can be bounded as (note G0 = 0)

E
[
〈P∗, GT 〉 −

1

η
min
P∈Ω

Ψ(P )− 〈P∗, GT 〉+
1

η
Ψ(P ∗)

]
≤ maxP∈Ω Ψ(P )−minP∈Ω Ψ(P )

η

=
D

η
.
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It remains to bound E [DΨ∗(Gt, Gt−1)]. By Taylor’s theorem, there exists G̃t on the
segment connecting Gt−1 and Gt such that DΨ∗(Gt, Gt−1) = 1

2L
>
t ∇2Ψ∗(G̃t)Lt.

Moreover, using properties of convex conjugates (see for example [1]) we have∇2Ψ∗(G̃t) �
η∇−2Ψ(∇Ψ∗(G̃t)). Realizing that for any P ∈ Ω, η∇−2Ψ(P ) is a diagonal matrix
with ηP on the diagonal, we further bound the Bregman divergence by

DΨ∗(Gt, Gt−1) ≤ η

2
∇Ψ∗(G̃t)(jt−1)K+it l̂

2
t (it).

Note that G̃t is the same asGt−1 for all coordinates except the ((jt−1)K+ it)-th one,
where the value could only be smaller (if not equal) by the non-negativity of losses. By
the convexity of Ψ∗ (and thus monotonicity of ∇Ψ∗), we then have

DΨ∗(Gt, Gt−1) ≤ η

2
∇Ψ∗(Gt−1)(jt−1)K+it l̂

2
t (it)

=
η

2
pjtt (it)l̂

2
t (it) =

ηl2t (it)

2pjtt (it)
≤ η

2pjtt (it)
.

Taking expectation on both sides gives E [DΨ∗(Gt, Gt−1)] ≤ ηK
2 .

Combing everything above we arrive at

Reg ≤ D

η
+
ηTK

2
,

which is of order O(
√
TKD) with the optimal choice of learning rate η =

√
D
TK .

Finally, note that

D ≤ −min
P∈Ω

Ψ(P ) =

M∑
j=1

K∑
i=1

pj1(i) ln
1

pj1(i)
≤M lnK

by the fact the entropy of a distribution over K items is nonnegative and is at most
lnK. This finishes the proof.

2 Unknown Context Distributions
The Fair CB algorithm described in the paper assumes that the context distribution q is
known to the learner. We provide an extension of our algorithm to the case where the
context distribution q is unknown. We include regret guarantee of the algorithm, while
we leave empirical results for future work.

A natural idea is to maintain an empirical context distribution based on the obser-
vations and to use it as a proxy for q. Specifically, to avoid changing the feasible set
too often, we divide the entire horizon into O(log2 T ) epochs, where epoch k contains
rounds τk, . . . , τk+1 − 1 with τk = 2k−1. Within epoch k > 1, we let qk be the
empirical context distribution using observations from the last k − 1 epochs:

qk(j) =
1

τk − 1

τk−1∑
t=1

1{jt = j}, ∀j ∈ [M ]. (1)
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Note that by standard concentration argument (specifically Bernstein inequalities and
union bound), we have with probability at least 1− 1/T ,

‖q − qk‖1 ≤ εk , 4

√
M ln(TM)

τk − 1
+

2M ln(TM)

τk − 1
. (2)

Accordingly, for epoch k > 1 we define the feasible set Ωk as

Ωk =

{
P = (p1, ..., pM )

∣∣∣∣ p1, ..., pM ∈ ∆K and∑M
j=1 qk(j)pj(i) ≥ v − εk,∀i ∈ [K]

}
, (3)

where we introduce a small slack εk to the fairness constraint v. The reason of relaxing
the constraint is to make sure that Ωk always contains Ω with high probability. Indeed,
conditioning on the event Eq. (2), for any P ∈ Ω we have

M∑
j=1

qk(j)pj(i) ≥
M∑
j=1

q(j)pj(i)− ‖q − qk‖1 ≥ v − εk

and thus P ∈ Ωk. On the other hand, relaxing the constraint means that the algorithm
no longer always strictly satisfies the fairness requirement. Instead, we measure the
fairness of the algorithm by the average amount of violation of the fairness constraint,
defined as

Vio = E

 1

T

T∑
t=1

max

0, v − min
i∈[K]

M∑
j=1

q(j)pjt (i)




where pjt is again the distribution of arm it given the history and jt = j.
Our final algorithm simply runs a new instance of Algorithm 1 with feasible set Ωk

on epoch k. See Algorithm 1 for the pseudocode. In the following theorem, we show
that the algorithm ensures the same regret bound while keeping the per-round fairness
violation to be arbitrarily small as long as T is large enough.

Theorem 1. Algorithm 1 ensures

Reg = O
(√

TMK lnK
)

and Vio = O

(√
M ln(TM)

T
+
M ln(TM) lnT

T

)
.

Proof. Clearly we only need to condition on the event Eq. (2) since it happens with
probability at least 1 − 1/T . With the fact P∗ ∈ Ωk for all k, the regret guarantee is a
simple application of Theorem 1. Indeed, let K = O(log2 T ) be the total number of
epochs, we have

Reg =

K∑
k=1

min{τk+1−1,T}∑
t=τk

E
[〈
pjtt − pjt∗ , lt

〉]

=

K∑
k=1

O
(√

τkMK lnK
)

= O
(√

TMK lnK
)
.
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Algorithm 1 Fairness CB with Unknown Context Distribution

1: Input: fairness constraint parameter v
2: Define: τk = 2k−1, Ψk(P ) = 1

ηk

∑M
j=1

∑K
i=1 ψ(pj(i)) where ψ(p) = p ln p and

ηk =
√
M lnK/(τkK)

3: For t = 1, sample an arm uniformly at random
4: for k = 2, 3, . . . do
5: Update qk and Ωk according to Eq. (1) and Eq. (3)
6: for t = τk, . . . , τk+1 − 1 do
7: Compute Pt = arg minP∈Ωk

∑t−1
s=τk

〈
pjs , l̂s

〉
+ Ψk(P )

8: Observe jt and play it ∼ pjtt
9: Construct loss estimator l̂t(i) = lt(i)

p
jt
t (i)

1{it = i}, ∀i
10: end for
11: end for

The amount of violation is also clear due to the construction of Ωk:

Vio ≤ 1

T

K∑
k=1

τkεk = O

(√
M ln(TM)

T
+
M ln(TM) lnT

T

)
.

This finishes the proof.
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