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Abstract

Gaussian processes (GPs) are nonparametric
priors over functions. Fitting a GP implies
computing a posterior distribution of functions
consistent with the observed data. Similarly,
deep Gaussian processes (DGPs) should allow
us to compute a posterior distribution of com-
positions of multiple functions giving rise to
the observations. However, exact Bayesian in-
ference is intractable for DGPs, motivating the
use of various approximations. We show that
the application of simplifying mean-field as-
sumptions across the hierarchy leads to the lay-
ers of a DGP collapsing to near-deterministic
transformations. We argue that such an in-
ference scheme is suboptimal, not taking ad-
vantage of the potential of the model to dis-
cover the compositional structure in the data.
To address this issue, we examine alternative
variational inference schemes allowing for de-
pendencies across different layers and discuss
their advantages and limitations.

1 INTRODUCTION

Hierarchical learning studies functions represented as
compositions of other functions, f = fL ◦ . . . ◦ f1.
Such models provide a natural way to model data gen-
erated by a hierarchical process, as each f` represents a
certain part of the hierarchy, and the prior assumptions
on {f`}L`=1 reflect the corresponding prior assumptions
about the data generating process. DGPs (Damianou
and Lawrence, 2013), which are compositions of GPs,
allow us to impose explicit prior assumptions on {f`}
by choosing the corresponding kernels. Since different
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compositions can fit the data equally well (see an illus-
tration in Fig. 1), DGPs are inherently unidentifiable, and
this lack of identifiability should be captured by an ade-
quate Bayesian posterior, allowing us to quantify uncer-
tainties pertaining to each f`. We refer to this uncertainty
as compositional uncertainty. This uncertainty can be
thought of as the epistemic uncertainty (Gal, 2016) de-
scribing how the layers of the hierarchy jointly compose
the observed data.

While the DGP posterior captures compositional un-
certainty, exact Bayesian inference in DGPs is in-
tractable (Damianou and Lawrence, 2013). In this work
we show that the typically used approximate inference
schemes (e.g. Salimbeni and Deisenroth, 2017) impose
strong simplifying assumptions, making intermediate
DGP layers collapse to deterministic transformations.1

This corresponds to representing a DGP as a single-layer
GP with a transformed kernel (Dunlop et al., 2018), sim-
ilar to GPs with kernels parametrised by a deterministic
function (e.g. a neural network). Such behaviour might
not be a problem in practice if the goal is to design a
model that only provides a high marginal likelihood of
the data, however, it does not make full use of the ca-
pacity of DGP as it fails to describe the uncertainty that
stems from the potential decomposition in the hierarchy.
Distributions over compositions, and the resulting com-
positional uncertainty, are important for applications, e.g.
for temporal alignment of time series data (Kaiser et al.,
2018; Kazlauskaite et al., 2019), in reinforcement learn-
ing (Jin et al., 2017) as well as for building more inter-
pretable models where each layer in the hierarchy ex-
presses a meaningful functional prior (Sun et al., 2019).

We address the issue of collapsing compositional uncer-
tainty by proposing variational distributions and corre-

1In cases where the data has high observational noise, the
noise is explained by introducing an uncertainty in one or mul-
tiple layers of the composition. We focus on the case where
the data is noiseless, thus the uncertainty in each of the layers
arises only due to the ambiguity in the compositional structure.
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Figure 1: Compositional model (toy example): the transformation of the solid rectangle onto the dashed one is de-
composed as T2 ◦ R2 ◦ T1 ◦ R1 where Ri and Ti are rotations and translations. Different sampled realisations of
these transformations are overlaid, showing the compositional uncertainty. Approximating Ri and Ti as independent
transformations does not allow us to capture such uncertainty, collapsing to a single realisation of the composition.

sponding inference methods that explicitly model the de-
pendencies between the layers, resulting in variational
posteriors that capture compositional uncertainty. We
highlight the limitations of existing approaches and lay
the ground for future work in uncertainty quantification
in DGPs. Our main contributions are:

• We demonstrate that variational distributions over the
inducing points that are factorised across layers lead
to a collapse of compositional uncertainty,

• We provide an intuitive as well as a quantitative ar-
gument for this behaviour by drawing a link be-
tween the work on mean-field variational inference
for DGPs and the models of regression with noisy
inputs (Girard et al., 2003);

• We propose modifications to the factorised varia-
tional distribution that incorporate the dependencies
between the inducing points in different layers, and
discuss the corresponding inference procedures,

• We use the proposed variational inference ap-
proaches to further illustrate how the correlations
across the layers are necessary in order to argue about
compositional uncertainty.

The remainder of the paper is structured as follows. We
first provide a background to DGPs with an emphasis on
approximate inference and discuss the method of (Sal-
imbeni and Deisenroth, 2017) in detail, using it as the
starting point for our argument on the collapse of com-
positional uncertainty, presented in Sec. 3. In Sec. 4 we
propose variational distributions that aims to address the
shortcomings of the layer-wise factorisation. In Sec. 5
we illustrate the behaviour of the proposed methods and
discuss potential areas of applications.

2 BACKGROUND: MODELS OF DGPs

Previous work The hierarchical GP construction was
originally motivated from the perspective of latent vari-
able models (Lawrence, 2004) and was designed with
a specific application in mind. In the early work on
DGPs, Lawrence and Moore (2007) proposed a model

that captured the hierarchical structure in the human
skeleton, that allowed to produce interpretable genera-
tive models of human motion. However, most of the
later work shifted the emphasis from uncovering specific
interpretable hierarchical structures to employing a hi-
erarchical construction to design models that are more
flexible than a standard GP (in particular, by weakening
the assumptions about a joint Gaussian structure in the
observations). For example, Lázaro-Gredilla (2012) pro-
posed a hierarchical (two-layer) GP model to allow for
non-stationary observations. Damianou and Lawrence
(2013) drew further parallels between DGPs and deep
belief networks, and proposed a DGP construction be-
yond two layers for both supervised and unsupervised
settings. Concurrently, the MAP estimation used in the
early works (Lawrence and Moore, 2007) was replaced
with variational inference schemes, initially proposed for
the latent variable model (Titsias and Lawrence, 2010)
and later adapted for the hierarchical DGP setting (Dami-
anou and Lawrence, 2013).

However, the variational inference approach of Dami-
anou and Lawrence (2013) was shown to be prohibitive
for large data sets, motivating further research on in-
ference schemes that scale to large data sets (Hensman
et al., 2013; Hensman and Lawrence, 2014; Dai et al.,
2016; Bui et al., 2016; Gal and Ghahramani, 2016; Hens-
man et al., 2017; Salimbeni and Deisenroth, 2017; Rud-
ner and Sejdinovic, 2017; Cutajar, 2019). A different
line of thought emerges from the work on inference us-
ing stochastic gradient Hamiltonian Monte Carlo (Havasi
et al., 2018). The authors recognise the issue of com-
positional uncertainty, highlighting the fact that most of
the existing (variational) approaches to inference are lim-
ited to estimating single modes of the posterior distri-
butions in each layer of the hierarchy. As inference us-
ing MC is typically very costly, the authors note that it
is beneficial to decouple the model in terms of the in-
ducing points for the mean and the variance, which re-
sults in a highly non-convex optimization problem that
requires careful parameterisation to improve the stabil-
ity of convergence. Various issues with numerical stabil-



ity, poor convergence and underestimation of uncertainty
have also been reported in the context of variational
approximations (Hensman and Lawrence, 2014; Kaiser
et al., 2018). Duvenaud et al. (2014) show a pathological
behaviour of the concentration of density along a single
dimension as the number of layers increases, and pro-
pose including direct links between the inputs and each
individual layer.

Doubly stochastic variational inference (DSVI) Our
work builds on the variational approximation scheme in-
troduced by Salimbeni and Deisenroth (2017), thus here
we provide a short recap of the main ideas from this work
and introduce the notation that is used throughout the
rest of this paper. Given a dataset2 D = {(xj , yj)}Jj=1,
with xj , yj ∈ R, we model yj = (fL ◦ . . . ◦ f1)(xj),
where f` ∼ GP(µ`(·), k`(·, ·)). We denote the inputs
as x = (x1, . . . , xJ) ∈ RJ , and the evaluations of the
intermediate layers at the entire vector of inputs x as
f` ∼ (f` ◦ . . . ◦ f1)(x) for ` = 2, . . . , L. The DGP
joint distribution is

p(y, fL, . . . , f1 | x) = p(y | fL)

L∏
`=1

p(f` | f`−1), (1)

where p(f` | f`−1) ∼ GP(µj(f`−1), kj(f`−1, f`−1)) is a
GP prior for the `-th layer, and we define f0 = x. In-
tegrating {f`} from (1) to obtain a marginal likelihood
is intractable, since that requires integrating a product of
Gaussian factors, each of which contains f` inside a non-
linear kernel.

To overcome this limitation, variational inference is used
to estimate the lower bound on (1). To this end, each
DGP layer ` is augmented with M inducing locations
z`−1 ∈ RM and inducing points u` ∈ RM , resulting in
the following augmented joint distribution:

p(y,{f`}, {u`} | x, {z`}) = p(y | fL)×

×
L∏

`=1

p(f` | f`−1,u`, z`−1)p(u` | z`−1),
(2)

where p(f` | f`−1,u`, z`−1) ∼ N (µ`,Σ`) is a GP poste-
rior at inputs f`−1 given values of u` at z`−1. The spe-
cific form of µ` and Σ` is as follows (note a slight abuse
of notation: µ`(·) is a mean function, while µ` is a pos-
terior mean):

µ` = µ`(f`−1) + α`(f`−1)T (u` − µ`(z`−1)),

Σ` = k`(f`−1, f`−1)− α`(f`−1)T k`(z`−1, z`−1)α`(f`−1),

where

α`(f`−1) = k`(z`−1, z`−1)−1k`(z`−1, f`−1). (3)
2Throughout the paper we consider one-dimensional data

but the general considerations also apply in many dimensions.
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Figure 2: A toy example illustrating three layer compo-
sitions where each layer is either f`(x) = x or f`(x) =
−x. Multiple compositions map x to y, this uncertainty
is illustrated by showing the range of different values of
f1 = f1(x) and f2 = f2(f1). If a variational distribu-
tion over {f`} is factorised, the posterior compositions
collapse to a single realisation.

Introducing a factorised variational distribution over the
inducing points

q({u`}) = q(u1) . . . q(uL), q(u`) ∼ N (m`,S`) (4)

the likelihood lower bound is as follows:

L(y) ≥ Eq(fL)[log p(y | fL)]−

−
L∑

`=1

KL[q(u`) || p(u` | z`−1)].
(5)

A key insight of Salimbeni and Deisenroth (2017) is that
the expectation in (5) can be efficiently estimated by a
Monte-Carlo estimator. This is possible by marginalising
the inducing points {u`} from the variational posterior,
obtaining

q(fL, . . . , f1) =

L∏
`=1

∫
p(f` | u`)q(u`) du`

= q(fL | fL−1) . . . q(f1 | x),

(6)

with q(f` | f`−1) ∼ N (µ̃`, Σ̃`), where

µ̃` = µ`(f`−1) + α`(f`−1)T (m` − µ`(z`−1)), (7)

Σ̃` = k`(f`−1, f`−1) (8)

− α`(f`−1)T (k`(z`−1, z`−1)− S`)α`(f`−1).

The bound in (5) can be estimated by sequentially sam-
pling from q(f` | f`−1) using (7) and (8). The time com-
plexity of this step is linear in the number of data points,
since each marginal [f`]j can be drawn independently
(we only need marginals of the final layer fL in (5)).

3 MEAN-FIELD DGPs

In this section we argue that factorised variational distri-
butions of inducing points, e.g. (4), imply that the layers
in a DGP collapse to deterministic transformations.



3.1 INTUITION

If a DGP fL◦. . .◦f1 maps fixed inputs x to fixed outputs
y, the functions {f`} must be dependent, because every
realisation of this composition must map the same x to
the same y. This is illustrated in Fig. 2, which shows a
composition of three layers, each of which could either
be f`(x) = x or f`(x) = −x. Depending on the choices
of f1 and f2, the input is mapped by f2 ◦ f1 to one of the
two realisations of f2 (as shown by the colour code in the
corresponding panel), and f3 must be chosen in such a
way that f2 is mapped to y. Therefore, in this example,
f3 depends on the choice of f1 and f2. However, if {f`}
were independent, then the only way to ensure that every
realisation of the composition fits the data would be for
each layer to implement a deterministic transformation
(i.e. either f`(x) = x or f`(x) = −x such that there are
zero or two instances of f`(x) = −x). Another illustra-
tion of this idea is provided in Fig. 1, in which movement
of a square is represented as a composition of correlated
rotations and translations, allowing us to see a variety of
possible movements. However, a model with indepen-
dent transformations would converge to a single possible
sequence of rotations and translations.

The same intuition holds for general DGPs. Analogously
to choosing either x or −x in Fig. 2, inducing locations
z` and points u` define the transformation implemented
by the corresponding layer through the predictive poste-
rior p(f` | f`−1,u`, z`−1). Following a similar argument,
the DGP layers collapse to deterministic transformations
to ensure good data fits unless they are dependent to al-
low multiple different compositions to fit the data.

3.2 QUANTITATIVE ARGUMENT

Assume that the DGP layers {f`} are independent. Then
the distribution of the outputs of layer ` − 1 can be
thought of as uncertain inputs3 to the layer `. Similarly
to DGPs, the inference in such models is complicated by
the need to propagate a distribution through a non-linear
mapping. Such models have been studied in the context
of GP regression (Girard et al., 2003; Mchutchon and
Rasmussen, 2011; Bijl, 2018) and have also been dis-
cussed in relation to DGPs (Damianou, 2015), though
not in the context of compositional uncertainty.

Assuming, for simplicity, that our dataset consists of a
single point, i.e. D = {(x, y)}, we can write f` = (f` ◦
. . . ◦ f1)(x) = f`(f`−1) = f`(f̄`−1 + ε`−1), with f̄`−1 as
the mean4 of f`−1 and ε`−1 as an appropriate zero-mean

3Regression models that include input uncertainty can gen-
erally be formulated as: y = f(x + εx), where y are observa-
tions, x are noise-free inputs and εx is zero-mean noise.

4We use bold notation for f̄`−1, even though it refers to a

noise (not necessarily Gaussian, since marginals of DGP
layers are not Gaussian in general (Damianou, 2015)),
the variance of which we denote as σ2

noise := Var [ε`−1].
We want to show that the variance of f` increases with in-
creasing variance of ε`−1, which would imply that unless
the layers collapse, i.e. ε`−1 = 0, there is finite variance
in the final layer fL. That constitutes a poor fit to obser-
vations that contain low observational noise (noiseless in
the limit), forcing the layers to collapse to deterministic
transformations.

High observational noise might lead to the layers not col-
lapsing despite being independent. However, such un-
certainty is the observational noise spread across the lay-
ers, rather than compositional uncertainty due to multi-
ple compositions explaining the data. To make our argu-
ments clearer, we assume noiseless observations.

Linear approximation We can approximate f` as

f` = f`(f`−1) ≈ f`(f̄`−1) + ε`−1 f
′
`(f̄`−1), (9)

where f`(f̄`−1) ∼ p(f` | f̄`−1,u`, z`−1) = N (µ̄`, σ̄
2
`),

with µ̄` and σ̄2
` given in (7) and (8). Note that both µ̄`

and σ̄2
` are functions of f̄`−1, which we omit to not clutter

the notation; the derivatives below are taken w.r.t. f̄`−1.

The evaluation of a GP and its derivative are jointly dis-
tributed as follows (Rasmussen and Williams, 2005):[

f`(f̄`−1)
f ′`(f̄`−1)

]
∼ N

([
µ̄`

µ̄′`

]
,

[
σ2

` (σ2
`)′

(σ2
`)′ (σ2

`)′′

])
. (10)

Similarly to Mchutchon and Rasmussen (2011), we com-
pute a linear transformation of (10) and obtain that

E [f` | ε`−1] = µ̄` + ε`−1µ̄
′
`,

Var [f` | ε`−1] = σ2
` − 2ε`−1(σ2

`)′ + ε2`−1(σ2
`)′′.

Using the law of total variance we have

Var [f`] = E [Var [f`|ε`−1]] + Var [E [f`|ε`−1]] ,

where

E [Var [f`|ε`−1]] = σ2
` + σ2

noise (σ2
`)′′,

Var [E [f`|ε`−1]] = Var [µ̄` + ε`−1 µ̄
′
`] = σ2

noise · (µ̄′`)
2
.

Combining these results together we obtain

Var [f`] = σ2
`+σ2

noise

[
(µ̄′`)

2
+ (σ2

`)′′
]
+O(ε2`−1). (11)

The only term in (11) that can be negative is (σ2
`)′′, po-

tentially making the variance of the GP output at a noisy
input smaller that the variance at a fixed input (i.e. σ2

` ).

scalar, to distinguish it from the notation we use for functions.
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Counterexample Such an example can indeed be con-
structed. Girard et al. (2003) study GPs with uncertain
inputs and compute an exact expression for Var [f`] as a
function of σ2

noise assuming ε`−1 is Gaussian. Assuming
there is a single inducing point u` = 0, the derivative of
Var [f`] is negative at 0 provided that f̄`−1 is sufficiently
far away from u` (in comparison to the length scale; see
the derivation in the Supplement). This means that the
input noise might reduce the output variance. However,
such an example relies on the inputs to the `-th layer,
f̄`−1, appearing in the regions of the input space that are
poorly covered by the inducing points. Consequently,
this scenario only occurs if the inducing points are placed
in a way that leads to a poor fit of the observed data.

Inducing points limit The counterexample above re-
lies on a degenerate setting in which the inducing points
are far from the observations. Here we consider a lim-
iting case that corresponds to a more realistic situation
of sufficiently many inducing points near f` (the limit
of arbitrary many inducing points is a conceptually de-
sirable setting, complicated by the computational con-
straints). Specifically, in each layer we assume M lin-
early spaced inducing points z` = {z1`−1, . . . , zM`−1} in
∆` := [f̄`−1 − 3γ`, f̄`−1 + 3γ`], where γ` is the kernel
length scale in layer `. This assumption means that the
input to each layer is contained in an interval ∆` covered
by the inducing points.

The behaviour of (11) under such an assumption is il-
lustrated in Fig. 3. The minimum value of (σ2

`)′′ ap-
proaches zero as M increases; this suggests that the in-
put noise leads to increased predictive posterior variance
apart from degenerate cases of inducing points not cover-
ing the input region corresponding to the observed inputs
x, and the predictive mean derivative (µ̄′`)

2 being suffi-
ciently small (i.e. the function implemented by the `-th
layer being close to a constant one).

To summarise, we argue that under the assumption of

f` = (f` ◦ . . . ◦ f1)(x) being contained in an interval
covered by the inducing locations z` for the next layer,
the variance in f` leads to increased variance in f`+1, and
hence in fL. Therefore, for fL to fit a noiseless observa-
tion y, the variance in intermediate layers has to be re-
duced, implying that the layers collapse to deterministic
transformations.

4 BEYOND FACTORISED
VARIATIONAL DISTRIBUTIONS

To further investigate the effect of the factorisation im-
posed by the mean-field variational inference, we pro-
pose two alternative variational inference schemes that
allow for correlations between layers. By relaxing the
mean-field assumption across layers, we aim to uncover
a range of solutions that are consistent with the data and
follow the prior belief about each of the individual layers.
In Sec. 4.1 we present a natural generalisation of a fac-
torised variational distribution (4) to capture the marginal
dependencies between the layers. In Sec. 4.2 we present
an alternative variational approximation that introduces
dependencies between the layers by linking the inducing
points and locations of the neighbouring layers.

4.1 JOINTLY GAUSSIAN INDUCING POINTS

A straightforward modification of the DSVI variational
approximation (Sec. 2) allowing us to capture the depen-
dencies between the layers is to introduce correlations
between the inducing points by modelling them with a
jointly Gaussian variational distribution:

q(u1, . . . ,uL) ∼ N (m,S), (12)

with m ∈ RLM , S ∈ RLM×LM . The variational poste-
rior is then given by

q({f`}, {u`}) = q(u1, . . . ,uL)

L∏
`=1

p(f`|f`−1,u`). (13)



The corresponding likelihood lower bound has
the same structure as (5) with the KL term,
KL[q(u1, . . . ,uL) || p(u1) . . . p(uL)], that can be
computed in closed form (it involves two Gaussians).
The expectation Eq(fL)[log p(y | fL)] is, however, harder
to estimate in case of variational distribution (12).
The integral (6) no longer factorises into a product of
integrals, which means that we can no longer integrate
{u`} out from q({f`}, {u`}) and draw samples from
q(fL) in the same way as in (Salimbeni and Deisenroth,
2017). We consider two approaches to address this issue.

Sampling {u`} We start by noting that, conditioned on
{u`}, we can draw samples from q(fL) in the same way
as in (Salimbeni and Deisenroth, 2017). Specifically, to
estimate Eq(fL)[log p(y | fL)], we

1. Draw S samples
{(us

1, . . . ,u
s
L)}Ss=1

iid∼ q(u1, . . . ,uL),

2. For each sample (us
1, . . . ,u

s
L), draw

fsL ∼ q(fL | us
1, . . . ,u

s
L) by recursively drawing

from p(f` | f`−1,us
`), which are regular GP posterior

distributions conditioned on us
` ,

3. Compute a Monte Carlo estimate
Eq(fL)[log p(y | fL)] ≈ 1

S

∑
s

log p(y | fsL).

This approach is easy to implement and it can be ap-
plied in a variety of settings (e.g. when q({ui}) is
not Gaussian, as long as we can sample from it and
reparametrise the gradients). However, that comes at
the cost of introducing another sampling step, resulting
in Eq(fL)[log p(y | fL)] being estimated by two nested
Monte-Carlo estimators, implying an increased overall
variance of the estimator and the need to carefully choose
the appropriate number of samples (Rainforth et al.,
2019). Estimating the variance implied by the nested MC
estimator offers a direction for future work. Moreover,
drawing coherent samples from q(u1, . . . ,uL) has com-
putational complexity of O(L3M3) leading to an overall
complexity of O(L3M3 + LNM2) per estimation.

Analytic marginalisation To address statistical and
computational limitations of the above method, we pro-
pose another approach consisting of analytically integrat-
ing {u`} from (13). To do so we assume that q({u`})
admits a chain-like factorisation, namely

q({u`}) = q(uL | uL−1) . . . q(u2 | u1)q(u1). (14)

The precision matrix across all layers,
Λ = S−1 ∈ RLM×LM , encodes the conditional in-
dependence assumptions, and (14) implies that such
matrix is block-tridiagonal (Fig. 4). The advantage
of this assumption is that the number of parameters

in the unconstrained S scales quadratically with the
number of layers, while (14) implies a linear growth.

Λ11

Λ22

Λ33

Λ44

Λ21

Λ32

Λ43

Λ12

Λ23

Λ34

Figure 4: Precision ma-
trix Λ induced by (14).

Assuming that the varia-
tional distribution (12) sat-
isfies the factorisation (14),
we analytically marginalise
{u`} from the variational
posterior (13), obtaining∫

q({f`}, {u`}) d{u`} =

L∏
`=1

p(f` | f`−1, . . . f1,x),

(15)
where p(f` | f`−1, . . . f`,x) ∼ N (µ̃`, Σ̃`) with the mean
and the covariance are defined recursively as follows:

µ̃1 = µ1(x) + α1(x)T (m1 − µ1(z0))

Σ̃1 = k1(x,x)− α1(x)T (k1(z0, z0)− S11)α1(x)

and α1(x) is defined in (3). For i > 1, µ̃i and Σ̃i are
recursively defined as

µ̃` = µ`(f`) + α`(f`−1)T (m` + S`,`−1 α`−1(f`−1)×

× Σ̃
−1
`−1(f`−1 − µ̃`−1 − α`−1(x)T× (16)

× (m`−1 − µ`−1(z`−2))− µ`(z`−1)),

Σ̃` = k`(f`−1, f`−1)− α`(f`−1)T (k`(z`−1, z`−1)−

− S`` + S`,`−1 α`−1(f`−1)Σ̃
−1
`−1×

× α`−1(f`−1)TS`−1,`)α`(f`−1),
(17)

where Sij = cov(ui,uj).

The derivation is provided in the Supplement. Using
these results, Eq(fL)[log p(y | fL)] can be estimated anal-
ogously to DSVI by recursively sampling fi using (15).

4.2 INDUCING POINTS AS INDUCING
LOCATIONS

In this section we discuss an alternative variational ap-
proximation, that connects the inducing points and the
inducing locations of the neighbouring layers. Instead of
directly modelling the inducing points in every layer, we
only consider the inducing inputs z in the first layer and
variational distributions over {fz` ∼ (f` ◦ . . . ◦ f1)(z)}.
The advantage of such an approach is that unlike the vari-
ational distributions of inducing points, the factorisation
of a variational distribution over {fzi } does not imply
that the variational posterior collapses to a single reali-
sation of a composition fitting the data. In such a setting,
fz`−1 and fz` can be thought of as inducing pairs of the
`-th layer, meaning that the inducing points of a previous
layer are the inducing locations of the next one.



Intuition Let us revisit the illustration given in Fig. 2.
Assuming for this example that z = x, we independently
sample values of f1 and f2 from q(f1)q(f2) (i.e. one of the
two types of coloured lines in panels f1 and f2). Given
such a sample, we can deduce the functions f1, f2, f3.
For example, the colour of f1 denotes the choice of f1,
the second colour of f2 (the first colour is that of f1) cor-
responds to f2, and f3 is chosen to map f2 to the obser-
vations. Thus each sample from q(f1)q(f2) corresponds
to a composition mapping x to y (different samples cor-
respond to different compositions). This is in contrast to
sampling from the factorised distribution of the inducing
points (which directly parametrise each {fi}). In such
case, some compositions (e.g. f1(x) = −x, f2(x) =
f3(x) = x) do not fit the data, making the variational
posterior collapse, as argued in Sec. 3.

Inducing inputs We introduce inducing inputs
z ∈ RM (with M < N ) in the input space and de-
note the evaluations of intermediate layers at z as
fz` ∼ (f` ◦ . . . ◦ f1)(z). The augmented DGP joint
distribution is

p(y, fL, . . . , f1, f
z
L, . . . , f

z
1 | x, z) = (18)

= p(y | fL)

L∏
`=1

p(f` | fz` , f`−1, fz`−1)p(fz` | fz`−1),

where p(fz` | fz`−1) ∼ N (µ`(f
z
`−1), k`(f

z
`−1, f

z
`−1)) is an

`-th layer GP prior, and p(f` | fz` , f`−1, fz`−1) is an `-th
layer GP posterior at inputs f`−1 given fz` and fz`−1 in
`-th and (`− 1)-th layers respectively.

Variational lower bound We introduce the following
variational distribution

q({f`}, {fz` }) =

L∏
`=1

p(f` | fz` , f`−1, fz`−1)q(fz` ), (19)

where q(fz` ) ∼ N (m`,S`). The corresponding likeli-
hood lower bound is as follows

L(y) ≥ Eq

[
log

p(y, {f`}, {fz` })
q({f`}, {fz` })

]
=

= Eq(fL)[log p(y | fL)]− (20)

−
L∑

`=1

Eq(fz` )q(f
z
`−1)

[
log

q(fz` )

p(fz` | fz`−1)

]
. (21)

Estimating (20) We are estimating an expectation over
the marginal q(fL) ∼ (fL ◦ . . . ◦ f1)(x), which can be
computed by marginalising the intermediate layers in the

joint variational posterior (19):

q(fL) =

∫
q({f`}, {fz` }) d{f`}L−1`=1 d{fzi }L`=1

=

∫
p(fL | fzL, fL−1, fzL−1)q(fzL) dfzL×

×
L−1∏
`=1

p(f` | fz` , f`−1, fz`−1)q(fz` ) df` dfz` .

(22)

The integrals in (22) are generally intractable since they
require integrating the kernel matrices, thus we estimate
them by sampling. Overall, the procedure is as follows:

1. Draw S samples
{(fz,s1 , . . . , fz,sL )}Ss=1

iid∼ q(fz1 ) · . . . · q(fzL),

2. Use the samples of {fz` } to sequentially draw samples
of intermediate layers fs` ∼ p(f` | fz,s` , fs`−1, f

z,s
`−1)

from a GP posterior given fz,s` and fz,s`−1,

3. Use {fsL}ss=1, the samples from q(fL), to estimate the
expectation in (20):
Eq(fL)[log p(y | fL)] ≈ 1

S

∑S
s=1 log p(y | fsL).

Estimating (21) We write the summands in (21) as

Eq(fz` )q(f
z
`−1)

[
log

q(fz` )

p(fz` | fz`−1)

]
=

= Eq(fz`−1)
KL[q(fz` ) || p(fz` | fz`−1)].

(23)

KL divergence between the two Gaussians q(fz` ) and
p(fz` | fz`−1) is a function of fz`−1 and can be computed
analytically for a given value of fz`−1. Therefore, to es-
timate it, we use the draws from fz`−1 (which are com-
puted for the estimate of (20) as well): for every such
draw fz,s`−1, we analytically compute the KL divergence
KL[q(fz` ) || p(fz` | f

z,s
`−1)], and then average these values to

obtain a Monte-Carlo estimate of the expectation in (23).

Learning and predictions We maximise the likeli-
hood lower bound (20-21) w.r.t. the variational parame-
ters {m`} and {S`}. The gradients can be obtained using
a reparametrisation trick (Kingma and Welling, 2014).
Given a test input x∗, we can draw the DGP outputs
f∗L ∼ (fL ◦ . . . ◦ f1)(x∗) by drawing from q(f∗l ) using
the procedure for estimating (22) described above. We
substitute x∗ instead of x replacing f` with f∗` in (22),
while the rest of the procedure remains the same.

Time complexity The time complexity of estimating
(20) is O(LNM3). Sampling from q(fzi ) is O(M3),
while, as discussed in (Salimbeni and Deisenroth, 2017),
sampling from p(fi |fzi , fi−1, fzi−1) can be performed sep-
arately for each element of fi only requiring drawing
from univariate Gaussians, which scales linearly with the



Figure 5: 25 random samples from 2-layer DGPs with squared-exponential and periodic kernels fitted to the obser-
vations in the third column (black dots) using DSVI as well as variational distributions discussed in Sec. 4. The first
and second columns show samples from each of the two layers, while the third one shows samples from the entire
composition (all such samples fit the data despite the variance in f1 and f2 because the two layers are dependent).

ELBO Var [f1(0)] Var [f2(0)]

DSVI 13.43 ± 8.03 1.99 · 10−6 ± 1.76 · 10−7 1.11 · 10−4 ± 1.35 · 10−5

Jointly Gaussian 23.15 ± 6.80 4.23 · 10−5 ± 3.17 · 10−6 3.33 · 10−4 ± 2.12 · 10−5

Inducing points as inducing inputs 36.31 ± 3.55 2.22 · 10−3 ± 2.73 · 10−4 4.98 · 10−2 ± 7.78 · 10−3

Table 1: Evaluations of the DGPs fitted on a dataset in Fig. 5. First column shows lower bounds on marginal likelihood
p(y); the second and third ones show marginal variances of both layers at x = 0. The numbers are the means as well
as standard deviations across 10 trials.

number of layers and training inputs. The estimate of
(21) does not add additional complexity since we use the
samples from q(fzi ) drawn for estimating (20), while an-
alytic computation of the KL divergence between q(fz` )
and p(fz` | fz`−1) is O(M3) since it requires inversions of
covariance matrices. Therefore, the overall complexity
of estimating the lower bound is O(LNM3).

5 NUMERICAL SIMULATIONS

Compositional uncertainty As illustrated in Fig. 5
(first row) as well as in Table 1, the intermediate layers
in a DGP with a factorised variational distribution over
the inducing points collapse to nearly deterministic trans-
formations in the range of the observed data ([−1, 1]).
Meanwhile, the models with correlated inducing points
(second and third rows) capture more uncertainty, with
the approach proposed in Sec. 4.2 allowing us to capture
more uncertainty than jointly Gaussian inducing points.
Additional examples are provided in the Supplement.

Likelihood lower bounds In Table 1 we provide the
variational lower bounds of the marginal likelihood5,
p(y). We see that including the dependencies between
the layers to the variational distribution leads to higher
likelihood bounds, suggesting that factorised variational
distributions are suboptimal for DGP inference.

6 APPLICATIONS

As compositions of functions, DGPs provide a natural
way to represent data that is known to have a composi-
tional structure and thus they may be used in applications
to learn a more informative representation of the data.

Non-stationary time series Consider a sequence y ∈
RN that is observed at fixed time inputs x ∈ RN . The

5The baseline estimate of the true marginal likelihood could
be obtained by fitting the DGP using HMC (Havasi et al.,
2018), however, we found the existing implementation of this
scheme to be very unstable (as also noted by the authors) and
the estimation of marginal likelihood from posterior samples to
have high variance, hence we do not report such values.



Figure 6: Compositional model of heartbeats data, comparing results without (top) and with correlations across layers.

observed sequence is assumed to be generated by tempo-
rally warping the inputs x as follows:

y = f(g(x)) + ε, ε ∼ N (0, σ2) (24)

where g(·) is the temporal warping, f(·) is the latent
function that encodes the structure of the observed se-
quence. The model in (24) generates non-stationary se-
quences, which are convenient to model with a composi-
tion of a monotonic transformation of the inputs x and a
GP with a stationary kernel. The previous work on such
models treats the temporal warping g(·) as a determinis-
tic transformation (Snoek et al., 2014; Kazlauskaite et al.,
2019), disregarding the fact that many different compo-
sitions may explain the observed data equally well.

To illustrate this, we consider a recording of a heart-
beat (Bentley et al., 2011), and fit a two layer DGP
with monotonic flow (Ustyuzhaninov et al., 2020) in the
first layer. Here the prior on the warping functions g(·)
dictates that while an identity warp is preferred, other
smooth warps are plausible. The latent functions f(·) are
modelled using a GP with a stationary squared exponen-
tial kernel. Fig. 6 shows how introducing correlations
between the layers allows us to uncover a wide range
of possible solutions that follow the above-defined priors
and are consistent with the data. Meanwhile, the model
with the same prior assumptions that uses a mean-field
approximation collapses to a near-deterministic transfor-
mation, concentrating the probability mass in both layers
on one of the many possible solutions. An application to
sequence alignment is provided in the Supplement.

7 DISCUSSION

We have discussed the issue of compositional uncertainty
in the context of DGPs. This is in contrast to much of the
existing work on DGPs (as well as other Bayesian deep
learning approaches (Gal, 2016)) that primarily focuses

on predictive uncertainty. We argued that the uncertainty
about the function implemented by each individual layer
in the hierarchy provides a more informative model of
the data. The inference in DGP models is typically per-
formed using variational approximations that factorise
across the layers of the hierarchy. While computationally
convenient, such a factorisation implies that the distribu-
tions of the intermediate layers collapse to deterministic
transformations. Such behaviour diminishes some of the
other benefits offered by a compositional model of GPs,
such as a systematic way to impose informative func-
tional priors over each of the layers in the hierarchy and
a way to uncover distributions over each layer.

To gain further insight into the issue of compositional un-
certainty, we proposed two alternatives to the factorised
variational distributions of inducing points that include
some correlations between the layers. Contrary to the
factorised distributions in DSVI, the proposed variational
distributions uncover a range of possible solutions, re-
inforcing the argument that mean-field approximations
are prohibitive when it comes to capturing compositional
uncertainty. These consideration pose many open ques-
tions, ranging from technical considerations of more ef-
ficient ways to introduce correlations across layers and
ways to represent variational distributions that are multi-
modal (Lawrence, 2000), to broader questions about the
structures captured by each layer of the hierarchy, and
the applications that may benefit from the more accurate
estimates of compositional uncertainty.
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