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Abstract
Standard results in stochastic convex optimization bound the number of samples that an algorithm
needs to generate a point with small function value in expectation. More nuanced high probabil-
ity guarantees are rare, and typically either rely on “light-tail” noise assumptions or exhibit worse
sample complexity. In this work, we show that a wide class of stochastic optimization algorithms
for strongly convex problems can be augmented with high confidence bounds at an overhead cost
that is only logarithmic in the confidence level and polylogarithmic in the condition number. The
procedure we propose, called proxBoost, is elementary and builds on two well-known ingredi-
ents: robust distance estimation and the proximal point method. We discuss consequences for both
streaming (online) algorithms and offline algorithms based on empirical risk minimization.
Keywords: Proximal point, robust distance estimation, stochastic approximation, empirical risk

1. Introduction

Stochastic convex optimization lies at the core of modern statistical and machine learning. Standard
results in the subject bound the number of samples that an algorithm needs to generate a point with
small function value in expectation. Specifically, consider the problem

min
x

f(x) := Ez∼P [f(x, z)], (1)

where the random variable z follows a fixed unknown distribution P and f(·, z) is convex for
a.e. z ∼ P . Given a tolerance ε > 0, stochastic gradient methods produce a point xε satisfying
E[f(xε) −min f ] ≤ ε. The cost of the algorithms, measured by the number of stochastic gradient
evaluations, is O(1/ε2). The cost improves to O(1/ε) if f is strongly convex (e.g. Nemirovsky and
Yudin (1983); Polyak and Juditsky (1992); Ghadimi and Lan (2013); Hazan and Kale (2014)).

In this paper, we are interested in procedures that can produce an approximate solution with
high probability, meaning a point xε,p satisfying

P(f(xε,p)−min f ≤ ε) ≥ 1− p, (2)

where p > 0 can be arbitrarily small. By Markov’s inequality, one can guarantee (2) by generating a
point xε,p with E[f(xε,p)−min f ] ≤ pε. However, the resulting sample complexity can be very high
for small p with the typical scaling of O(1/(pε)) or O(1/(pε)2). Existing literature does provide a
path to reducing the dependence of the sample complexity on p to log(1/p), but this usually comes
with cost of either worse dependence on ε (e.g., Bousquet and Elisseeff (2002); Nesterov and Vial
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(2008); Shalev-Shwartz et al. (2009)) or more restrictive sub-Gaussian assumptions on the noise
(e.g. Nemirovski et al. (2008); Juditsky and Nesterov (2014); Ghadimi and Lan (2012, 2013)).

The goal of this work. We aim to develop generic low-cost procedures that equip stochastic
optimization algorithms with high confidence guarantees, without making restrictive noise assump-
tions. Consequently, it will be convenient to treat such algorithms as black boxes. More formally,
suppose that the function f may only be accessed through a minimization oracleM(f, ε), which on
input ε > 0, returns a point xε satisfying the low confidence bound

P(f(xε)−min f ≤ ε) ≥ 2

3
. (3)

By Markov’s inequality, minimization oracles arise from any algorithm that can generate xε satis-
fying E[f(xε) − min f ] ≤ ε/3. Let CM(f, ε) denote the cost of the oracle callM(f, ε). Given a
minimization oracle and its cost, we investigate the following question:

Is there a procedure within this oracle model of computation that returns a point xε,p
satisfying the high confidence bound (2) at a cost on the order of CM(f, ε) · log(1

p)?

We will see that when f is smooth and strongly convex, the answer is yes for a wide class of oracles
M(f, ε). Henceforth, suppose that f is µ-strongly convex with L-Lipschitz continuous gradient.
Then the cost CM(f, ε) typically depends on the condition number κ := L/µ� 1, as well as scale
sensitive quantities such as initialization quality and upper bound on the gradient variances, etc. The
procedures introduced in this paper execute the minimization oracle multiple times in order to boost
its confidence, with the total cost on the order of

log

(
log(κ)

p

)
log(κ) · CM

(
f, ε

log(κ)

)
.

Thus, high probability bounds are achieved with a small cost increase, which depends only loga-
rithmically on 1/p and polylogarithmically on the condition number κ.

Known techniques and limitations. Before introducing our approach, we discuss two tech-
niques for boosting the confidence of a minimization oracle, both of which have limitations. As a
first approach, one may query the oracle M(f, ε) multiple times and pick the “best” iterate from
the batch. This strategy is flawed since testing which iterate is “best” is often costly. To illustrate,
consider estimating the value f(x) = Ez [f(x, z)] to ε-accuracy for a fixed x—a mean estimation
problem. Even under sub-Gaussian assumptions, this task may require on the order of 1/ε2 samples
Catoni (2012). In this paper, the cost CM(f, ε) scales at worst as 1/ε, and therefore mean estimation
would significantly degrade the sample complexity.

The second approach leverages that with strong convexity (3) implies

P(‖xε − x̄‖ ≤
√

2ε/µ) ≥ 2

3
,

where x̄ is the minimizer of f . Given this bound, one may apply the robust distance estimation
technique of (Nemirovsky and Yudin, 1983, p. 243) and Hsu and Sabato (2016) to choose a point
near x̄: Run m trials ofM(f, ε) and find one iterate xi∗ around which the other points “cluster”.
Then the point xi∗ will be within a distance of

√
18ε/µ from x̄ with probability 1− exp(−m/18).

The downside of this strategy is that when converting naively back to function values, the subopti-
mality gap becomes f(xi∗) −min f ≤ L

2 ‖xi∗ − x̄‖
2 ≤ 9κε. Thus the function gap at xi∗ may be

significantly larger than the expected gap at xε, by a factor of the condition number.
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1.1. Contribution: The proxBoost algorithm

The procedure we introduce, called proxBoost , is based on the following simple observation: al-
though robust distance estimation induces a trade-off between robustness and efficiency, this trade-
off disappears for perfectly conditioned losses. Leveraging this fact, we design a continuation pro-
cedure that links together a short sequence of robust distance estimators for nearby problems with
rapidly improving condition numbers. More specifically, the proxBoost algorithm generates a
sequence of iterates x0, . . . , xT . The first iterate, x0, is simply the output of the robust distance
estimator for minimizing f . Subsequently, given an iterate xt, the procedure forms the better condi-
tioned function f t(x) := f(x) + µ2t

2 ‖x−xt‖
2 and declares the next iterate xt+1 to be the output of

the robust distance estimator for minimizing f t. We may in principle apply proxBoostwith any
minimization oracleM(f t, ε). The real benefit arises for concrete oracles, such as those based on
streaming algorithms (e.g., stochastic gradient) or offline methods (e.g., empirical risk minimiza-
tion), for which the cost of computing the robust distance estimator rapidly decreases as t increases
and conditioning improves. When used within the proxBoostmethod, these oracles benefit
from new high confidence guarantees with only a modest logarithmic and polylogarithmic
cost increase in 1/p and κ, respectively. We now illustrate this claim.

1.1.1. STREAMING ALGORITHMS WITH HEAVY TAILS: HIGH CONFIDENCE ACCELERATION

Stochastic gradient methods may serve as minimization oraclesM(f, ε) in the proxBoostmethod.
For these oracles, the cost CM(f, ε) is measured by the number of stochastic gradient estimates that
the algorithm must generate in order to reach functional accuracy ε in expectation. Although many
such oracles exist and may be used within proxBoost, our goal is to use the optimal algorithm
of Ghadimi and Lan (2013) as an oracle and and equip it with high confidence guarantees. This
algorithm is optimal in the sense that it has minimal cost among stochastic gradient methods within
a standard oracle model of computation. More specifically, the method generates a point xε satisfy-
ing E [f(xε)−min f ] ≤ ε with O

(√
κ ln (∆in/ε) + σ2/µε

)
stochastic gradient estimates, where

σ2 and ∆in are upper bounds on the variance of ∇f(x, z) and the initial function gap f(x0) − f∗,
respectively. In their original work—still the state-of-the-art—Ghadimi and Lan (2013, 2012) gave
a variant of this algorithm with high confidence guarantees, but their result relies on a crucial as-
sumption: the gradients must have light (subgaussian) tails.

Without an explicit light-tails assumption, it is unknown whether there is a high confidence
analog of Ghadimi and Lan (2013) that preserves its optimal complexity. As a first attempt, one
might try to adapt the robust distance estimation strategy, but this ultimately returns a point xε,p
satisfying (2) with overall cost that is substantially higher than the optimal method, roughly by a
factor of κ. In this work, we overcome this issue by embedding the optimal oracle of Ghadimi and
Lan (2013) within proxBoost . Assuming only that σ2 is finite and without any other light tail
assumption, we show that this strategy returns a point xε,p satisfying (2) with overall cost

Õ
(

log

(
1

p

)(√
κ ln

(
∆in

ε
∨ κ
)

+
σ2

µε

))
.

Here Õ(·) only hides logarithmic dependence on κ. Thus, proxBoost endows the optimal low-
confidence algorithm with high confidence guarantees at only a polylogarithmic rise in cost.

It is worthwhile to note that proxBoost seeded with the stochastic gradient method resembles
the weight decay schedule, which is commonly used in practice; see e.g. Ge et al. (2019); Yang
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et al. (2018). The procedure is also related to, but distinct from, the SGD3 algorithm of Allen-Zhu
(2018), which rapidly drives the gradient of the objective function to zero in expectation.

1.1.2. EMPIRICAL RISK MINIMIZATION WITH HEAVY TAILS: IMPROVED COMPLEXITY

An empirical risk minimization (ERM) procedure may also serve as a minimization oracleM(f, ε)
within proxBoost. Such procedures draw n i.i.d. samples z1, . . . , zn ∼ P and minimize the
empirical average

min
x

fS(x) :=
1

n

n∑
i=1

f(x, zi). (4)

For these oracles, the cost CM(f, ε) is the the number of samples n needed to ensure that the
minimizer yS of the empirical risk fS satisfies E [f(xS)−min f ] ≤ ε. While many works have an-
alyzed the sample complexity of ERM under various settings (e.g., Hsu and Sabato (2016); Bartlett
and Mendelson (2002); Shalev-Shwartz et al. (2009); Shalev-Shwartz and Ben-David (2014)) our
goal is to adapt and improve the bounds of Hsu and Sabato (2016), who developed high confi-
dence ERM guarantees for nonnegative losses f(x, z). In their work, Hsu and Sabato (2016)
couple ERM with the robust distance estimation strategy, producing a point ŷS with relative er-
ror guarantee P

[
f(ŷS) ≤ (1 + γ) min f

]
≥ 1 − p at a sample complexity cost on the order of

O (log (1/p) · (κ̂ κ/γ)). Here, loosely speaking, κ and κ̂ are the condition numbers of f and fS ,
respectively. It is unknown whether this sample complexity can be improved, but the appearance
of a squared “condition number” makes the sample complexity cost of ERM much larger than that
of streaming algorithms from Section 1.1.1. In this work, we provide such an improvement by
embedding ERM within proxBoost, yielding an order of magnitude better complexity

Õ
(

log

(
1

p

)(
κ̂

γ
+ κ̂

))
.

1.2. Related literature

Robust distance estimation has a long history. The estimator we use was first introduced in (Ne-
mirovsky and Yudin, 1983, p. 243), and is a multivariate generalization of the median of means
Alon et al. (1999); Jerrum et al. (1986). Robust distance estimation was further investigated in Hsu
and Sabato (2016) with a focus on high probability guarantees for ERM. Minsker (2015) analyzed
a different generalization using the geometric median. Other articles related to the subject include
median of means tournaments Lugosi and Mendelson (2016), robust multivariate mean estimators
Joly et al. (2017); Lugosi and Mendelson (2019), and bandits with heavy tails Bubeck et al. (2013).

Most available high confidence guarantees for streaming algorithms make sub-Gaussian as-
sumptions on the stochastic gradients Nemirovski et al. (2008); Juditsky and Nesterov (2014);
Ghadimi and Lan (2012, 2013). Recently, there has been renewed interest in obtaining robust guar-
antees without the light-tails assumption. For example, the two works Chen et al. (2017); Yin et al.
(2018) make use of the geometric median of means technique to robustly estimate the gradient in
distributed optimization. A different technique was recently developed by Juditsky et al. (2019), es-
tablishing high confidence guarantees for mirror descent type algorithms by truncating the gradient.

Although this paper focuses on the problem (1), it is appealing to ask whether similar techniques
are applicable in presence of convex constraints and/or regularizers. The answer is yes; the exten-
sion, however, is nontrivial and will appear in a forthcoming journal article. It is also worth pointing
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out that if f is convex (but not strongly convex) and an upper bound R on ‖x̄‖ is known, then we
may simply apply proxBoost to the the sum of f and a simple quadratic whose amplitude is on
the order of R2/ε. The outline of the paper is as follows. Sections 2 and 3 present the basic notation
and robust distance estimation technique. Section 4 introduces the proxBoostframework, while
Sections 5 and 6 discuss consequences for offline and streaming algorithms, respectively.

2. Notation

Throughout, we follow standard notation of convex optimization, as set out for example in the
monographs Nesterov (2018); Beck (2017). We let Rd denote an Euclidean space with inner product
〈·, ·〉 and the induced norm ‖x‖ =

√
〈x, x〉. The symbol Bε(x) will stand for the closed ball around

x of radius ε > 0. We will use the shorthand interval notation [1,m] := {1, . . . ,m} for any m ∈ N.
Consider a function f : Rd → R. The function f is called µ-strongly convex if the perturbed

function f − µ
2‖ · ‖

2 is convex. We say that f is L-smooth if it differentiable with L-Lipschitz
continuous gradient. If f is both µ-strongly convex and L-smooth, then standard results guarantee

µ

2
‖x− x̄‖2 ≤ f(x)− f(x̄) ≤ L

2
‖x− x̄‖2 for all x ∈ Rd, (5)

where x̄ is the minimizer of f . The ratio κ := L/µ is called the condition number of f .

Assumption 1 Throughout this work, we consider the optimization problem

min
x∈Rd

f(x) (6)

where f : Rd → R is µ-strongly convex and L-smooth. We set {x̄} = argmin f and f∗ = min f .

3. Background: a robust distance estimator

Let us suppose for the moment that the only access to f is by querying a black-box procedure
that estimates x̄. Namely, following Hsu and Sabato (2016) we will call a procedure D(ε) a weak
distance oracle for the problem (6) if it returns a point x satisfying

P[‖x− x̄‖ ≤ ε] ≥ 2

3
. (7)

We will moreover assume that when querying D(ε) multiple times, the returned vectors are all
statistically independent. Weak distance oracles arise naturally in stochastic optimization both in
streaming and offline settings. We will discuss specific examples in Sections 5 and 6.

It is well known from (Nemirovsky and Yudin, 1983, p. 243) and Hsu and Sabato (2016) that the
low-confidence estimate (7) can be improved to a high confidence guarantee by a clustering tech-
nique. We define the robust distance estimator D(ε,m) by the following procedure (Algorithm 1).

Thus the estimator D(ε,m) first generates m statistically independent points y1, . . . , ym by
querying m times the weak distance oracle D(ε). Then the procedure computes the smallest radius
ball around each point yi that contains more than half of the generated points {y1, . . . , ym}. Finally,
the point yi∗ corresponding to the smallest such ball is returned. See Figure 1 for an illustration.
The following lemma summarizes the guarantees of Algorithm 1.

Lemma 1 (Robust Distance Estimator) The point x returned by D(ε,m) satisfies

P
(
‖x− x̄‖ ≤ 3ε

)
≥ 1− exp

(
−m

18

)
.
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Algorithm 1 Robust Distance Estimation D(ε,m)

Input: access to a weak distance oracle D(ε) and trial count m.
Query m times the oracle D(ε) and let Y = {y1, . . . , ym} consist of the responses.
for i = 1, . . . ,m do

Compute ri = min
{
r ≥ 0 : |Br(yi) ∩ Y | > m

2

}
.

end
Return yi∗ where i∗ = argmini∈[1,m] ri.

y1

y2

y3

r1

r2

r3

Figure 1: Illustration of the robust distance estimator D(ε,m).

4. The proxBoostMethod

In this work, we explain how to efficiently use a robust distance estimator D(ε,m) to compute a
point x satisfying f(x) −min f ≤ δ with high probability. One naive approach is to appeal to the

upper bound in (5). Hence by Lemma 1, the point x = D (ε,m), with ε =
√

2δ
9L , satisfies

P (f(x)− f∗ ≤ δ) ≥ P (‖x− x̄‖ ≤ 3ε) ≥ 1− exp
(
−m

18

)
.

We will follow an alternative strategy, which can significantly decrease the overall cost when κ� 1.

The optimistic goal is to replace ε ≈
√

δ
L used in the callD(ε,m) by the much larger quantity

√
δ
µ .

The strategy we propose will apply a robust distance estimator D to a sequence of optimization
problems that are better and better conditioned. We begin by applyingD to f with the low accuracy√

δ
µ . In step i, we will applyD to a new function f i, which has condition number κi ≈ L+µ2i

µ+µ2i
, with

accuracy εi ≈
√

δ
µ+µ2i

. Continuing this process for T ≈ log2

(
L
µ

)
rounds, we arrive at accuracy

εT ≈
√

δ
µ+L and a function fT that is nearly perfectly conditioned with κT ≤ 2. In this way, the

total cost is amortized over the sequence of optimization problems. The key of course is to control
the error incurred by varying the optimization problems along the iterations.

The outlined continuation procedure can be succinctly described using an inexact proximal point
method in the sense of Martinet (1972, 1970); Rockafellar (1976). Henceforth, fix an increasing se-
quence of penalties λ0, . . . , λT and a sequence of centers x0, . . . , xT . For each index i = 0, . . . , T ,
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define the perturbed functions and their minimizers:

f i(x) := f(x) +
λi
2
‖x− xi‖2, x̄i+1 := argmin

x
f i(x).

The exact proximal point method proceeds by inductively declaring xi = x̄i for i ≥ 1. Since
computing x̄i exactly is in general impossible, we will instead monitor the error ‖x̄i − xi‖. The
following elementary result will form the basis for the rest of the paper. To simplify notation, we
will set x̄0 := argmin f and λ−1 := 0, throughout.

Theorem 2 (Inexact proximal point method) For all j ≥ 0, the following estimate holds:

f j(x̄j+1)− f∗ ≤
j∑
i=0

λi
2
‖x̄i − xi‖2. (8)

Consequently, for all j ≥ 0 we have the error decompositions:

f(xj+1)− f∗ ≤ (f j(xj+1)− f j(x̄j+1)) +

j∑
i=0

λi
2
‖x̄i − xi‖2, (9)

f(xj)− f∗ ≤
L+ λj−1

2
‖x̄j − xj‖2 +

j−1∑
i=0

λi
2
‖x̄i − xi‖2. (10)

Proof We first establish (8) by induction. For the base case j = 0, observe λ−1 = 0 and f0(x̄1) =
minx f

0(x) ≤ f0(x̄0) = f∗+ λ0
2 ‖x̄0− x0‖2. As the inductive assumption, suppose (8) holds up to

iteration j − 1. We then conclude

f j(x̄j+1) ≤ f j(x̄j)
(a)
≤ f j−1(x̄j) +

λj
2
‖x̄j − xj‖2

(b)
≤ f∗ +

j∑
i=0

λi
2
‖x̄i − xi‖2,

where (a) uses the estimate f(x̄j) ≤ f j−1(x̄j) and (b) follows from the inductive assumption.
This completes the proof of (8). Next, observe the estimate f(xj+1) − f∗ ≤ f j(xj+1) − f∗ =
(f j(xj+1)− f j(x̄j+1)) + f j(x̄j+1)− f∗. Upper-bounding the right-hand-side using (8) establishes
(9). Inequality (10) for j = 0 follows directly from smoothness of f , while for j ≥ 1, it follows by
combining (9) with the fact that f j is (L+ λj)-smooth.

The main conclusion of Theorem 2 is the decomposition of the functional error described in (9).
Namely, the estimate (9) upper bounds the error f(xj+1)−min f as the sum of the suboptimality in
the last step fT (xT+1)−fT (x̄T+1) and the errors λi

2 ‖x̄i−xi‖
2 incurred along the way. By choosing

T and λi sufficiently large, we can be sure that the function fT is well-conditioned. Moreover,
in order to ensure that each term in the sum λi

2 ‖x̄i − xi‖2 is of order δ, it suffices to guarantee

‖x̄i − xi‖ ≤
√

2δ
λi

for each index i. Since λi is an increasing sequence, it follows that we may
gradually decrease the tolerance on the errors ‖x̄i−xi‖, all the while improving the conditioning of
the functions we encounter. With this intuition in mind, we introduce the proxBoost procedure
(Algorithm 2). The algorithm depends on the amplitude sequence {λj}Tj=1, which we will treat as
a global parameter specified in theorem statements.
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Algorithm 2 proxBoost(δ, p, T )

Input: δ ≥ 0, p ∈ (0, 1), T ∈ N
Set λ−1 = 0, ε−1 =

√
2δ
µ .

Generate x0 satisfying ‖x0 − x̄0‖ ≤ ε−1 with probability 1− p.
for j = 0, . . . , T do

Set εj =
√

2δ
µ+λj

Generate a point xj+1 satisfying

P [‖xj+1 − x̄j+1‖ ≤ εj | Ej ] ≥ 1− p, (11)

where Ej denotes the event Ej :=
{
xi ∈ Bεi−1(x̄i) for all i ∈ [0, j]

}
.

end
Return xT+1

Thus proxBoost begins by generating a point x0 that is a distance of
√

2δ
µ away from the

minimizer of f with probability 1 − p. This task can be achieved by applying a robust distance
estimator on f , as discussed in Section 3. In each subsequent iteration, xj+1 is defined to be a point

that is within a radius of εj =
√

2δ
µ+λj

from the minimizer of f j with probability 1− p conditioned
on the event Ej . The event Ej encodes that each previous iteration was successful in the sense that
the point xi indeed lies inside the ball Bεi−1(x̄i) for all i = 0, . . . , j. Thus xj+1 can be determined
by a procedure that conditioned on the event Ej is a robust distance estimator on the function f j .

The following theorem summarizes the guarantees of the proxBoost procedure.

Theorem 3 (proxBoost) Fix a constant δ > 0, failure probability p ∈ (0, 1) and a number T ∈ N.
Then with probability at least 1− (T + 2)p, the point xT+1 = proxBoost(δ, p, T ) satisfies

f(xT+1)−min f ≤ δ

(
L+ λT
µ+ λT

+
T∑
i=0

λi
µ+ λi−1

)
. (12)

Proof We first prove by induction the estimate

P[Et] ≥ 1− (t+ 1)p for all t = 0, . . . , T. (13)

The base case t = 0 is immediate from the definition of x0. Suppose now that (13) holds for some in-
dex t−1. Then the inductive assumption and the definition of xt yield P[Et] = P[Et

∣∣Et−1]P[Et−1] ≥
(1− p) (1− tp) ≥ 1 − (t + 1)p, thereby completing the induction. Using (10) and the definitions
of xT+1 and εj within the event ET immediately yields (12).

Looking at the estimate (12), we see that the final error f(xT+1) − min f is controlled by the
sum

∑T
i=0

λi
µ+λi−1

and the condition number L+λT
µ+λT

of fT . A moment of thought yields an appealing

choice λi = µ2i for the proximal parameters. Indeed, then every element in the sum λi
µ+λi−1

is upper

bounded by two and the quotient L+λT
µ+λT

is upper bounded by two after only T = dlog(L/µ)e rounds.
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Corollary 4 (Proximal boost with geometric decay) Fix an iteration count T , a target accuracy
ε > 0, and a failure probability p ∈ (0, 1). Define the algorithm parameters:

δ =
ε

3 + 2T
and λi = µ2i ∀i ∈ [0, T ].

Then the point xT+1 = proxBoost(δ, p, T ) satisfies P(f(xT+1)−min f ≤ ε) ≥ 1− (T + 2)p.

In the next two sections, we seed proxBoostwith streaming and ERM algorithms. The reader,
however, should keep in mind that proxBoost is agnostic to the inner workings of the robust dis-
tance estimators it uses. The only caveat is that some distance estimators require auxiliary quantities
as input (e.g. initial function gap). Therefore, we may have to iteratively update such estimates.

5. Empirical risk minimization with heavy tails: improved complexity

In this section, we explore the consequences of proxBoost for empirical risk minimization. Set-
ting the stage, fix a probability space (Ω,F ,P) and equip Rd with the Borel σ-algebra. Consider
the stochastic optimization problem (1), where f : Rd × Ω → R+ is a measurable nonnegative
function. A common approach to problems of the form (1) is based on empirical risk minimization
(ERM): collect i.i.d. samples z1, . . . , zn ∼ P and compute a minimizers xS of the empirical av-
erage fS(x) := 1

n

∑n
i=1 f(x, zi). A central question is to determine the number n of samples that

would ensure low generalization error f(xS) −min f , with high probability. There is a vast liter-
ature on this subject; representative works include Hsu and Sabato (2016); Bartlett and Mendelson
(2002); Shalev-Shwartz et al. (2009); Shalev-Shwartz and Ben-David (2014). We build on Hsu and
Sabato (2016), who focused on high confidence bounds for smooth strongly convex minimization.

Assumption 2 Following Hsu and Sabato (2016), we make the following assumptions on the loss.

1. (Strong convexity) There exist a real µ > 0 and a natural number N ∈ N such that:

(a) the population loss f is µ-strongly convex,

(b) the loss x 7→ fS(x) is µ-strongly convex with probability at least 5/6, whenever |S| ≥ N .

2. (Smoothness) There exist constants L, L̂ > 0 such that:

(a) for a.e. z ∼ P , the loss x 7→ f(x, z) is nonnegative and L̂-smooth,

(b) the population objective x 7→ f(x) is L-smooth. (Note L ≤ L̂.)

The following result proved in (Hsu and Sabato, 2016, Theorem 15) shows that the empirical
risk minimizer is a weak distance oracle for the problem (1).

Lemma 5 Fix an i.i.d. sample z1, . . . , zn ∼ P of size n ≥ N . Suppose Assumption 2 holds. Then

the minimizer xS of the empirical risk (4) satisfies the bound P
[
‖xS − x̄‖ ≤

√
96L̂f∗

nµ2

]
≥ 2/3.

In particular, using Algorithm 1 one may turn ERM into a robust distance estimator for (5). It is
an easy computation, using Lemma 1 and the bound (5), to estimate the functional sub-optimality
of the returned point x. Namely, the main result of (Hsu and Sabato, 2016, Corollary 16) shows that
by setting m = d18 ln(1/p)e and n = max{d432κ̂κ

γ e, N}, the returned point x satisfies

P[f(x) ≤ (1 + γ)f∗] ≥ 1− p, (14)

9
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while the overall sample complexity is⌈
18 ln

(
1

p

)⌉
·max

{⌈
432κ̂κ

γ

⌉
, N

}
, (15)

where κ̂ = L̂/µ and κ = L/µ. Notice that the guarantee (14) measures relative error.
We will now see how to find a point x satisfying (14) with significantly fewer samples than (15)

by embedding ERM within proxBoost. Algorithm 3 is the robust distance estimator induced by
ERM, while Algorithm 4 is the proxBoost algorithm specialized to ERM.

Algorithm 3 ERM-R(n,m, λ, x)

Input: sample count n ∈ N, trial count m ∈ N, center x ∈ Rd, amplitude λ > 0.
. Form the points Y = {y1, . . . , ym} by running ERM m times:
for i = 1, . . . ,m do

Draw i.i.d. samples z1, . . . , zn ∼ P and compute yi = argmin
y

1

n

n∑
i=1

f(y, zi) +
λ

2
‖y − x‖2.

end
. Form the robust distance estimator using Y = {y1, . . . , ym}:
for i = 1, . . . ,m do

Compute ri = min{r ≥ 0 : |Br(yi) ∩ Y | > m
2 }.

end
Return yi∗ where i∗ = argmini∈[1,m] ri

Algorithm 4 BoostERM(γ, T,m)

Input: T,m ∈ N, γ > 0

Set λ−1 = 0, x−1 = 0, n−1 = 432L̂
γµ

for j = 0, . . . , T + 1 do
xj = ERM-R(nj−1,m, λj−1, xj−1)

nj = 432
⌈
L̂+λj
µ+λj

(
1
γ +

∑j
i=0

λi
µ+λi−1

)⌉
∨N

end
Return xT+1

The following result follows quickly from Theorem 3; see Appendix A for details.

Theorem 6 (Efficiency of BoostERM with geometric decay) Fix a target relative accuracy γ >
0 and a probability of failure p ∈ (0, 1). Define the algorithm parameters:

T = dlog2 (κ)e , m =
⌈
18 ln

(
T+2
p

)⌉
, γ̃ =

γ

3 + 2T
, λi = µ2i.

Then with probability of at least 1− p, the point xT+1 = BoostERM(γ̃, T,m) satisfies f(xT+1) ≤
(1 + γ)f∗. Moreover, the total number of samples used by the algorithm is

O
(

ln(κ) ln

(
ln(κ)

p

)
·max

{(
1 + 1

γ

)
κ̂ ln(κ), N

})
.

Notice that the sample complexity provided by Theorem 6 is an order of magnitude better than
(15) in terms of the dependence on the condition numbers κ̂ and κ.

10
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6. Streaming algorithms with heavy tails: high confidence acceleration

In this section, we will seed proxBoostwith the robust distance estimator, induced by (acceler-
ated) stochastic gradient methods. An important point is that the complexity of such methods de-
pends on the initial gap f(x0)−f∗. Consequently, in order to know how many iterations are needed
to reach an accuracy E[f(xi)]− f∗ ≤ δ, we must have available an upper bound ∆ ≥ f(x0)− f∗.
Thus, we will have to dynamically update an estimate of the initialization quality for each proximal
subproblem along the iterations of proxBoost. The following assumption formalizes this idea.

Assumption 3 Consider the proximal minimization problem

min
y

ϕx(y) := f(y) +
λ

2
‖y − x‖2.

Let ∆ > 0 be a real number satisfying ϕx(x) − minϕx ≤ ∆. We will let Alg(δ, λ,∆, x) be a
procedure that returns a point y satisfying P[ϕx(y)−minϕx ≤ δ] ≥ 2

3 .

Clearly, since ϕx is (µ+ λ)-strongly convex, Alg(δ, λ,∆, x) is a weak distance oracle for ϕx.
Indeed, denoting by ȳx the minimizer of ϕx, the procedure returns a point y satisfying P(‖y− ȳx‖ ≤
ε) ≥ 2

3 with ε =
√

2δ
µ+λ . Following the recipe in Section 2, we may turn it into a robust distance

estimator for ϕx, as long as ∆ upper bounds the initialization error. We record the robust distance
estimator induced by Alg(·) as Algorithm 5 and the resulting proxBoost as Algorithm 6.

Algorithm 5 Alg-R(δ, λ,∆, x,m)

Input: accuracy δ > 0, amplitude λ > 0, upper bound ∆ > 0, center x ∈ Rd, trial count m ∈ N.
Query m times Alg(δ, λ,∆, x) and let Y = {y1, . . . , ym} consist of the responses.
for i = 1, . . . ,m do

Compute ri = min{r ≥ 0 : |Br(yi) ∩ Y | > m
2 }.

end
Return yi∗ where i∗ = argmini∈[1,m] ri.

Algorithm 6 BoostAlg(δ,∆in, xin, T,m)

Input: accuracy δ > 0, upper bound ∆in > 0, center xin ∈ Rd, and m,T ∈ N
Set λ−1 = 0, ∆−1 = ∆in, x−1 = xin

for j = 0, . . . , T + 1 do
xj = Alg-R(δ/9, λj−1,∆j−1, xj−1,m)

∆j = δ
(
L+λj−1

µ+λj−1
+
∑j−1

i=0
λi

µ+λi−1

)
end
Return xT+1.

The following result follows quickly from Theorem 3; see Appendix B for details.

Theorem 7 (Efficiency of BoostAlg with geometric decay) Fix an arbitrary point xin ∈ Rd

and let ∆in be any upper bound ∆in ≥ f(xin)−min f . Fix a target accuracy ε > 0 and probability
of failure p ∈ (0, 1), and set the algorithm parameters

T = dlog2(κ)e , m =
⌈
18 ln

(
2+T
p

)⌉
, δ =

ε

3 + 2T
, λi = µ2i.

11
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Then the point xT+1 = BoostAlg(δ,∆in, xin, T,m) satisfies P(f(xT+1)−min f ≤ ε) ≥ 1− p.
Moreover, the total number of calls to Alg(·) is

⌈
18 ln

(
d2+log2(κ)e

p

)⌉
d2 + log2(κ)e, while the

initialization errors satisfy, ∆i ≤ κ+1+2dlog2(κ)e
3+2dlog2(κ)e ε, for all i ∈ [0, T + 1].

Illustration: robust (accelerated) stochastic gradient methods

We now concretely describe how to use (accelerated) stochastic gradient methods as Alg(·) within
the proxBoost procedure. Following the standard literature on streaming algorithms, we suppose
that the only access to f is through a stochastic gradient oracle. Namely, fix a probability space
(Ω,F ,P) and let G : Rd × Ω→ R be a measurable map satisfying

EzG(x, z) = ∇f(x) and Ez‖G(x, z)−∇f(x)‖2 ≤ σ2.

The performance of numerical methods is judged by the number of stochastic gradient evaluations
G(x, z) with z ∼ P required by the algorithm to produce an approximate minimizer of the problem.

Fix an initial point xin and let ∆in > 0 satisfy ∆in ≥ f(x0) − f∗. It is well known that an
appropriately modified stochastic gradient method can generate a point x satisfying Ef(x)− f∗ ≤
ε with sample complexity O

(
κ log

(
∆in
ε

)
+ σ2

µε

)
. The accelerated stochastic gradient methods

Ghadimi and Lan (2013); Kulunchakov and Mairal (2019) have the much better sample complexity
O
(√

κ log
(

∆in
ε

)
+ σ2

µε

)
.We may use either procedure as Alg(·) within proxBoost. Theorem 7

then guarantees that we will find x satisfying P[f(x)− f∗ ≤ ε] ≥ 1− p with sample complexities

O
(

ln (κ) ln

(
lnκ

p

)
·
(
κ ln

(
∆in ln(κ)

ε
∨ κ
)

+
σ2 ln(κ)

µε

))
,

O
(

ln (κ) ln

(
lnκ

p

)
·
(√

κ ln

(
∆in ln(κ)

ε
∨ κ
)

+
σ2 ln(κ)

µε

))
,

for the unaccelerated and accelerated methods, respectively. Notice that the overhead cost for ob-
taining the high confidence guarantee is only polylogarithmic in κ and logarithmic in 1/p.

Conclusion. This work developed a generic continuation procedure for minimizing stochastic
smooth and strongly convex functions. The procedure, proxBoost, when paired with typical
algorithms, boosts low confidence guarantees to high confidence outcomes. We presented two ap-
plications to streaming and offline algorithms. First, we showed that proxBoost equips the (ac-
celerated) stochastic gradient methods of Ghadimi and Lan (2013) with high confidence guarantees
at an overhead cost that is only polylogarithmic in κ and logarithmic in 1/p. Second, we improved
by a factor of the condition number the sample efficiency of ERM in Hsu and Sabato (2016).
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Appendix A. Proof of Theorem 6

In this section we prove Theorem 6. Indeed, we will prove a more general result, Theorem A.1.
Theorem 6 will then follow immediately under the parameter setting specified in its statement.

Theorem A.1 (Efficiency of BoostERM) Fix a target accuracy γ > 0 and numbers T,m ∈ N.
Then with probability at least 1 − (T + 2) exp

(
−m

18

)
, the point xT+1 = BoostERM(γ, T,m)

satisfies

f(xT+1)− f∗ ≤

(
L+ λT
µ+ λT

+

T∑
i=0

λi
µ+ λi−1

)
γf∗.

Proof We will verify that Algorithm 4 is an instantiation of Algorithm 2 with δ = γf∗ and
p = exp(−m

18). More precisely, we will prove by induction that with this choice of p and δ,
the iterates xj satisfy (11) for each index j = 0, . . . , T . As the base case, consider the evaluation
x0 = ERM-R(n−1,m, λ−1, x−1), where x−1 can be arbitrary since λ−1 = 0. Then Lemma 1 and
Theorem 5 guarantee

P

‖x0 − x̄0‖ ≤ 3

√
96L̂f∗

n−1µ2

 ≥ 1− exp
(
−m

18

)
.
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Taking into account the definitions of n−1 in Algorithm 4 and ε−1 in Algorithm 2, we deduce

P [‖x0 − x̄0‖ ≤ ε−1] ≥ 1− p,

as claimed. As an inductive hypothesis, suppose that (11) holds for x0, x1, . . . , xj−1. We will prove
it holds for xj = ERM-R(nj−1,m, λj−1, xj−1). To this end, suppose that the event Ej−1 occurs.
Then by the same reasoning as in the base case, the point xj satisfies

P

‖xj − x̄j‖ ≤ 3

√
96(L̂+ λj−1)f j−1(x̄j)

nj−1(µ+ λj−1)2

 ≥ 1− exp
(
−m

18

)
. (16)

Now, using (8) and the inductive assumption that ‖xi− x̄i‖ ≤ εi−1 =
√

2δ
µ+λi−1

for all i ∈ [0, j−1]

(conditioned on Ej−1), we have

f j−1(x̄j)− f∗ ≤
j−1∑
i=0

λi
2
‖x̄i − xi‖2 ≤ δ

j−1∑
i=0

λi
µ+ λi−1

,

which, together with δ = γf∗, implies

f j−1(x̄j) ≤ f∗ + δ

j−1∑
i=0

λi
µ+ λi−1

=

(
1 + γ

j−1∑
i=0

λi
µ+ λi−1

)
f∗.

Combining this inequality with (16), we conclude that conditioned on the event Ej−1, we have with
probability 1− p the guarantee

µ+ λj−1

2
‖xj − x̄j‖2 ≤

432(L̂+ λj−1)(1 + γ
∑j−1

i=0
λi

µ+λi−1
)

nj−1(µ+ λj−1)
· f∗ ≤ γf∗ = δ, (17)

where the last inequality follows from the definition of nj−1. This implies that the estimate (11)

holds for xj with εj−1 =
√

2δ
µ+λj−1

. An application of Theorem 3 completes the proof.

Appendix B. Proof of Theorem 7

In this section, we prove Theorem 7. Indeed, we will prove a more general result, Theorem B.1.
Theorem 7 will then follow immediately under the parameter setting specified in its statement.

Theorem B.1 (Efficiency of BoostAlg) Fix an arbitrary point xin ∈ Rd and let ∆in be any
constant satisfying ∆in ≥ f(xin) −min f . Fix natural numbers T,m ∈ N. Then with probability
at least 1− (T + 2) exp

(
−m

18

)
, the point xT+1 = BoostAlg(δ,∆in, xin, T,m) satisfies

f(xT+1)−min f ≤ δ

(
L+ λT
µ+ λT

+
T∑
i=0

λi
µ+ λi−1

)
.
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Proof We will verify that Algorithm 6 is an instantiation of Algorithm 2 with p = exp(−m
18). More

precisely, we will prove by induction that with this choice of p, the iterates xj satisfy (11) for each
index j = 0, . . . , T . For the base case j = 0, Lemma 1 guarantees that with probability 1 − p, the
point x0 produced by the robust distance estimator Alg-R satisfies

‖x0 − x̄0‖ ≤ 3

√
2 · δ/9
µ

= ε−1.

As an inductive hypothesis, suppose that (11) holds for the iterates x0, . . . , xj−1 for some j ≥ 1.
We will prove it holds for xj . To this end, suppose that the event Ej−1 occurs. Using (10) we
deduce

f(xj−1)− f∗ ≤ L+ λj−2

2
‖x̄j−1 − xj−1‖2 +

j−2∑
i=0

λi
2
‖x̄i − xi‖2

≤ δ(L+ λj−2)

µ+ λj−2
+

j−2∑
i=0

δλi
µ+ λi−1

= ∆j−1,

where the second inequality follows from the inclusion xi ∈ Bεi−1(x̄i) with εi−1 =
√

2δ
µ+λi−1

for

all i = 0, . . . , j − 1. By examining the definition of f j−1, we deduce f j−1(xj−1) = f(xj−1) and
min f j−1 ≥ min f = f∗, which imply

f j−1(xj−1)−min f j−1 ≤ f(xj−1)− f∗ ≤ ∆j−1. (18)

That is, ∆j−1 is an upper bound on the initial gap f j−1(xj−1) −min f j−1 for all j, whenever the
eventEj−1 occurs. Moreover, Lemma 1 guarantees that conditioned onEj−1 with probability 1−p,
the following estimate holds:

‖xj − x̄j‖ ≤ 3

√
2 · δ/9
µ+ λj−1

= εj−1.

Thus (11) holds for the iterate xj , as desired. An application of Theorem 3 completes the proof.
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