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Abstract
We study a prototypical problem in empirical Bayes. Namely, consider a population consisting of
k individuals each belonging to one of k types (some types can be empty). Without any structural
restrictions, it is impossible to learn the composition of the full population having observed only a
small (random) subsample of size m = o(k). Nevertheless, we show that in the sublinear regime
of m = ω(k/ log k), it is possible to consistently estimate in total variation the profile of the
population, defined as the empirical distribution of the sizes of each type, which determines many
symmetric properties of the population. We also prove that in the linear regime of m = ck for
any constant c the optimal rate is Θ(1/ log k). Our estimator is based on Wolfowitz’s minimum
distance method, which entails solving a linear program (LP) of size k. We show that there is a
single infinite-dimensional LP whose value simultaneously characterizes the risk of the minimum
distance estimator and certifies its minimax optimality. The sharp convergence rate is obtained by
evaluating this LP using complex-analytic techniques.
Keywords: High-dimensional statistics, empirical Bayes, sublinear algorithms, minimax rate,
H∞-relaxation, Laguerre polynomials.

1. Introduction

Consider a finite population, say, an urn of at most k colored balls, with colors indexed by, without
loss of generality, [k] , {1, . . . , k}. Let θj denote the the number of balls of color j ∈ [k] present in
the urn. We observe a subsample, obtained by revealing each ball independently with probability p.
This sampling scheme is referred to as the Bernoulli sampling model Bunge and Fitzpatrick (1993),
a specific form of sampling without replacements. We will be interested in both the linear and the
sublinear regime, in which the sampling probability p is a small constant or vanishing as k grows,
respectively.

It is not hard to show (see Appendix B) that unless all but a vanishing fraction of the urn is
observed, it is impossible to consistently estimate the empirical distribution of the colors, which
aligns with the conventional wisdom that the sample size needs to exceed the number of parameters.
Fortunately, many interesting properties about the population (such as entropy, number of distinct
elements) are label-invariant and hence learnable through the profile of the population Orlitsky et al.
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(2005), defined as the empirical distribution of θ = (θ1, . . . , θk):

π =
1

k

k∑
j=1

δθj . (1)

where δm denotes the Dirac measure (point mass) at m, Note that π is supported on {0, . . . , k} with
mean at most one and probability mass function given by πm = 1

k

∑k
j=1 1{θj=m} form = 0, . . . , k.

The profile provides information about the diversity of a population. For example, π = (1− 1
k )δ0 +

1
kδk and π = δ1 correspond to the two extremes of all balls having the same color and different
colors, respectively. Furthermore, π0 encodes the total number c of distinct colors in urn, since
π0 = 1− c/k.

Based on the subsampled population, our goal is to reconstruct the profile π of the full popula-
tion. Since many symmetric properties can be expressed as its linear functionals, estimating π under
the total variation (TV) distance allows simultaneous estimation of all such bounded properties. Our
main result is that the profile can be estimated consistently even in the sublinear regime.

Let Xj ∼ Binom(θj , p) be the number of observed balls of color j. The minimax TV risk of
estimating π is defined as

R(k) = inf supE[‖π − π̂‖TV]. (2)

where ‖π − π̂‖TV , 1
2

∑
m≥0 |πm − π̂m|, the supremum is over all urns of at most k balls, and

the infimum is over all estimators π̂ as a function of X = (X1, . . . , Xk). Our main result is the
following.

Theorem 1 There exist absolute constants c, C, d0, such that if log k ≥ d0
p̄ , then

min

{
p̄

p
,
√

log k

}
c

log k
≤ R(k) ≤ min

{
C

p log k
, 1

}
, (3)

where p̄ = 1 − p. Furthermore, the upper bound in fact holds for all p ∈ (0, 1), achieved by a
minimum-distance estimator computable in polynomial time.

In the linear regime, Theorem 1 shows that the optimal TV rate is Θ( 1
log k ) for any constant

sampling probability p. This should be contrasted with the estimation of π0, known as the dis-
tinct elements problem, which has been extensive studied in the literature Bunge and Fitzpatrick
(1993); Charikar et al. (2000); Raskhodnikova et al. (2009); Valiant and Valiant (2011); Wu and
Yang (2018). The precise behavior of the minimax risk of estimating π0 was determined in Wu and
Yang (2018). In particular, if 1

log k . p . 1, the optimal rate of π0 is k−Θ(p), much faster than
estimating π itself. Our result refines this observation and reveals the following dichotomy: the
polynomial rate k−Θ(p) holds not just for estimating π0 but for all πm with m = o(log k); however,
for m = Θ(log k), πm is much harder to estimate and the rate is no faster than Ω( 1

(log k)2 ). This

explains the overall TV risk Ω( 1
log k ) for estimating the full distribution π.

In the sublinear regime, Theorem 1 shows that consistent estimation is possible if p = ω( 1
log k ).

Although our current lower bound does not conclude its optimality, it is indeed the case based on
existing impossibility results of the distinct element problem that shows π0 cannot be estimated with
vanishing error if p = O( 1

log k ) Valiant (2012); Wu and Yang (2018).
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For simplicity, we focus on the Bernoulli sampling model in this paper. The results can be
extended to models such as iid sampling or Poisson sampling by the usual simulation or reduction
argument (cf. (Wu and Yang, 2018, Appendix A)).

1.1. Related work

While the precise question we are considering here was not studied before, there is a long history
of related work. First we observe that the goal of estimating functionals of θ = (θ1, . . . , θk) is
a “compound statistical decision problem”, in the language of Robbins (1951). Instead of study-
ing minimax risks of estimating θ or its functionals, Robbins (1951) proposed an alternative goal
(“subminimaxity”), which in our case can be rephrased as follows: construct an estimator which
has vanishing excess risk (regret) over that of the oracle estimator k̂j(Xj , π) having access to em-
pirical distribution π of θ. The general recipe proposed in Robbins (1951) (and later promulgated
by Robbins (1956) under the name of “empirical Bayes”), may roughly be described as a two-step
procedure: first, one produces an estimate π̂ of π, and then, second, substitutes it into the oracle
estimator obtaining k̂j(Xj , π̂). Thus, Robbins (Robbins, 1951, p. 146) asked (his Problem I) how
well can the first step be done? Our work addresses this question.

The main part of our theorem characterizes how well the “prior” π can be estimated. We men-
tion that while empirical Bayes method is sometimes understood only as a way to derive estimates
of a particular functional of the prior, as, for example, in the Good-Turing estimator for the number
of unseen species, the idea of estimating the prior itself has also been proposed in Robbins (1956);
Edelman (1988). Furthermore, the solution advocated therein, Wolfowitz’s minimum distance esti-
mator Wolfowitz (1957), is the one we employ in the proof of our result. In this regard, one of the
main contributions of the paper is showing that performance of the minimum distance estimators is
characterized by means of a certain function δTV(t), defined as the value of an infinite-dimensional
linear program, which simultaneously can also be used to produce a matching lower bound. This
duality between the upper and the lower bound has previously been observed and operationalized
in the context of estimating a single linear functional in Juditsky and Nemirovski (2009); Polyan-
skiy et al. (2017); Polyanskiy and Wu (2019). Here we extend this program to estimating the full
distribution, and evaluate the relevant δTV function using complex-analytic techniques.

Arguably, the counterintuitive part of our result is the possibility of estimating the profile π con-
sistently in TV, despite the absence of structural assumptions on the urn configuration and despite
p possibly vanishing. In fact, this is a manifestation of the fascinating effect originally discovered
by Orlitsky et al. (2005) and further developed in Valiant and Valiant (2013); Han et al. (2018),
namely, although there exists no consistent estimator of the empirical color distribution, its sorted
version can be estimated consistently. Nevertheless, the best upper bound that can be extracted
(see Appendix A.1 for details) from existing results is O( 1√

log k
) in the linear regime and there is

no applicable lower bound. Theorem 1 shows that this rate is suboptimal by a square root factor,
potentially due to the fact that these previous work did not exploit the finiteness of the population.

In terms of techniques, while the approach of Wu and Yang (2018) to the distinct elements
problem relies on polynomial interpolation and approximation, both the scheme (minimum distance
estimator) and the lower bound in the present paper involve linear programming (LP), which is more
akin in spirit to the work of Valiant and Valiant (2011); Polyanskiy and Wu (2019). The technical
novelty here is that we use tools from complex analysis to analyze the behavior of the LP.
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Finally, we mention that a different line of research tracing back to Lord (1969) studies the
“mirror image” of our problem: estimating the empirical distribution of parameters p1, . . . , pk from
samples Xj ∼ Binom(θ, pj). The recent work of Tian et al. (2017) uses the method of moments
to obtain the optimal rate for θ = o(log k). This is further improved in Vinayak et al. (2019) by
analyzing the nonparametric maximum likelihood. Alas, in this model, even for large population it
is not possible to achieve consistent estimation without θ →∞.

The rest of the paper is organized as follows. Section 2 introduces the minimum distance esti-
mator and a general characterization of its risk by a linear program. Sections 3 and 4 are devoted
to analyzing the behavior of this LP using complex-analytic techniques and Laguerre polynomials,
completing the proof of Theorem 1. Appendix A contains a detailed discussion on related technical
results and a list of open problems. Omitted proofs are contained in the rest of the appendices.

2. Minimum distance estimator and statistical guarantees

As mentioned in the last section, estimation of the profile revolves around the idea of minimum
distance method, which fits a statistical model that is closest to the sample distribution with respect
to some meaningful statistical distance. Examples of minimum distance estimators can be traced
back to as early as Pearson (1900), which led to the discovery of the famous minimum chi-square
method. In the 1950’s, Wolfowitz studied minimum distance methods for the first time as a class, for
obtaining strongly (almost surely) consistent estimators Wolfowitz (1957). The pioneering work of
Beran (1977) demonstrates how minimum-Hellinger method can improve upon classical estimators
such as the maximum likelihood in the presence of outliers. For a comprehensive account and more
recent development we refer the readers to the monograph Basu et al. (2011).

To describe the paradigm of the minimum distance estimators we first introduce the general
setting of Robbins’ Problem I mentioned in Section 1.1. Consider a parametric family of distri-
butions {Pθ : θ ∈ Θ} on some measurable space X , viewed also as a Markov transition kernel
P from Θ to X . Let d be a distance on the space of priors P(Θ). Select θ1, . . . , θk from Θ such
that 1

k

∑k
j=1 c(θj) ≤ 1, where c : Θ → R is some cost function (could be zero), resulting in the

empirical distribution π , 1
k

∑k
j=1 δθj . Given observations Xj

iid∼ Pθj , an estimate π̂(X1, . . . , Xk)
is produced with the goal of minimizing E[d(π̂, π)]. The minimax risk is defined as

R(k) = inf
π̂

sup
θ1,...,θk

E[d(π̂, π)] .

Remark 2 Note that Robbins also defined a related Problem II (Robbins, 1951, p. 147) in which
θj

iid∼ G with EG[c(θ)] ≤ 1 and the goal is to estimate the prior G instead of the (now random)
empirical distribution π. The minimax riskR2(k) is similarly defined as the supremum over all such
G. We argue that in many cases the difference between R(k) and R2(k) is insignificant.

Indeed, let τk = supG E[d(G, π)], which due to concentration we assume is o(R(k)). The com-
parison R2(k) ≤ R(k) + τk is by conditioning on π. In the opposite direction, if, for example,
d(·, ·) ≤ 1, then R(k) ≤ R2(m) + m2

2k since by sampling m times from (X1, . . . , Xk) with replace-
ment we get m samples from Problem 2’s setting with G = π (except for a set of realizations of
probability m2

2k on which we drew some Xj multiple times). Applying Problem 2’s estimator for m
samples we get the inequality. In interesting cases, R2(k) � R2(kα)� k−β for any α, β > 0, and
thus we get R1(k) � R2(k).
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To solve this problem we proceed by choosing an auxiliary metric ρ on P(Θ), the set of probability
measures on Θ. Let ν̂ = 1

k

∑k
j=1 δXj be the empirical distribution of the sample. Note that in

expectation we have, for all θ1, . . . , θk,

E[ν̂] = πP. (4)

where πP =
∫
Pθπ(dθ) = 1

k

∑k
j=1 Pθj . This motivates the following minimum-distance estimator

(putting existence of minimum aside):

π̂ = argmin
π′

{
ρ(ν̂, π′P ) : Eπ′ [c(θ)] ≤ 1

}
. (5)

To analyze this estimator, suppose, in addition to (4), we have the high-probability guarantee:

P[ρ(πP, ν̂) > tk] ≤ εk

for some sequences tk, εk → 0. By the triangle inequality we also have P[ρ(π̂P, πP ) > 2tk] ≤ εk.
Finally, defining the following deconvolution function:

δ(t) , sup{d(π, π′) : ρ(πP, π′P ) ≤ t,Eπ[c(θ)] ≤ 1,Eπ′ [c(θ)] ≤ 1} ,

where the supremization is over all distributions π, π′ ∈ P(Θ). Then we immediately obtain the
high-probability risk bound P[d(π̂, π) > δ(2tk)] ≤ εk. Using other properties of d and c, we can
typically convert this into an upper bound for the average risk like E[d(π̂, π)] . δ(2tk). Selecting
different auxiliary metric ρ’s results in different estimators. For example, the choice of ρ equal to
the Kullback-Leibler divergence results in a the non-parametric maximum-likelihood estimator. As
stated this is all well known. Our key contribution is the following: While ρ is left arbitrary so
far, the choice of ρ being total variation (or Hellinger) distance is special since it comes with an
essentially matching lower bound.

Meta-principle. Suppose the loss function d is of seminorm-type, namely d(π, π′) =
supT∈T 〈T, π − π′〉 for some dual pairing 〈·, ·〉 and a family of linear functionals T on
P(Θ). Take ρ(·, ·) = ‖ · − · ‖TV. Then under regularity conditions on (Θ,X , c, P, T )
we have

δ(1/k) . R(k) . δ(tk) .

Thus, when δ(1/k) � δ(tk) we get the sharp rate.

Working out general conditions for the applicability of this program is left for future work. Here
we focus on the model discussed in the introduction. Recall π = (π0, . . . , πk) in (1) denotes the
profile of the urn. In the Bernoulli sampling model, the observed numbers of balls with color j are
independently distributed as

Xj
ind.∼Binom(θj , p), j ∈ [k]. (6)

Let ν̂ = 1
k

∑k
j=1 δXj denote the empirical distribution of the Xj’s. Then for each m ≥ 0, we have

ν̂m = Ym
k , where

Ym =
∑
j∈[k]

1{Xj = m} (7)

5



EXTRAPOLATING THE PROFILE OF A FINITE POPULATION

denotes the number of colors that are observed exactly m times.1 Define the Markov kernel P :
Z+ → Z+ by P (i, ·) = Binom(i, p), whose transition matrix P = (Pim) is given by

Pim =

(
i

m

)
pm(1− p)i−m, i,m ≥ 0. (8)

Then as in (4), we have the unbiased relation E[ν̂] = πP . Particularizing (5) with ρ = ‖ · ‖TV and
c(θ) = θ, we obtain the following the minimum distance estimator:

π̂ = argmin
π′∈Πk

‖π′P − ν̂‖TV (9)

where

Πk ,

{
π′ ∈ P{0, 1, . . . , k} :

k∑
m=0

mπ′m ≤ 1

}
, (10)

with P{0, 1, . . . , k} being the set of all probability mass functions on {0, 1, . . . , k}. As mentioned
in Section 1, the true profile π belongs to Πk. The estimator (9) is an LP with k + 1 variables and
can be solved in time that is polynomial in k. We will show that it attains the minimax upper bound
in Theorem 1. As the first step, we relate the minimax risk R(k) to the following LP of modulus of
continuity type: for each 0 < t < 1,

δTV(t) , sup{‖π − π′‖TV : ‖πP − π′P‖TV ≤ t; π, π′ ∈ Π}, (11)

where Π , Π∞ as in (10), that is, the set of all distributions on Z+ with mean at most one. The
following result shows that the value of this LP characterizes the minimax risk.

Theorem 3 There exist absolute constants C1, C2, d0 such that for all k ≥ d0

1

72
δTV

(
1

6k

)
− C2√

k
≤ R(k) ≤ 2δTV

(√
C1 log k

k

)
, (12)

where the upper bound is attained by the minimum distance estimator given in (9).

The proof of Theorem 3 is given in Appendix C. The main idea is as follows. By virtue of the
minimum distance estimator π̂ and the triangle inequality, we have:

‖π̂P − πP‖TV ≤ ‖π̂P − ν̂‖TV + ‖πP − ν̂‖TV ≤ 2‖πP − ν̂‖TV,

which implies that (π, π̂) is a feasible pair for δTV(t) with t = 2‖πP − ν̂‖TV, and hence the
following deterministic bound:

‖π̂ − π‖TV ≤ δTV(2‖πP − ν̂‖TV) (13)

Recall from (4) that ν̂ is an unbiased estimator of πP . Furthermore, by concentration inequality one

can show that with high probability that ‖ν̂ − πP‖TV = O(
√

log k
k ), from which the upper bound

quickly follows. The lower bound follows from that of estimating linear functionals developed in

1. Technically, ν0 is not directly observed from the sample. Nevertheless, one can compute it by ν̂0 , 1−
∑k
m=1 ν̂m.
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Polyanskiy and Wu (2019). Roughly speaking, we use the optimal solution (π, π′) for δTV(Θ(1/k))
to randomly generate two urns of size Θ(k) whose sampled version are statistically indistinguish-
able. With appropriate truncation argument, this can be turned into a valid minimax lower bound
via Le Cam’s method Tsybakov (2009).

Theorem 3 allows us to reduce the statistical problem (2) to studying the behavior of δTV(t) for
small t. This is characterized by the following lemma:

Lemma 4

(1) There exists absolute constant C3 > 0 such that for all p, t we have

δTV(t) ≤ min

{
C3

p log(1/t)
, 1

}
. (14)

(2) There exist absolute constants C4, t0 > 0 such that for any p ∈ (0, 1), t ≤ t0,

δTV(t) ≥ min

{
p̄

p
,
√

log(1/t)

}
C4

log(1/t)
. (15)

Combining Theorem 3 and Lemma 4 yields the main result in Theorem 1. The next two sections
are devoted to the proof of Lemma 4.

Remark 5 (Reverse data processing) Note that by the data processing inequality (DPI) of TV
distance, we have ‖πP − π′P‖TV ≤ ‖π − π′‖TV and hence δTV(t) ≥ t. Therefore Lemma 4 can
be understood as a reverse DPI for the binomial kernel P in (8). For example, if p = Θ(1), then
(14) implies that (which is the best possible in view of (15)):

‖πP − π′P‖TV ≥ exp

{
−Θ

(
1

‖π − π′‖2TV

)}
.

3. Upper bound on δTV(t) by H∞-relaxation

To bound δTV(t) from above, we first relate it to the following LP

δ∗(t) , sup
∆

{ ∞∑
m=0

|∆m| : ‖∆P‖1 ≤ t,
∞∑
m=0

m|∆m| ≤ 1

}
. (16)

The next lemma shows how the two LPs (11) and (16) are related. The proof is straightforward
and deferred till Appendix D.

Lemma 6 For all t ∈ [0, 1] we have 1
2(δ∗(t)− t) ≤ δTV(t) ≤ δ∗(t).

Remark 7 Note that our only goal is to substitute estimates on δTV into (12). Therefore, due to the
presence of the (unavoidable) second term in the LHS of (12), the slight difference between δ∗(t)−t
and δ∗(t) in the lower bound in Lemma 6 is completely irrelevant and we can essentially think of
δTV and δ∗ as universally within a factor of two of each other.
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Proof [Proof of upper bound in Lemma 4] We start with recalling a few facts from the complex
analysis. Denote the sup-norm of a holomorphic function f over an open set V ⊂ C by ‖ · ‖H∞(V ).
Let D = D1 be the open unit disk in C and denote the horodisks for 0 < p ≤ 1 as

Dp , p̄+ pD = {z ∈ C : |z − p̄| ≤ p} .

In addition, we also define another norm for functions analytic in the neighborhood of the origin:

‖f‖A ,
∞∑
j=0

|aj |, f(z) ,
∑
j≥0

ajz
j . (17)

Since f(reiω) ≤
∑

n≥0 r
n|an| ≤ ‖f‖A, we have

‖f‖H∞(D) ≤ ‖f‖A . (18)

In (Polyanskiy et al., 2017, (39)) by an application of Hadamard’s three-lines theorem, it was
shown that for any q ∈ (0, 1) and any holomorphic function f

‖f‖H∞(D1/2) ≤ ‖f‖
1−2q
q̄

H∞(D)‖f‖
q
q̄

H∞(Dq)
. (19)

Indeed, reparametrizing f(z) = g(1+z
1−z ), we have

‖g‖H∞(<=r) = ‖f‖H∞(D1/(1+r)). (20)

for r ≥ 0. Then the Hadamard three-lines theorem applied to g shows that r 7→ log ‖f‖H∞(D1/(1+r))

is convex, proving (19). A straightforward generalization (with a different choice of the middle line
in the Hadamard theorem) shows that more generally for any 1 > q1 > q > 0 we have

‖f‖H∞(Dq1 ) ≤ ‖f‖
1− qq̄1

q̄q1

H∞(D)‖f‖
qq̄1
q̄q1

H∞(Dq)
. (21)

Next, for any f holomorphic on λD for λ > 0 we have the following estimate

1

`!
|f (`)(0)| ≤ λ−`‖f‖H∞(λD) . (22)

which follows by a Cauchy integral formula: f (`)(0)
`! = 1

2πi

∮
|z|=λ

f(z)
z`+1 dz.

With these preparations we move to the proof of (14). Consider any sequence ∆ feasible
for δ∗(t). For each absolutely summable sequence ∆, we consider its z-transform: f∆(z) ,∑

m≥0 ∆mz
m, which is a holomorphic function on the open unit disk D. Furthermore, using the

definition of P in (8) and the binomial identity, it is straightforward to verify that f∆P = Pf∆,
where the Markov kernel P acts on f as a composition operator (Pf)(z) , f(pz + p̄), where
p̄ , 1 − p. Given this observation we see that the definition of δ∗(t) can also be restated as opti-
mization over all holomorphic functions on the unit disk, cf. (17):

δ∗(t) = sup
f

{
‖f‖A : ‖Pf‖A ≤ t, ‖f ′‖A ≤ 1

}
. (23)

8
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For any feasible f in (23) we have that ‖f ′‖H∞(D) ≤ 1 and ‖f‖H∞(Dp) ≤ t. Thus, integrating
f ′ from some point in Dp we obtain that also ‖f‖H∞(D) ≤ 1 + t ≤ 2 . Therefore, applying (21) to

f we get ‖f‖H∞(D3/4) ≤ 2t
min( p

3p̄
,1). Next, since 1

2D ⊂ D3/4 we have from (22)

|∆`| =
1

`!
|f (`)(0)| ≤ 2`t

min( p
3p̄
,1) ≤ 2`tp/3 . (24)

Finally, since for any ∆ feasible for δ∗(t) we have
∑

mm|∆m| ≤ 1, Markov inequality implies∑
m≥J |∆m| ≤ 1

J for any integer J ≥ 1. Together with (24) we conclude that for any feasible
∆-sequence ∑

m

|∆m| ≤ J2J t
p
3 +

1

J
≤ 1

J

(
1 + 6J tp/3

)
, (25)

where in the last step we used J2 ≤ 3J . Hence, whenever J ≤
⌊
p log 1

t
3 log 6

⌋
, the right-hand side

of (25) can be upper-bounded by 2
J . This, in view of Lemma 6 completes the proof of (14) since

by definition δTV ≤ 1.

Remark 8 Note that functions that saturate (19) are f(z) = e−m
1+z
1−z wherem ∼ log 1

t . Computing
Taylor coefficients [z`]f(z) of f(z) for ` = Θ(m) can be done by applying the saddle-point method
to the integral

[z`]f(z) =
1

2πi

∮
e−m

1+z
1−z−(`+1) log zdz .

It turns out that these coefficients behave in the following way, when `/m = Θ(1):

[z`]f(z) =

{
e−Θ(m), `/m < 1/2

Θ
(

1√
m

)
, `/m > 1/2

This dichotomy corresponds to critical points of the function 1+z
1−z −

`
m log z leaving the unit circle

when `/m < 1/2. This shows that the estimate in (25) is qualitatively tight. This effect of sudden
jump in the magnitude of coefficients will be the basis of the lower bound in the next section.

4. Lower bound on δTV(t)

In view of Lemma 6 it suffices to consider δ∗(t) in (16). Given the equivalent definition (23), as
a warm-up, let us naively replace all ‖ · ‖A norms with ‖ · ‖H∞(D). We then get the following
optimization problem:

δH∞(t) , sup{‖f‖H∞(D) : ‖f ′‖H∞(D) ≤ 1, ‖f‖H∞(p̄+pD) ≤ t} (26)

Note that even though the objective function of (26) is smaller than that of δ∗(t), the feasible set
is also a relaxation. Thus δH∞(t) does not constitute a valid lower bound to δ∗(t); nevertheless its
solution, given in the following lemma, provides important insight on constructing a near-optimal
solution for δ∗(t).

Lemma 9 δH∞(t) = Θp

(
1

log(1/t)

)
.

9
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Proof For the upper bound, as before we reparameterize f(z) = g (w) with w = 1+z
1−z . Then (20)

with r = 1/p− 1 implies that ‖g‖H∞(<>p̄/p) = ‖f‖H∞(p̄+pD) ≤ t. By Cauchy’s integral formula,
we conclude that for some constant Cp (here and below possibly different on each line) we have
‖g′‖H∞(<>2p̄/p) ≤ Cpt.

Note that g′(w) = 2
(1+w)2 f

′(w−1
w+1). Applying (20) again with r = 0 yields ‖g′‖H∞(<>0) ≤ 2.

Thus from Hadamard’s three lines theorem we conclude for any ε ∈ (0, p̄/p), ‖g′‖H∞(<=ε) ≤
Cpt

min{εp/(2p̄),1}.
Finally, for any ω ∈ R, integrating the derivative horizontally yields:

|g(iω)− g(iω + p̄/p)| ≤ Cp
∫ p̄/p

0
tεp/(2p̄)dε ≤ Cp

1

log 1
t

Since |g(iω + p̄/p)| ≤ ‖g‖H∞(<=p̄/p) ≤ t, we conclude that on {< = 0} we have ‖g‖H∞(<=0) =

‖f‖H∞(D) ≤ Cp 1
log 1

t

, proving the upper bound part.

For the lower bound, consider the following function

f(z) =
cp

log (1/t)
(1− z)2t

p
p̄

1+z
1−z (27)

for some constant cp > 0. Then using (20) we have ‖f‖H∞(p̄+pD) ≤
4cp

log(1/t) supz∈p̄+pD |t
p
p̄

1+z
1−z | =

4cpt
log(1/t) , and

‖f ′‖H∞(D) = cp

∥∥∥∥− 2

log(1/t)
(1− z)t

p
p̄

1+z
1−z − 2p

p̄
t
p
p̄

1+z
1−z

∥∥∥∥
H∞(D)

≤cp
(

4

log(1/t)
+

2p

p̄

)∥∥∥t pp̄ 1+z
1−z

∥∥∥
H∞(D)

(20)
= cp

(
4

log(1/t)
+

2p

p̄

)
≤ 2cp(1 + p̄)

p̄

where the last inequality follows from log(1/t) ≥ 1 for all small t. This shows f is feasible for
δH∞(t) for small cp. Finally noticing that ‖f‖H∞(D) ≥ |f(−1)| = cp

log(1/t) concludes the proof.

Next we modify (27) to produce a feasible solution for δ∗(t) leading to the following lower
bound, which, in view of Lemma 6, provides the required bound in (15) on δTV(t).

Lemma 10 There exist absolute constantsC > 0 and β̃0 > 0 such that for all t > 0 and p ∈ [0, 1),

δ∗(t) ≥
C

β̃
, β̃ , max

 p

1− p
log

1

t
,

√
log 1

t

1− p

 (28)

provided that β̃ ≥ β̃0.

Proof Fix p, t ∈ (0, 1). Considering (23) our goal is to find a feasible function and bound its ‖ · ‖A
norm from below. Our main tool for converting between the ‖ · ‖A norms in the definition (23) and
the more convenient H∞ norms is the following general result complementing (18): For any r > 1,

‖f‖A ≤
1√

1− r−2
‖f‖H∞(rD) . (29)

10
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Indeed, let f(z) =
∑

n≥0 anz
n and let f̃(z) =

∑
n≥0 ãnz

n with ãn = anr
n and thus f̃(z) = f(rz).

From the Plancherel identity we have

∑
n

|ãn|2 =
1

2π

∫ 2π

0
|f̃(eiω)|2dω ≤ ‖f̃‖2H∞(D) = ‖f‖2H∞(rD) .

Thus, (29) follows from an application of Cauchy-Schwarz inequality:∑
n

|an| =
∑
n

r−n|ãn| ≤
√∑
n≥0

r−2n‖f‖H∞(rD) =
1√

1− r−2
‖f‖H∞(rD).

Next, fix some β ≥ β0 and τ ∈ (0, 1), where β0 ≥ 1 is a numeric constant to be specified later,
and let α = 1− τ ∈ (0, 1). Consider the function, a modified version of (27), given by

h(z) = h̃(αz), h̃(z) = exp

(
−β 1 + z

1− z

)
. (30)

Using (20), we can explicitly calculate that for any 0 < q ≤ 1:

‖h̃‖H∞(1−q+qD) = e
−β 1−q

q . (31)

We will show below the following estimates (all positive numerical constants below, i.e. those
that are independent of parameters p, t, β, are denoted by a common symbol C):

‖h‖A ≥ C
√
β(1− τ)

3β
2 (32)

‖h(p ·+p̄)‖A ≤ τ−
1
2 e−βE , E ,

τ̄ p̄

p+ p̄τ
(33)

‖h′‖A ≤ 2τ−
3
2 . (34)

Thus, taking f(z) = 1
2τ

3
2h(z) in (23) proves that for all β > β0 we have

δ∗

(τ
2
e−βE

)
≥ C

√
βτ3(1− τ)

3β
2 (35)

To show that (35) implies (28) we set τ = 1
β and thus the last term in (35) can be lower bounded

by (1 − 1/β0)3β0/2 and be absorbed into C. Notice also that if β ≥ 2 then τ̄ ≥ 1/2 and thus
E ≥ p̄

2
1

1
β

+p
. Since τ ≤ 1 and δ∗ is monotone in its argument we can simplify

δ∗

(
exp

{
− β

1
β + p

p̄

2

})
≥ C

β
(36)

Note next that for any µ, p > 0, taking x = max(µp,
√
µ) implies x

1
x

+p
≥ µ

2 , which is verified

by considering the two cases µp ≶
√
µ separately. Then, defining µ , 4

p̄ log 1
t and taking β =

max(µp,
√
µ) ensures the argument of δ∗ in (36) is at most t. In summary, we obtain the bound (28)

for all t ≤ t0.

11
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We proceed to proving (32)-(34). For (33) we set r = 1−αp̄
αp in (29) and get

‖h(p ·+p̄)‖A ≤ c‖h(p ·+p̄)‖H∞(rD) = c‖h‖H∞(p̄+prD) = ce
−β αp̄

1−αp̄ ,

where we denoted c =
√

1
1−r−2 and also applied (31) with q = αpr = 1 − αp̄. We next bound

c ≤
(
1− r−1

)−1/2
= (1− αp̄)1/2 (1− α)−1/2 ≤ (1− α)−1/2.

For (34) we first notice that for any function f holomorphic on r2D we can estimate its deriva-
tive on r1D, where r1 < r2 via Cauchy integral formula as ‖f ′‖H∞(r1D) ≤ (r2 − r1)−1 ‖f‖H∞(r2D).
Applying this with f = h, r1 = 1+r2

2 and r2 = 1
α we get

‖h′‖H∞(r2D) ≤
√

2
(
α−1 − 1

)−1/2 ‖h‖H∞(D/α) =
√

2
(
α−1 − 1

)−1/2
,

last step being again via (31) with q = 1. Applying now (29) with r = r2 we obtain overall

‖h′‖A ≤
2α

(1− α)
√

1− α2
≤ 2

(1− α)3/2
.

To show (32), we need to analyze the Taylor coefficients of h explicitly as the H∞-norm bound
is too weak. A natural and straightforward way is to apply the saddle-point method to study these
coefficients. However, due to the special nature of h its coefficients have already been well under-
stood. Indeed, in (Szegő, 1939, 5.1.9)) it shown that for each x ∈ C and |v| < 1

e−x
v

1−v =

∞∑
n=0

vnL(−1)
n (x) , (37)

where L
(−1)
n (x) are generalized Laguerre polynomial of degree n. We will not need explicit

formulae of these polynomials and only rely on their asymptotics (of Plancherel-Rotach type),
cf. (Szegő, 1939, 8.22.9): For each ε > 0 there exists a Cε > 0 such that for any n ≥ 0, any
ε ≤ φ ≤ π/2− εn−1, we have

L(−1)
n (x) = e

x
2 (−1)n(π sinφ)−

1
2x

1
4n−

3
4

{
sin

[
n(sin(2φ)− 2φ) +

3π

4

]
+ (nx)−

1
2Oε(1)

}
(38)

where x = 4n cos2 φ and the Oε(1) is uniformly bounded by Cε for all n and φ.
Comparing (37) with the definition of h we get h(z) = e−β

∑
m≥0 L

−1
m (2β)zmαm. In other

words, if we denote the m-th coefficient of h(z) by ∆m, then

∆m = e−βαmL−1
m (2β) . (39)

Due to the oscillatory nature of the Laguerre polynomial, it is not possible to bound |∆m| away from
zero. Nevertheless, the following lemma shows that two consecutive terms cannot be simultaneously
small:

Lemma 11 For all m ∈ (β, 3β/2) and for sufficiently large β,

|∆m|+ |∆m+1| ≥ α3β/2β−1/2

√
2

6
. (40)

From here (32) follows simply by ‖h‖A ≥
∑

β≤m≤3β/2 |∆m| ≥ α3β/2
√

2β
24 . We note that the

estimate (32) is tight. Indeed, applying (29) with r = 1
α yields ‖h‖A ≤ 1√

1−α2
≤ 1/

√
τ , where we

also used ‖h‖H∞(D/α) = ‖h̃‖H∞(D) = 1 via (31) with q = 1.

12
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Gabor Szegő. Orthogonal polynomials, volume 23. American Mathematical Society, 1939.

Kevin Tian, Weihao Kong, and Gregory Valiant. Learning populations of parameters. In Advances
in neural information processing systems, pages 5778–5787, 2017.

A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer Verlag, New York, NY, 2009.

G. Valiant. Private communication, May 2019.

Gregory Valiant. Algorithmic Approaches to Statistical Questions. PhD thesis, EECS Department,
University of California, Berkeley, Sep 2012.

Gregory Valiant and Paul Valiant. Estimating the unseen: an n/ log(n)-sample estimator for en-
tropy and support size, shown optimal via new CLTs. In Proceedings of the 43rd annual ACM
symposium on Theory of computing, pages 685–694, 2011.

Gregory Valiant and Paul Valiant. Estimating the unseen: improved estimators for entropy and
other properties. In Advances in Neural Information Processing Systems (NIPS), pages 2157–
2165, 2013.

Gregory Valiant and Paul Valiant. Instance optimal learning of discrete distributions. In Proc. 48th
Symp. on Th. of Comp. (STOC), pages 142–155, Cambridge, MA, USA, June 2016.

Ramya Korlakai Vinayak, Weihao Kong, Gregory Valiant, and Sham Kakade. Maximum likeli-
hood estimation for learning populations of parameters. In International Conference on Machine
Learning, pages 6448–6457, 2019.

Jacob Wolfowitz. The minimum distance method. The Annals of Mathematical Statistics, 28(1):
75–88, 1957.

Yihong Wu and Pengkun Yang. Sample complexity of the distinct element problem. Mathematical
Statistics and Learning, 1(1):37–72, 2018.

14



EXTRAPOLATING THE PROFILE OF A FINITE POPULATION

Acknowledgments

The authors thank C. Daskalakis for pointing out Valiant and Valiant (2013) and G. Valiant for
communicating Valiant (2019). S. Jana and Y. Wu were supported in part by the NSF Grant CCF-
1900507, NSF CAREER award CCF-1651588, and an Alfred Sloan fellowship. Y. Polyanskiy’s
work was supported in part by the Center for Science of Information (CSoI), an NSF Science and
Technology Center, under grant agreement CCF-09-39370, and the MIT-IBM Watson AI Lab.

Appendix A. Discussions

A.1. Comparison with previous results

In this section we review previous results on estimating sorted distribution or profile under different
loss function and different sampling model. To this end, let us consider an urn with exactly k balls.
Then its composition can be described by the distribution µ on [k] with µ(x) = θj/k. When we go
from µ to π we erase the “color labels” (i.e., if the balls in the urn are arranged as piles of distinct
colors, going from µ to π is analogous to turning off the lights so that only the heights of each pile,
but not their colors, are shown). This could have been done in a different way by sorting µ. Namely,
let us define

µ↓i = i-th largest atom of µ.

Note that π and µ↓ can be expressed in terms of one another. In fact we have

‖π1 − π2‖TV ≤ 2‖µ1↓ − µ2↓‖TV ≤ 2‖µ1 − µ2‖TV (41)

Indeed, the second inequality follows from the fact that decreasing rearrangement minimizes the
`1-distance. To prove the first inequality, note that

2‖µ1↓ − µ2↓‖TV =
∑
j

∣∣∣∣∣∣
∑
i≥j

π1
i − π2

i

∣∣∣∣∣∣ = W1(π1, π2) . (42)

where W1 denotes the 1-Wasserstein distance between probability distributions and, in one di-
mension, coincides with the L1-distance between the cumulative distribution functions (CDFs).
Since π1, π2 are supported on Z, the indicator function 1E is 1-Lipschitz for any E ⊂ Z and thus
W1(π1, π2) ≥ ‖π1 − π2‖TV.

Can one estimate µ↓ from the sample X? The answer is yes, in both `∞ and `1 (TV), as well
as other metrics. However, to discuss these results let us move to the setting of Robbins Problem
II. Namely, suppose we have ZM = (Z1, . . . , ZM )

iid∼ µ with µ some arbitrary distribution on [k].
The relevance to the Bernoulli sampling model comes from the following simple reduction: if µ
is in fact the empirical distribution of colors, then given N , which corresponds a sample of size
M ′ ∼ Binom(k, p) from µ without replacement, one can simulate an iid sample Z1, . . . , ZM with
M ≈ (1 − e−p̄)k. Hence, any result regarding estimating µ↓ from ZM with M = Θ(k) implies a
similar result about estimating µ↓ from N with p = Θ(1).

We review several results regarding estimating µ↓ from ZM when µ is general. The pioneering
result Orlitsky et al. (2005) only showed consistency, i.e. existence of estimator µ̂↓ such that

E‖µ̂↓ − µ↓‖TV → 0
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without convergence rate. In a later draft Orlitsky et al. (2008) (see also (Anevski et al., 2017,
Lemma 3) for a short proof) it was shown that simply estimating µ↓ by a sorted empirical distribution
achieves

E[‖µ̂↓ − µ↓‖∞] = O(k−
1
2 log k) .

A much more relevant result to us, however, is the one in Valiant and Valiant (2013). For any
two π1, π2 they defined yet another distance:

D(π1, π2) = inf
ν
E[| lnX1 − lnX2|] , (43)

where the infimum is over all couplings of X1 and X2 distributed on Z+ as P[Xi = j] = jπij for
i ∈ {1, 2}, j ∈ [k]. They have shown that when M = a k

log k one can get

E[D(π̂, π)] ≤ O
(

1√
a

)
,

which, per Valiant (2019), also holds for a = Θ(log k). In addition (Valiant and Valiant, 2016,
Appendix B) shows W1(π1, π2) ≤ 2D(π1, π2). Indeed, let ν(·, ·) be the optimal coupling in (43).
Then define a coupling of π1 to π2 via

ν̃(j1, j2) =


1

max(j1,j2)ν(j1, j2), j1 6= 0, j2 6= 0∑
j≥j1

(
1
j1
− 1

j

)
ν(j1, j), j2 = 0, j1 > 0∑

j≥j2

(
1
j2
− 1

j

)
ν(j, j2), j1 = 0, j2 > 0

and completing j1 = j2 = 0 as required. Letting (X1, X2) ∼ ν and (X̃1, X̃2) ∼ ν̃ we have that

E[|X̃1 − X̃2|] = 2E[|X̃1 − X̃2|+] = 2E
[
|X1 −X2|

max(X1, X2)

]
≤ 2E[| lnX1 − lnX2|] = 2D(π1, π2) .

In all, putting everything together we have that Valiant and Valiant showed that there exists an
estimator of µ↓ from M = Θ(k) samples such that

E[‖µ̂↓ − µ↓‖TV] = O

(
1√

log k

)
. (44)

In Han et al. (2018) it was shown that this rate is minimax optimal over all distributions supported
on [k]. Note, however, that since the lower bound in Han et al. (2018) does not produce valid
distributions on finite population (namely, µ with rational entries in 1

kZ), it does imply that the rate
of estimating π in W1 is 1√

log k
, cf. (42), is sharp.

We also mention Acharya et al. (2012) and Hao and Orlitsky (2019) which discuss the use of
profile maximum likelihood to estimate sorted distribution for certain sampling models. The later
work deals with estimation of the sorted distribution under a truncated variant of `1 distance but it
also could only achieve O

(
1√

log k

)
risk bound for a sample size Θ(k).

In all, we see that following the trailblazing work Orlitsky et al. (2005) a number of works have
established uniform convergence guarantees in various metrics. Relevant to us is that the best result
available is ‖π̂ − π‖TV ≤ O

(
1√

log k

)
, which can obtained by first simulating samples drawn with

replacement based on those without replacements, then combining (44) with (41). We show that
this rate is suboptimal by a square root factor.

16



EXTRAPOLATING THE PROFILE OF A FINITE POPULATION

A.2. Open problems

For 1 ≤ q ≤ ∞, let us define by Rq(k) to be the minimax risk of estimating π in the `q-norm

(
∑

m |πm − π̂m|q)
1
q . Then in the linear regime of p = Θ(1), Theorem 1 shows that(

1

log k

)2− 1
q

. Rq(k) .
1

log k
,

which is only tight for q = 1. Our complex-analytic methods seem to be especially well suited for
studying the case of q = 2 and q = ∞, but we were not able to close the gap. The case of `∞ is
of particularly interest as it concerns which individual profile is the hardest to estimate. Our result
shows that for those colors that occur m = Θ(log k) times, the corresponding πm is particularly
difficult and cannot be estimated better than Ω( 1

(log k)2 ). It is unclear if this is the hardest case.
Let us define by RW1(k) to be the minimax risk of estimating π in the 1-Wasserstein distance

W1(π, π̂). Given the equivalence (42), estimate (44) and lower bound W1(π, π̂) ≥ ‖π − π̂‖TV we
get

1

log k
. RW1(k) .

1√
log k

.

Due to W1 being the L1-distance between the CDFs, the minimax W1 risk are also amenable to
complex-analytic techniques, but so far resisted our attempts. An alternative approach is to gener-
alize the W1-lower bound construction of Han et al. (2018); however, as observed in previous work
in the distinct elements problem Valiant (2012); Wu and Yang (2018) such moment-based construct
is difficult to extend to finite population.

Appendix B. Impossibility of learning the empirical distribution

In this section we show that unless we observe all but a vanishing fraction of the urn, it is impossible
to estimate the empirical distribution of the colors consistently. To this end, consider a k-ball urn
and let µ denote the empirical distribution of the colors, with µ(j) =

θj
k , j ∈ [k]. Compared to

the profile π which is a distribution on Z+, here µ is a probability measure on the set of colors [k].
Similar to (2), we define the minimax TV risk for estimating µ:

R̃(k) = inf
µ̂

sup
µ

E[‖µ− µ̂‖TV].

The following theorem shows that whenever the sampling ratio p is bounded away from one, it is
impossible to estimate µ consistently. This observation agrees with the typical behavior in high-
dimensional estimation that, absence any structural assumptions, the sample size need to exceed the
number of parameters to achieve consistency.

Theorem 12
R̃(k) ≥ k − 1

4k
h−1

(
1− p− log2(k + 1)

k − 1

)
where h : [0, 1] → [0, 1] given by h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy
function, and h−1 is its inverse on [0, 1

2 ]. Consequently, for any fixed p < 1, R̃(k) = Ω(1).
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Proof The proof follows the mutual information method that compares the amount of information
data provides and the minimum amount of information needed to reconstruct the parameters up to
a certain accuracy. Consider the following Bayesian setting of a k-ball urn, where θj

i.i.d.∼ Ber(1/2)
for j = 1, . . . , k − 1 and θk = k −

∑
j<k θj . In other words, each of the first k − 1 colors either

is absent or appear exactly once with equal probability. Then for j ∈ [k − 1], the observed Xj is
simply the erased version of θj with erasure probability p̄. Thus the mutual information (in bits)
between the parameters θ = (θj : j ∈ [k − 1]) and the observations X = (Xj : j ∈ [k]) can be
upper bounded as follows:

I(θ;X) = I(θ;X1, . . . , Xk−1)︸ ︷︷ ︸
=(k−1)p

+ I(θ;Xk|X1, . . . , Xk−1)︸ ︷︷ ︸
≤H(Xk)≤log2(1+k)

where the inequality follows from the fact that Xk takes at most k values. On the other hand,
suppose there exists µ̂ = µ̂(X), such that E[‖µ−µ̂‖TV] ≤ ε. Define θ̂j = 1{µ̂j> 1

2k} for j ∈ [k−1].

Then 2‖µ − µ̂‖ ≥
∑k−1

i=1 ‖µj − µ̂j‖ ≥
1
2k

∑k−1
i=1 1{θj 6=θ̂j}‖. Thus θ̂ are close to θ in Hamming

distance:
∑k−1

i=1 P[θj 6= θ̂j ] ≤ 4εk. By the rate-distortion function of Bernoulli distribution (Cover
and Thomas, 2006, Chap. 10), their mutual information must be lower bounded by

I(θ; θ̂) ≥ (k − 1)

(
1− h

(
4εk

k − 1

))
.

Combined with the data processing inequality I(θ;X) ≥ I(θ; θ̂), the last two displays imply that
ε ≥ k−1

4k h
−1(p̄− log2(k+1)

k−1 ) which concludes the proof.

Appendix C. Proof of Theorem 3

Proof We first prove the upper bound by analyzing the minimum distance estimator (9). Let π ∈
Πk ⊂ Π denote the true profile. Denote the distribution ν , πP . As outlined in Section 2 and in
view of (13), the key step is to show that ν̂ is concentrated around ν in terms of total variation. To
this end, observe that for m ≥ 1, we have E[ν̂m] = νm from (4). Furthermore,

k ·Var[ν̂m] =
1

k
Var[Ym] =

1

k

∑
j∈X

Var[1{Xj = m}] ≤ 1

k

∑
j∈X

P[Xj = m] = (πP )m = νm .

(45)

Thus E [|ν̂m − νm|] ≤
√
νm/k. Summing over m we get

E[‖ν̂ − ν‖TV] ≤ E

[
k∑

m=1

|ν̂m − νm|

]
≤ 1√

k

k∑
m=1

√
νm

(a)

≤ 1√
k

(
k∑

m=1

mνm

)1/2( k∑
m=1

1

m

)1/2

(b)

≤ O

(√
log k

k

)
, (46)
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where (a) follows from Cauchy-Schwarz; (b) follows as follows: if we denote U1 ∼ π and U2|U1 ∼
Binom(U1, p), then U2 ∼ ν and hence E[U2] = pE[U1] ≤ p thanks to the mean constraint on
π ∈ Π. Next we show that

P [|‖ν − ν̂‖TV − E‖ν − ν̂‖TV| ≥ ε] ≤ exp(−C0kε
2) (47)

for some absolute constant C0, all ε > 0 and k large. For that we aim to show that ‖ν − ν̂‖TV

satisfies the bounded difference property and then apply McDiarmid’s inequality. Let x1, . . . , xk̃ be
the distinct colors present in the urn with k̃ ≤ k. Denote ‖ν − ν̂‖TV = d(Nx1 , . . . , Nxk̃

) for some
function d. Then d satisfies the following: for any i ∈ [k̃] and any n1, . . . , nk̃ with n′i 6= ni, we have∣∣d(n1, . . . , ni−1, ni, ni+1, . . . , nk̃)− d(n1, . . . , ni−1, n

′
i, ni+1, . . . , nk̃)

∣∣
≤1

2

∣∣∣∣|νni − ν̂ni |+ |νn′i − ν̂n′i | −
∣∣∣∣νni − (ν̂ni − 1

k

)∣∣∣∣− ∣∣∣∣νn′i − (ν̂n′i +
1

k

)∣∣∣∣∣∣∣∣ (48)

≤1

k
.

Furthermore, (Nx1 , . . . , Nxk̃
) are independent. Then the desired exponential bound in (47) follows

from McDiarmid’s inequality.
Combining (46) and (47) we get

P

[
‖ν − ν̂‖TV ≥

√
C1 log k

k

]
≤ k−1 (49)

for some absolute constant C1. Then taking expectations on both sides of (13), for sufficiently large
k we get

E‖π̂ − π‖TV ≤ E[δTV(2‖πP − ν̂‖TV)]

(a)

≤ δTV

(√
C1 log k

k

)
+ k−1

(b)

≤ 2δTV

(√
C1 log k

k

)
,

where (a) follows from (49) and δTV ≤ 1, (b) follows from the universal fact that δTV(t) ≥ t
(Remark 5) and δTV(t) is increasing in t. This yields the desired upper bound on R(k).

To show the lower bound, consider any bounded function T : Z+ → [−1, 1]. Then for distribu-
tion π on Z+, define the linear functional Tπ:

Tπ =
∑
m

πmT (m).

Note that 2‖π̂ − π‖TV = supT |Tπ̂ − Tπ| for any estimator π̂ of π. Hence the minimax TV risk of
estimating π can be lower bounded by that of estimating T

R(k) ≥ 1

2
RT (k), RT (k) , inf supE

[
|T̂ − Tπ|

]
.
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where the estimator T̂ depends on (Xj : j ∈ X ) and the supremum is again over all k-ball urns.
We are now in position to apply (Polyanskiy and Wu, 2019, Theorem 8) (with Θ = Z+, c(θ) = θ,
and KV = 1) to obtain2

RT (k) ≥ 1

72
δTV

(
1

6k

)
− C2√

k

where

δTV(t, T ) = sup{|Tπ′ − Tπ| : TV(π′P, πP ) ≤ t, π, π′ ∈ Π} (50)

Finally optimizing over T observing that δTV(t) = supT δTV(t, T ) for every t > 0 yields the result.

Appendix D. Proofs of technical lemmas

Proof [Lemma 6] We prove the lemma by showing how a feasible solution of one of the programs
can be utilized to get a feasible solution of the other one, and vice-versa. Let us start with the second
inequality. Given any pair (π,π′) feasible for δTV(t), choose ∆ = (π − π′)/2. We get∑

m

m|∆m| =
1

2

∑
m

m|πm − π′m| ≤
1

2

∑
m

m(πm + π′m) ≤ 1.

The relation ‖∆P‖1 ≤ t follows directly from ‖πP − π′P‖TV ≤ t. This shows ∆ is feasible for
δ∗(t) with ‖∆‖1 = ‖π − π′‖TV. This proves the second inequality in Lemma 6.

The first inequality is proven next. Take any non-zero feasible solution ∆̃ to δ∗(t) (which exists
because we can always choose ∆̃ = 0). Next, suppose that ε ,

∑
m ∆̃m 6= 0. Then, let us define

∆j = ∆̃j for j ≥ 1 and ∆0 = ∆̃0 − ε. It is clear that∑
j

∆j = 0 (51)

Furthermore, since 〈∆̃P,1〉 = 〈∆̃,1〉 = ε we conclude that |ε| ≤ ‖∆P‖1 ≤ t. Therefore,∑
j

|∆j | ≥
∑
j

|∆̃j | − t . (52)

Finally, because ‖rP‖1 ≤ ‖r‖1 we also have from triangle inequality

‖∆P‖1 ≤ t+ |ε| ≤ 2t . (53)

Next we define ∆+ = max(∆, 0), ∆− = max(−∆, 0), where max is defined coordinate wise.
We choose {πm}∞m=0 and {π′m}∞m=0 as

π0 = 1−
∞∑
j=1

∆+
j , π′0 = 1−

∞∑
j=1

∆−j ,

πm = ∆+
m, π′m = ∆−m, m ≥ 1

2. The result of (Polyanskiy and Wu, 2019, Theorem 8) is stated in terms of the χ2-divergence. The TV version follows
by applying (Polyanskiy and Wu, 2019, Proposition 1) to lower bound δχ2(t) via δTV(t).
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Note that under constraints on ∆, we have π, π′ ∈ Π. Indeed,
∑

m≥1 |∆m| ≤
∑

mm|∆m| =∑
mm|∆̃m| ≤ 1 and thus π0, π

′
0 ≥ 0. Furthermore, since |∆m| = ∆+

m+∆−m we have
∑

mm(∆+
m+

∆−m) ≤ 1 which implies
∑

mm(πm + π′m) ≤ 1. This proves
∑

mmπm ≤ 1 and
∑

mmπ
′
m ≤ 1.

Next, observe that π0 − π′0 = ∆0 due to (51) and thus π − π′ = ∆. From (53) we conclude that
‖(π − π′)P‖TV ≤ t and hence (π, π′) is a feasible pair for δTV(t). And thus via (52) we obtain

δTV(t) ≥ 1

2
(δ∗(t)− t) .

Proof [Lemma 11] In view of (39) and (38) the proof of (40) is straightforward but delicate. To
simplify analysis we will assume β →∞ and denote by o(1) the terms vanishing with β.

For m ∈
(
β, 3β

2

)
we define φm = arccos

√
β/(2m) and θm = F (φm) where F (φ) =

sin(2φ) − 2φ. Here φm ∈ (arccos(1/2), arccos(1/3)) and hence is bounded away from both 0
and π/2 for all m in the above range. Then using (38) with x = 2β, we get that there exist absolute
constants β0, C7 such that for all β ≥ β0,

|L(−1)
m (2β)| ≥ eβ

√
π
(
1− 1

3

)1/4 (2β)1/4m−3/4

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣− C7β
−1

}

≥ 2eβ
√
π(2/3)1/433/4

β−1/2

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣− C7β
−1

}
≥ eββ−1/2

2

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣− C7β
−1

}
. (54)

Now we consider any two consecutive integers m and m+ 1 in
(
β, 3β

2

)
. Using (54) we get

|L(−1)
m (2β)|+ |L(−1)

m+1(2β)|

≥e
ββ−1/2

2

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣+

∣∣∣∣sin((m+ 1) θm+1 +
3π

4

)∣∣∣∣− 2C7β
−1

}
. (55)

The phase difference between the two sine terms comes out to be m(θm − θm+1)− θm. Using the
formula θm = F (φm), we get

m(θm − θm+1) = m(φm − φm+1)
F (φm)− F (φm+1)

φm − φm+1
. (56)
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We will show that the above is bounded away from 0 as m goes to infinity. We first consider the
term m(φm − φm+1). Using d

dx arccos
√
x = −1

2
1√

x(1−x)
we deduce that

m (φm − φm+1) = m

(
arccos

√
β

2m
− arccos

√
β

2m+ 2

)

= m

(
arccos

√
β/2m− arccos

√
β/2m− β/2m

m+ 1

)

=
β

2m
· m

m+ 1
·

arccos
√
β/2m− arccos

√
β/2m− β/2m

(m+1)

β/2m
(m+1)

= −1

2

√
β/2m

1− β/2m
+ o(1)

where the o(1) term goes to 0 as m,β tends to infinity with β
2m ∈

(
1
3 ,

1
2

)
. In view of (56) using

F ′(φ) = 2 cos(2φ)− 2 and cos2(φm) = β
2m we get

m(θm − θm+1) = −1

2

√
β/2m

1− β/2m
F ′(φm) + o(1)

= −2

√
β/2m

1− β/2m

(
β

2m
− 1

)
+ o(1)

= 2

√
β

2m

(
1− β

2m

)
+ o(1) (57)

with the same last conditions on m,β. As β
2m ∈

(
1
3 ,

1
2

)
the above quantity is bounded away from 0.

Also (57) implies that θm+1 can be approximated as θm + o(1). As we have

θm = sin(2φm)− 2φm

= 2 sinφm cosφm − 2φm

= 2

√
β

2m

(
1− β

2m

)
− 2φm

continuing (55) and using (57) we get

|L(−1)
m (2β)|+ |L(−1)

m+1(2β)|

≥e
ββ−1/2

2

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣+

∣∣∣∣∣sin
(
mθm +

3π

4
+ θm − 2

√
β

2m

(
1− β

2m

))∣∣∣∣∣+ o(1)

}

=
eββ−1/2

2

{∣∣∣∣sin(mθm +
3π

4

)∣∣∣∣+

∣∣∣∣sin(mθm +
3π

4
− 2φm

)∣∣∣∣+ o(1)

}
. (58)

22



EXTRAPOLATING THE PROFILE OF A FINITE POPULATION

Now we note that for any real number a ∈ (0, π) the function s(x) , | sin(x)| + | sin(x − a)| has
period π and is piecewise concave on the intervals (0, a) and (a, π). As s(0) = s(a) = s(π) =
sin(a) we get

inf
j
{| sin(x)|+ | sin(x− a)|} = sin(a).

In view of the above, continuing (58) we get

|L(−1)
m (2β)|+ |L(−1)

m+1(2β)| ≥ eββ−1/2

2
{sin (2φm) + o(1)}

=
eββ−1/2

2

{
2

√
β

2m

(
1− β

2m

)
+ o(1)

}

≥ eββ−1/2

2

(
2
√

2

3
+ o(1)

)

for any m ∈
(
β, 3β

2

)
. In view of (39) this implies (40).
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