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Abstract
We consider the setting of online logistic regression and consider the regret with respect to the
`2-ball of radius B. It is known (see Hazan et al. (2014)) that any proper algorithm which has
logarithmic regret in the number of samples (denoted n) necessarily suffers an exponential multi-
plicative constant in B. In this work, we design an efficient improper algorithm that avoids this
exponential constant while preserving a logarithmic regret.

Indeed, Foster et al. (2018) showed that the lower bound does not apply to improper algorithms
and proposed a strategy based on exponential weights with prohibitive computational complexity.
Our new algorithm based on regularized empirical risk minimization with surrogate losses satisfies
a regret scaling as O(B log(Bn)) with a per-round time-complexity of order O(d2 + log(n)).
Keywords: Logistic regression, Online learning, Improper learning

1. Introduction

In online learning, a learner sequentially interacts with an environment and tries to learn based on
data observed on the fly (Cesa-Bianchi and Lugosi, 2006; Hazan et al., 2016). More formally, at each
iteration t > 1, the learner receives some input xt in some input space X ; makes a prediction ŷt in a
decision domain Ŷ and the environment reveals the output yt ∈ Y . The inputs xt and the outputs yt
are sequentially chosen by the environment and can be arbitrary. No stochastic assumption (except
boundedness) on the data sequence (xt, yt)16t6n is made. The accuracy of a prediction ŷt ∈ Ŷ at
instant t > 1 for the outcome yt ∈ Y is measured through a loss function ` : Ŷ × Y → R. The
learner aims at minimizing his cumulative regret

Rn(f) =

n∑
t=1

`
(
ŷt, yt

)
−

n∑
t=1

`
(
f(xt), yt

)
, (1)

uniformly over all functions f in a reference class of functions F . All along this paper, we will
consider the more specific setting of online logistic regression for binary classification. The latter
corresponds to binary outputs yt ∈ Y = {−1, 1}, real decisions ŷt ∈ Ŷ = R, the logistic loss
function ` : (ŷt, yt) 7→ log(1 + e−ytŷt) and the reference class F = {x 7→ θ>x; θ ∈ B(Rd, B)} of
linear functions in the `2-ball of radius B > 0.

Logistic regression, which dates back to Berkson (1944), has been widely studied in the past
decades both in the statistical and online setting. It allows to estimate conditional probabilities and
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is heavily used in practice for multi-class and binary classification. Since the statistical literature is
abundant, we highlight here only the key existing approaches for online logistic regression that are
relevant for the present work. Using basic properties of the logistic loss, classical algorithms from
Online Convex Optimization can be used to minimize the regret (1). On the one hand, remarking
that the logistic loss is convex and Lipschitz, one may use Online Gradient Descent (OGD) of
Zinkevich (2003), which guarantees a regret of order O(B

√
n). On the other hand, using that the

logistic loss is e−B-exp concave, one can use Online Newton Step (ONS) from Hazan et al. (2007)
which achieves a logarithmic regret of order O(deB log(n)).

In view of this results, one could wonder if obtaining a better dependence on the number of
samples comes with an exponential deterioration on the multiplicative constant in B. Hazan et al.
(2014) considered this exact question and showed that indeed any proper algorithm in the regime
n = O(eB) has at least a worst-case regret of order Ω(B2/3n1/3) for one dimensional inputs.
Therefore any bound of the form O(B log(n)) is impossible for proper algorithms. We recall that
an algorithm is called proper if its prediction function f̂t : X → Ŷ is in the reference class F . In
other words, it means that for all t > 1, the prediction is of the form ŷt = f̂t(xt) with ft ∈ F
independent of xt (i.e., the prediction function is linear in xt in our case).

However, it was recently shown that this lower-bound does not apply to improper algorithms
Foster et al. (2018). Indeed, based on the simple observation that the logistic loss is 1-mixable
(see Vovk (1998) for the definition), they could apply Vovk’s Aggregating Algorithm Vovk (1998)
which leverages mixability to achieve a regret of order O(d log(Bn)). In particular, they showed
that for online logistic regression improper algorithms can significantly outperform proper algo-
rithms by proving a doubly-exponential improvement on the constant B. Yet, the complexity of
their algorithm, while being polynomial in d and n is highly prohibitive making the algorithm in-
feasible in practice. Vovk’s Aggregating Algorithm is indeed based on a continuous version of the
exponentially weighted average forecaster. To output a prediction one needs to approximate an
integral over the d-dimensional ball which requires the use of MCMC approximations. Using the
projected Langevin Monte Carlo sampler from Bubeck et al. (2018), they record a computation time
of O(B6n12(Bn+ d)12).

This is the starting point of this work. Can we achieve similar performance in online logistic
regression with practical computational complexity? Recently, some works attacked this question
for logistic regression in the batch statistical setting with i.i.d. data only. Marteau-Ferey et al. (2019)
considered the classical regularized empirical risk minimizer (ERM). Though the latter is proper,
using generalized self-concordance properties they could avoid the exponential constant in B un-
der additional assumptions including a well-specified problem, capacity and source conditions. In
parallel and independently of this work, Mourtada and Gaı̈ffas (2019) have also designed a prac-
tical improper algorithm in the statistical setting based on ERM with an improper regularization
using virtual data. They could provide an upper-bound on the excess risk in expectation of order
O((d+B2)/n). However, they left open the question of achieving it in an online setting.

Contributions In this paper, we introduce a new practical improper algorithm, that we call AIOLI
(Algorithmic efficient Improper Online LogIstic regression), for online logistic regression. The
latter is based on Follow The Regularized Leader (FTRL) McMahan (2011) with surrogate losses.
AIOLI takes inspiration from the Azoury-Warmuth-Vovk forecaster (also named non-linear Ridge
regression or AWV) from Vovk (2001) and Azoury and Warmuth (2001) which adds a non-proper
penalty based on the next input xt and from Online Newton Step Hazan et al. (2007) which leverages
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Algorithm OGD ONS Foster et al. (2018) AIOLI

Regret B
√
n deB log(n) d log(Bn) dB log(Bn)

Total complexity nd nd3 B6n12(Bn+ d)12 nd2 + n log(n)

Table 1: Regret bounds and computational complexities (in O(·)) of relevant algorithms

the exp-concavity of logistic regression to achieve logarithmic regret. The per-round space and time
complexity of AIOLI is of order (O(nd2 + n log(n)) which is close to the one of ONS and greatly
improves the ones of Foster et al. (2018).

We provide in Theorem 1 an upper-bound on the regret of AIOLI of the order O(dB log(Bn)).
This makes AIOLI provably better than any proper algorithm in the regime where n = O(eB).
To illustrate our results, we provide simulations on synthetic data generated by the adversarial
distribution of Hazan et al. (2014) that show that, contrary to classical FTRL, the regret of AIOLI is
indeed logarithmic. We summarize in Table 1 the rates and per-round computational complexities
of the key-algorithms for logistic regression.

In addition to introducing AIOLI , we make two technical contributions that we believe to be
of their own interests. Our first technical contribution is based on the simple observation that the
logistic function x 7→ log(1+e−x) is only e−B-exp concave on [−B,B] when x is close to−B. For
the rest of the range (typically x ∈ [0, B]), far better exp-concavity parameters (that we also refer to
as curvature) may be achieved. Therefore, contrary to ONS which uses the worst-case value for the
curvature, we consider quadratic approximations of the logistic loss with data-dependent curvature
parameters. These approximations are used as surrogate losses minimized by AIOLI .

Our second technical contribution is to use an improper regularization that allows us to not pay
the worst curvature but only the one for x close to 0. This regularization is inspired from the non-
linear Ridge forecaster of Azoury and Warmuth (2001) and Vovk (2001). Typically, when a new
input xt is observed by the learner, the latter can use it to regularize more in the direction of xt. If
the learner knew the next output yt a good regularization would be to add the loss `(f(xt), yt) when
computing FTRL. Yet yt is unknown and the learner must use a regularization independent of yt.
The non-linear Ridge forecaster consists in replacing yt by 0. Instead, AIOLI regularizes by adding
both `(f(xt), 1) and `(f(xt),−1) to the empirical loss to be minimized. The important phenomena
is that the dominant regularization is `(f(xt), yt) if ytθ̂>t xt � 0, that is when the algorithm makes
a large error. It is worth emphasizing that this regularization depends on the next input xt and thus
makes our algorithm improper. We believe this type of regularization to be new for online logistic
regression and have significant interest to inspire future work.

Setting and notation We recall the setting and introduce the main notations that will be used
all along the paper. Our framework is formalized as a sequential game between a learner and an
environment. At each forecasting instance t > 1, the learner is given an input xt ∈ X ⊆ B(Rd, R)
for some radius R > 0 and dimension d > 1; chooses a vector θ̂t ∈ Rd (possibly based on
the current input xt and on the past information x1, y1, . . . , xt−1, yt−1); and makes the prediction
ŷt = θ̂>t xt ∈ R. Then, the environment chooses yt ∈ {−1, 1}; reveals it to the learner which incurs
the loss `t(θ̂t) = `(θ̂>t xt, yt) where for all θ ∈ Rd,

`
(
θ>xt, yt

)
= log

(
1 + e−ytθ

>xt
)
.
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Moreover, the gradients of the loss functions at the estimator will be denoted as gt = ∇`t(θ̂t) ∈ Rd.
We recall that the goal of the learner is to minimize the cumulative regret

Rn(θ) =

n∑
t=1

`
(
θ̂>t xt, yt

)
−

n∑
t=1

`
(
θ>xt, yt

)
,

uniformly over all θ ∈ B(Rd, B) and all possible sequences (x1, y1), ..., (xn, yn) ∈ X × Y .

2. Main contributions

This section gathers the main contributions of the present paper. Essentially, we introduce in Sec-
tion 2.1 our new algorithm for online logistic regression. In Section 2.2, we prove the corresponding
upper-bounds on the regret and we provide an efficient implementation in Section 2.3.

2.1. AIOLI : a new algorithm for online logistic regression

We introduce here and briefly describe a new algorithm AIOLI for online logistic regression. More
details on the underlying ideas are provided in Section 3. AIOLI is based on FTRL which is applied
on surrogate quadratic losses and with an additional improper regularization. It requires the knowl-
edge of three hyper-parameters: a regularization parameter λ > 0, the diameter of the input space
R > 0 and the diameter of the reference class B > 0. At each forecasting instance t > 1, we first
define the following quadratic approximations of the past losses for 1 6 s < t that are defined by:
for all θ ∈ Rd

̂̀
s(θ) = `s(θ̂s) + g>s (θ − θ̂s) +

ηs
2

(θ − θ̂s)>gsg>s (θ − θ̂s) , with ηs =
eysŷs

1 +BR
. (2)

This approximation is discussed more in details in Section 3.1. The main point to be noticed is that
the curvature parameters ηs are adapted to the predictions of the algorithms ŷs in contrast to ONS
which uses the worst-case values e−B for all s > 1.

Then, AIOLI computes the following estimator

θ̂t = argmin
θ∈Rd

{
t−1∑
s=1

̂̀
s(θ) + `(θ>xt, 1) + `(θ>xt,−1) + λ‖θ‖2

}
(3)

and predicts ŷt = θ̂>t xt.
We point out that both regularization terms use the original logistic loss ` and not its approxi-

mation ̂̀t. Still, ̂̀t(θ̂t) equals `(θ̂>t xt, yt). Remark that this algorithm is indeed improper since θ̂t
depends on the next input xt which implies a non-linear prediction ŷt = θ̂>t xt (see Figure 1). We
propose in Section 2.3 an efficient scheme to sequentially compute θ̂t with low computational and
storage complexities.

2.2. Logarithmic upper-bound on the regret without exponential constants

We state now our main theoretical result which is an upper bound on the regret suffered by AIOLI .
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Figure 1: Example of prediction functions obtained by FTRL, AIOLI and the algorithm of Foster
et al. (2018).

Theorem 1 Let λ,R,B > 0 and d, n > 1. Let (x1, y1), ..., (xn, yn) ∈ X × Y be an arbitrary
sequence of observations. AIOLI (as defined in Equation (3)) run with regularization parameter
λ > 0 satisfies the following upper-bound on the regret

Rn(θ) 6 λ‖θ‖2 + d(1 +BR) log

(
1 +

nR2

8d(1 +BR)λ

)
,

for all θ ∈ B(Rd, B). In particular, by choosing λ = 1
B2 , it yields for all θ ∈ B(Rd, B)

Rn(θ) 6 d(1 +BR) log

(
1 +

nB2R2

8d(1 +BR)

)
+ 1 . (4)

This theorem is a consequence of the more general theorem 7 which is deferred to Appendix B.
We only highlight below the key ingredients of the proof. Theorem 1 states that the regret of AIOLI
is logarithmic in n with a multiplicative constant of order dB which is an exponential improvement
in B over the one achieved by proper algorithms such as ONS Hazan et al. (2007). Yet, our regret
upper-bound is weaker than the one of Foster et al. (2018) which is of order O(d log(Bn)). Their
algorithm however requires a prohibitive time complexity of order O(B6n12(Bn + d)12) through
complex MCMC procedures. We leave for future work the question weather their regret is achiev-
able by our algorithm or not.

Sketch of proof The proof of the theorem is based on two main steps: 1) we upper-bound the
cumulative regret using the true losses by the cumulative regret using the quadratic surrogate losses;
2) we can then follow (with some adjustments) the analysis for online linear regression with squared
loss of Azoury and Warmuth (2001) and Vovk (2001) (see also the proof of Gaillard et al. (2018)).
Fix θ ∈ B(Rd, B).

Step 1. The first step (i.e., the upper-bound of the regret with the surrogate regret) uses the key
Lemma 5, which implies that the quadratic surrogate loss are lower-bounds on the logistic losses.
That is,

∀t > 1, ̂̀
t(θ) 6 `t(θ).
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Using that by definition (see Equation (2)) we also have ̂̀t(θ̂t) = `t(θ̂t) for all t > 1, this entails
`t(θ̂t)− `t(θ) 6 ̂̀t(θ̂t)− ̂̀t(θ), which implies

Rn(θ) =
n∑
t=1

`t(θ̂t)−
n∑
t=1

`t(θ) 6
n∑
t=1

̂̀
t(θ̂t)−

n∑
t=1

̂̀
t(θ) = R̂n(θ) .

Step 2. Using that the surrogates losses ̂̀t are quadratic, the second part of the proof follows the one
of Gaillard et al. (2018) for online least square regression. After technical linear algebra computa-
tion, this leads to

R̂n(θ) 6
n∑
t=1

(θt+1 − θ̂t)>At(θt+1 − θ̂t)− (θt − θ̂t)>At−1(θt − θ̂t) ,

where At = λI +
∑t

s=1
ηs
2 gsg

>
s and we recall that gs = ∇̂̀s(θ̂s) and ηt = eytŷt/(1 +BR). Using

the definition of θ̂t, after some computations, we can upper-bound

(θt+1 − θ̂t)>At(θt+1 − θ̂t)− (θt − θ̂t)>At−1(θt − θ̂t) 6 −
1

2
g>t A

−1
t g−ytt .

Note that either gt or g−ytt is small. More precisely, if ηt is exponentially small then this is also the
case for g−ytt which is key to avoid the exponential constant. It should be put in comparison with
the bound g>t A

−1
t gt that one would have obtained with the FTRL algorithm. More precisely, we

have the following relation g−ytt = −(1 +BR)ηtgt which leads to

R̂n(θ) 6 (1 +BR)
n∑
t=1

ηt
2
g>t A

−1
t gt.

This leaves us with a telescoping sum that finally provides the final regret upper-bound of the theo-
rem.

�

2.3. Efficient Implementation

In this section, we show how to compute incrementally the proposed forecaster θ̂t, defined in (3).
First, we defined the sufficient statistics used by AIOLI as

At = λI +
1

2

t∑
s=1

ηs gsg
>
s , bt =

1

2

t∑
s=1

(ηsg
>
s θ̂s − 1)gs. (5)

In the next lemma we characterize also θ̂t in terms At−1, bt−1, xt.

Lemma 2 (Characterizing θ̂t given At−1, bt−1, θt, xt) Using the notation above define

Wt = L−1t−1(bt−1, xt) ∈ Rd×2 ,

where Lt−1 is the Cholesky decomposition of At−1, i.e. the lower triangular matrix satisfying
At−1 = Lt−1L

>
t−1 and ωt ∈ R2 is the solution of the following problem

ωt = argmin
ω∈Rpt

Ωt(ω), Ωt(ω) = ‖ω‖2 − 2u>t ω + log(1 + e−v
>
t ω) + log(1 + ev

>
t ω), (6)
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Algorithm 1: AIOLI descriptive version (see Algorithm 2, Appendix D for a detailed version)
Parameters λ, T, n, constants B,R
initialize L0 = λ1/2I, b0 = 0, θ0 = 0
for t = 1, ..., n do

receive xt
compute Wt, Ut,Σt, ut, vt using Lt−1, bt−1, xt, θt, as specified in Lemma 2
compute ωTt using T steps of gradient descent using ut, vt as specified in Lemma 3
compute θ̃t = L−>t WtUtΣ

−1/2
t ωTt and predicts ŷt = θ̃>t xt

receive yt
compute gt using θ̃t, yt, xt
compute Lt via rank 1 Cholesky update of Lt−1 with vector

√
ηt/2gt

compute bt = bt−1 + (ηtg
>
t θ̃t − 1)gt

end

where pt ∈ {1, 2} is the rank of the matrix Wt, ut = Σ
1/2
t U>e1, vt = Σ

1/2
t U>e2 with {Ut,Σt}

corresponding to the economic eigenvalue decomposition1 of W>t Wt and e1 = (1, 0), e2 = (0, 1).
Then

θ̂t = L−>t−1WtUtΣ
−1/2
t ωt. (7)

Computing θ̂t givenAt−1, bt−1, xt therefore boils down to solving the two dimensional optimization
problem in (6), for which we can use gradient descent, since Ωt is smooth strongly convex with a
small condition number depending only on R2/λ, as proven in the next lemma.

Lemma 3 Let ε, γ > 0, T ∈ N, let ωt be the solution of (6) and let ωTt be defined recursively as

ωit = ωi−1t − γ∇Ωt(ω
i−1
t ), ∀i ∈ {1, . . . , T}.

Then ‖ωTt − ωt‖ 6 ε, when ω0
t = 0 and γ, T are chosen as follows

γ =
λ

4λ+R2
, T >

(
4 +

R2

λ

)
log

Rt

ε
√
λ
.

The efficient sequential implementation of θ̂t reported in (1) is obtained by combining the different
steps given by: the characterization θ̂t (Lemma 2); the efficient solution of (6) (Lemma 3); and
the fact that Lt can efficiently be updated online by doing a Cholesky rank 1 update. More details
on the algorithm are provided in Algorithm 2 in Appendix D. The total computational cost is of
order O(nd2 + n log n) as proven in the next theorem. The proof relies on the facts that rank 1
Cholesky updates cost O(d2) and that the cost of w = L−1v with L ∈ Rd×d triangular invertible
and v, w ∈ Rd (i.e. the solution of a triangular linear system Lw = v) isO(d2) Golub and Van Loan
(2012).

Theorem 4 (Efficient implementation) Let T, n ∈ N and θ̃t be the solution of Algorithm 2 at step
t, with hyperparameter T . Choosing T =

⌈
(4 + R2

λ ) log
(
3n2R2

λ (nR
2

8λ +B)
)⌉

leads to a regret

1. I.e., W>t Wt = UtΣtU
>
t with Ut ∈ R2×pt with pt the rank of W>t Wt, such that U>t Ut = I and Σt ∈ Rpt×pt is

diagonal and positive.

7
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R̃n(θ) for the forecaster (θ̃t)
n
t=1 bounded by

R̃n(θ) 6 λ‖θ‖2 + d(1 +BR) log

(
1 +

nR2

8d(1 +BR)λ

)
+ 1.

Moreover, Algorithm 2 has a total computational complexity

O

(
nd2 + n

R2

λ
log

[
Rn

λ
+B

])
.

To conclude, note that, when λ = 1
B2 , the total computational complexity of Algorithm 2 isO(nd2+

n log n).

3. Key ideas of the analysis

In this section, we present more in details the two main ideas of our analysis. We believe that they
might be of independent technical interest for future work.

3.1. Quadratic approximations with adaptive curvature

The main historical approach to prove logarithmic regret for online logistic regression is based on
the observation that the logistic losses `t : θ 7→ `(θ>xt, yt) are α-exp-concave for some fixed exp-
concavity parameter α > 0. In other words, for all t > 1, the functions θ 7→ exp

(
− α`t(θ)

)
are

convex. From (Hazan et al., 2016, Lemma 4.2), α-exp-concavity implies in particular that for all
θ, θ̂t ∈ B(Rd, B)

`t(θ) > `t(θ̂t) +∇`t(θ̂t)>(θ − θ̂t) +
η

2
(θ − θ̂t)>∇`t(θ̂t)∇`t(θ̂t)>(θ − θ̂t) (8)

where η 6 1
2 min{ 1

4GB , α}, where G is an upper-bound of the `2-norm of the gradients. We refer
to η as the curvature constant. The above inequality provides a quadratic lower approximation
of the logistic loss. It plays a crucial role in the analysis of ONS Hazan et al. (2007) to provide a
logarithmic regret upper-bound of orderO( 1ηd log(n)). We can note that in this inequality, η is fixed
for all t > 1 and independent of θ and θ̂t. However, for the logistic loss, the best exp-concavity
constant α > 0 is of order e−BR which leads to an undesirable exponential multiplicative constant.

Our idea is to replace the worst-case fixed η > 0 with a data adaptive constant ηt. To do so, we
first remark that at time t > 1, the curvature constant is bad (i.e., of order e−BR) when the prediction
ŷt = θ̂>t xt of the algorithm was significantly wrong. That is, when ytŷt ≈ −BR. In contrast, if
the algorithm predicted well the sign of the next outcome, i.e., if ytŷt > 0 then Inequality (8) holds
with a much larger curvature constant greater than (1 + BR)−1. Based on this high-level idea, we
could prove Inequality (8) by replacing the fixed curvature η > 0 with

ηt =
eytŷt

1 +BR
. (9)

The latter inequality yielded to our choice of surrogate quadratic approximations ̂̀t defined in Equa-
tion (2). This adaptive quadratic lower-approximation of the logistic loss is a direct consequence of
the following technical lemma applied with a = ytθ

>xt, b = ytŷt, and C = BR.

8
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Lemma 5 Let C > 0 and f : x ∈ R 7→ log(1 + e−x). Then, for all a ∈ [−C,C] and b ∈ R,

f(a) > f(b) + f ′(b)(a− b) +
eb

2(1 + C)
f ′(b)2(a− b)2 .

The proof is postponed to the supplementary material (see Appendix C).

3.2. Improper regularization

The other key ingredient of our analysis is to ensure that only the rounds where the curvature ηt (9)
are large matter in the analysis. This is the role of our new improper regularization added in the def-
inition (3) of θ̂t. The underlying idea is to add the possible next losses `(θ>xt, 1) and `(θ>xt,−1)
to the minimization problem solved by AIOLI (see (3)).

We explain now the high-level idea why this regularization helps when ηt is small. We need to
distinguish two cases. On the one hand, if the prediction is good, i.e., ŷt and yt have same signs.
Then, ηt ∝ exp(ytŷt) is large and since the prediction is already good. Thus, the regularization
does not hurt much. On the other hand, when ŷt and yt have opposite signs, the curvature parameter
may be exponentially small. But, then the addition of `t(θ>xt, yt) greatly improves the predictions
of the algorithm in these cases, because the data point (xt, yt) was already included in the history
when optimizing θ̂t in (1). Moreover, the addition of the the wrong output −yt does not impact
much the prediction since in ŷt we have

`(ŷt,−yt) = log
(
1 + eytŷt

)
= log

(
1 + (1 +BR)ηt

)
which is small whenever ηt is small.

4. Extensions

4.1. Non-parametric setting

For the sake of simplicity, the analysis of the present paper was only carried out for finite dimen-
sional logistic regression in Rd. Yet, most of the results remain valid for Reproducing Kernel Hilbert
Spaces (RKHS) H (see Aronszajn (1950) for details on RKHS). Then, Theorem 1 holds by replac-
ing the finite dimension d > 1 with the effective dimension

deff(λ) = Tr(Knn(Knn + λI)−1) ,

where the input matrixKnn is defined as (Knn)i,j = x>i xj . The regret is then of orderO(Bdeff(Bλ)+
λB2). Note that the effective dimension is always upper-bounded by deff(λ) 6 n/λ, providing in
the worst case, the regret upper-bound of order O(B

√
n) for well-chosen λ. Under the capacity

condition, which is a classical assumption for kernels (see Marteau-Ferey et al. (2019) for instance),
better bounds on the effective dimension are provided which yield to faster regret rates.

In the case of RKHS, using standard kernel trick, the total computational complexity of the
algorithm is thenO(n3). The latter might be however prohibitive in large dimension. An interesting
research direction is to investigate whether we can apply standard approximation techniques such
as random features or Nyström projection similarly to what Calandriello et al. (2017) and Jézéquel
et al. (2019) did for exp-concave and square loss respectively. In particular, what is the trade-off
between computational complexity and regret and what is the lowest complexity that still allows
optimal regret?

9
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4.2. Online-to-batch conversion

Even in the batch statistical setting, the lower-bound of Hazan et al. (2014) holds for proper algo-
rithms and few improper algorithms where introduced to avoid the statistical constantO(eB). Using
the standard online-to-batch conversion Helmbold and Warmuth (1995), similarly to the algorithm
of Foster et al. (2018), our algorithm also provides an estimator with bounded excess risk in expec-
tation. To do so, one can sample an index τ uniformly in {1, . . . , n} and define the estimator f̄n
defined for all x ∈ X by

f̄n(x) = f̂τ (x) with f̂t(x) = θ̂t(x)>x, 1 6 t 6 T , (10)

where θ̂t(x) is the solution of the minimization problem (3) by substituting xt with the new input
x ∈ X . It is worth pointing out that f̄n(x) 6= θ̂>t x is a non-linear function in x and is thus improper.
The following corollary controls the excess-risk of f̄t in expectation. Its proof is standard but short
and we recall it for the sake of completeness.

Corollary 6 (Online-to-batch conversion) Let n, d > 1 and B,R > 0. Let ν be an unknown
distribution over B(Rd, R) × {−1, 1} and Dn =

{
(xi, yi)

}
16i6n be i.i.d. sampled from ν. Then,

the estimator f̄n defined in Equation (10) with λ = 1/B2 satisfies

E
[
`(f̄n(X), Y )

]
− inf
θ∈B(Rd,B)

E
[
`(f(X), Y )

]
6

1

n

[
d(1 +BR) log

(
1 +

nB2R2

8d(1 +BR)

)
+ 1

]
,

where (X,Y ) ∼ ν and the expectations are taken over (X,Y ), Dn and τ .

Proof Let us denote by Rbn the upper-bound on the regret in the right-hand side of Equation (4).
Then,

E
[
`(f̄n(X), Y )

]
= E

[
`(f̂τ (X), Y )

]
= E

[ 1

n

n∑
t=1

`(f̂t(X), Y )
]

(∗)
= E

[ 1

n

n∑
t=1

`
(
f̂t(xt), yt

)]
6 E

[
1

n

n∑
t=1

`(θ>xt, yt)
]

+
Rbn
n

(∗)
= E

[
1

n

n∑
t=1

`(θ>X,Y )

]
+
Rbn
n
,

where the equalities (∗) are because (X,Y ) and (xt, yt) follow the same distribution and because
f̂t and θ are independent of (xt, yt) by definition.

Apart from Foster et al. (2018), which is non-practical and also based on an online-to-batch
conversion, we are only aware of the works of Mourtada and Gaı̈ffas (2019) and Marteau-Ferey
et al. (2019) that improve the exponential constant O(eB) in the statistical setting. Marteau-Ferey
et al. (2019) make additional assumptions on the data distribution (self-concordance, well-specified
model, capacity and source conditions). Their framework is hardly comparable to ours with con-
stants that may be arbitrarily large in our setting. In contrast, the recent work of Mourtada and
Gaı̈ffas (2019) do provide an improper estimator that satisfies a result very similar to Corollary 6
with an expected bound on the excess risk of order O(d + B2R2). Our upper-bound is slightly
worse with an additional multiplicative factor BR log(BRn). The log n is due to the online setting
in which it is optimal, see for instance the lower-bound of Vovk (2001). Their estimator is based
on an empirical regularized risk minimization (with the original losses) with an additional improper
regularization using virtual data. They do not analyze the computational complexity but we believe
it to be similar to ours. To conclude the comparison, note that in contrast to ours, their analysis
relies on the self-concordance property of the logistic loss in contrast to ours.

10
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Figure 2: Regret of each algorithm according to number of sample n in log-log scale.

5. Simulations

This section illustrates our theoretical results with synthetic experiments and compare the perfor-
mance of three algorithms: FTRL with `2-regularization and λ = 1, AIOLI , and the one of Foster
et al. (2018). We sample the data points (xt, yt) ∈ R× {−1, 1} according to the adversarial distri-
butions designed by Hazan et al. (2014) to prove the exponential lower bound for proper algorithms.
We consider only the case d = 1 because the lower bound for proper algorithms already applies and
the algorithm of Foster et al. (2018) is practical in this case. Let n > 1, B = log(n), χ ∈ {−1, 1}
and ε = 0.01, the data (xt, yt)16t6n are i.i.d. generated according to

(xt, yt) =

{
(1−

√
ε

2B , 1) w.p.
√
ε

2B + χ ε
B

(
√
ε
B ,−1) otherwise

.

The experiment is averaged over 10 simulations for χ = −1 and 10 others for χ = 1. We plot in
Figure 2 the worst of these two average regrets obtained by each algorithm according to the value
of n. The lower-bound of Hazan et al. (2014) ensures that any proper algorithm has at least a regret
of order Ω(n1/3) for these data. As expected, the regret of FTRL is polynomial in n (linear slope in
log-log scale) while the ones of AIOLI and the algorithm of Foster et al. (2018) are poly-logarithmic.

6. Conclusion and future work

To sum up, we designed a new efficient improper algorithm for online logistic regression. The
latter only suffers logarithmic regret with much improved complexity compared to other existing
methods. Some interesting questions are still remaining and left for future work.

Our online-to-batch procedure only provides upper-bounds in expectation. Obtaining high-
probability bounds is more challenging and universal conversion methods such as the one of Mehta
(2016) may not work for improper procedures.

Another interesting direction for future research is the extension to multi-class classification.
Our analysis strongly relies on binary outputs to produce the improper regularization and the exten-
sion to multi-class is not straightforward. The next step would then be to extend the results to other
settings considered by Foster et al. (2018) such as bandit multi-class learning or online multi-class

11
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boosting. More generally, it would be interesting to study what are the class of functions where
adaptive curvature parameters and improper learning yield to improved guarantees.

Finally, as shown in Section 4.1, AIOLI may be applied to nonparametric logistic regression in
RKHS. However, without any approximation schemes, the computational complexity may become
prohibitive of order O(n3). Therefore, a possible line of research would be to study how much the
performance of our algorithm would be affected by standard approximations techniques as Nyström
projections or random features.
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Appendix A. Notation

In this section, we recall and define useful notations that will be used all along the proofs. At each
round t > 1, we recall that the forecaster is given an input xt ∈ X ⊂ B(Rd, R); chooses a prediction
θ̂t ∈ Rd; forms the prediction ŷt = θ̂>t xt; and observes the outcome yt ∈ {−1, 1}. The loss of a
parameter θ ∈ Rd at time t > 1 is measured by `t(θ) = `(θ>xt, yt) = log(1 + e−ytθ

>xt).

We also define for all t > 1, all θ ∈ Rd and y ∈ {−1, 1}:

- the loss suffered by θ if the outcome was y: `yt (θ) = log(1 + e−yθ
>xt)

- the gradient of the loss in θ̂t if the outcome was y: gyt = ∇`yt (θ̂t)

- the curvature if the outcome was y: ηyt = eyθ̂
>
t xt

1+BR

- the quadratic surrogate losses if the outcome was y:̂̀y
t (θ) = `yt (θ̂t) + gy>t (θ − θ̂t) +

ηyt
2 (θ − θ̂t)>gyt g

y>
t (θ − θ̂t)

- the corresponding loss, surrogate loss, gradient, and curvature for the true outcome ŷt:
`t = `ytt , ̂̀

t = ̂̀yt
t , gt = gytt , ηt = ηytt

- the regularized cumulative loss and cumulative surrogate loss respectively:

Lt(θ) =
t∑

s=1
`s(θ) + λ‖θ‖2, L̂t(θ) =

t∑
s=1

̂̀
s(θ) + λ‖θ‖2

With these notations, we defined θt and θ̄t as:

θt = argmin
θ∈Rd

L̂t−1(θ) , and θ̄t = argmin
θ∈Rd

{
L̂t−1(θ) + `1t (θ) + `−1t (θ)

}
. (11)

Appendix B. Proof of the main theorem

Theorem 7 Let ε, λ,R > 0 and d, n > 1. Let (x1, y1), ..., (xn, yn) ∈ X × Y be an arbitrary
sequence of observations. Define θ̄t for t > 1 as in Equation (11) with regularization parameter
λ > 0. Then, any estimator θ̂t which verifies for all t > 1, ‖θ̂t − θ̄t‖ 6 ε satisfies the following
upper-bound on the regret

Rn(θ) 6 λ‖θ‖2 + d(1 +BR) log

(
1 +

nR2

8d(1 +BR)λ

)
+ 3nR

(
nR2

8λ
+B

)
ε .

Proof Let θ ∈ B(Rd, B). Let us first upper-bound the regretRn(θ) by the regret using the surrogate
losses. Applying Lemma 5 with a = ytθ

>xt ∈ [−BR,BR] and b ∈ ytθ̂>t xt ∈ R, we have for all
t > 1:

`t(θ) > ̂̀t(θ).
Together with `t(θ̂t) = ̂̀

t(θ̂t), it yields that the regret on the true loss is upper-bounded by the regret
on the quadratic approximations

Rn(θ) =

n∑
t=1

`t(θ̂t)−
n∑
t=1

`t(θ) 6
n∑
t=1

̂̀
t(θ̂t)−

n∑
t=1

̂̀
t(θ) = R̂n(θ) . (12)
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Now, we are left with analyzing a quadratic problem. We can thus follow in the main lines the
proof of Gaillard et al. (2018) for online least squares. By definition of θn+1 = argminθ∈Rd L̂n(θ),
L̂n(θn+1) 6 L̂n(θ), which can be written as

n∑
t=1

̂̀
t(θn+1)−

n∑
t=1

̂̀
t(θ) 6 λ‖θ‖2 − λ‖θn+1‖2 .

Now, the regret can be upper-bounded as

R̂n(θ) 6 λ‖θ‖2 +
n∑
t=1

̂̀
t(θ̂t)−

n∑
t=1

̂̀
t(θn+1)− λ‖θn+1‖2

= λ‖θ‖2 +
n∑
t=1

[̂̀
t(θ̂t) + L̂t−1(θt)− L̂t(θt+1)

]
. (13)

With a little bit of abuse, we call the terms inside the sum on the right the instant regrets. Grouping
the terms of same degrees in the quadratic approximation,̂̀

t(θ) = `t(θ̂t) + g>t (θ − θ̂t) +
ηt
2

(θ − θ̂t)gtg>t (θ − θ̂t)

= `t(θ̂t)− g>t θ̂t +
ηt
2
θ̂>t gtg

>
t θ̂t + g>t θ − ηtθ>gtg>t θ̂t +

ηt
2
θ>gtg

>
t θ

= c∗t − 2b∗>t θ +
ηt
2
θ>gtg

>
t θ

with c∗t = `t(θ̂t) − g>t θ̂t + ηt
2 θ̂
>
t gtg

>
t θ̂t and b∗t = 1

2

(
− gt + ηt(θ̂

>
t gt)gt

)
. Similarly, we can write

the cumulative loss as

L̂t(θ) =
t∑

s=1

c∗s︸ ︷︷ ︸
ct

−2

( t∑
s=1

b∗s︸ ︷︷ ︸
bt

)>
θ + θ>

(
λI +

t∑
s=1

ηs
2
gsg
>
s︸ ︷︷ ︸

At

)
θ . (14)

The minimum of this quadratic, reached in θt+1 = A−1t bt, is

L̂t(θt+1) = ct − 2 b>t A
−1
t︸ ︷︷ ︸

θt+1

Atθt+1 + θ>t+1Atθt+1 = ct − θ>t+1Atθt+1 .

We can write now the instant regret at t aŝ̀
t(θ̂t) + L̂t−1(θt)− L̂t(θt+1) = ̂̀

t(θ̂t)− c∗t + θ>t+1Atθt+1 − θ>t At−1θt
= g>t θ̂t −

ηt
2
θ̂>t gtg

>
t θ̂t + θ>t+1Atθt+1 − θ>t At−1θt

= g>t θ̂t − θ̂>t (At −At−1)θ̂t + θ>t+1Atθt+1 − θ>t At−1θt . (15)

The oracle θt+1 minimizes the quadratic function L̂t with Hessian 2At. Thus, performing one
newton step from θ̂t gives

θt+1 = θ̂t −
1

2
A−1t ∇L̂t(θ̂t)

= θ̂t −
1

2
A−1t

[
∇L̂t−1(θ̂t) + gt

]
= θ̂t +

1

2
A−1t g−ytt − 1

2
A−1t

[
∇L̂t−1(θ̂t) + gt + g−ytt

]
(16)

15



EFFICIENT IMPROPER LEARNING FOR ONLINE LOGISTIC REGRESSION

Similarly, we have

θt = θ̂t −
1

2
A−1t−1∇L̂t−1(θ̂t)

= θ̂t +
1

2
A−1t−1(gt + g−ytt )− 1

2
A−1t−1

[
∇L̂t−1(θ̂t) + gt + g−ytt

]
. (17)

Reorganizing the terms in the two previous equations leads to

gt = 2
[
Atθ̂t −Atθt+1 −At−1θ̂t +At−1θt

]
.

Substituting in the instant regret (15), this entails

̂̀
t(θ̂t) + L̂t−1(θt)− L̂t(θt+1) = 2θ̂>t Atθ̂t − 2θ>t+1Atθ̂t − 2θ̂>t At−1θ̂t + 2θ>t At−1θ̂t

− θ̂>t Atθ̂t + θ̂>t At−1θ̂t + θ>t+1Atθt+1 − θ>t At−1θt
= θ>t+1Atθt+1 − 2θ>t+1Atθ̂t + θ̂>t Atθ̂t − θ>t At−1θt + 2θ>t At−1θ̂t − θ̂>t At−1θ̂t
= (θt+1 − θ̂t)>At(θt+1 − θ̂t)− (θt − θ̂t)>At−1(θt − θ̂t) (18)

Rewriting equations (16) and (17), we have

2At(θt+1 − θ̂t) = g−ytt − δt
2At−1(θt − θ̂t) = g−ytt + gt − δt

with δt = ∇L̂t−1(θ̂t) + gt + g−ytt .
Subtracting the first equation to the second, we can write the instant regret as a variance term and
an optimization error term,

̂̀
t(θ̂t) + L̂t−1(θt)− L̂t(θt+1) = Zt + Ωt (19)

where

Zt =
1

4
g−yt>t A−1t g−ytt − 1

4
(gt + g−ytt )A−1t−1(gt + g−ytt )

and

Ωt =
1

4

[
−2g−ytt A−1t δt + δtA

−1
t δt + 2(gt + g−ytt )A−1t−1δt − δtA

−1
t−1δt

]
.
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B.1. Upper-bound of the variance term Zt

Let us focus on bounding the term Zt. Developing the terms and using the fact that At−1 6 At, we
have

Zt =
1

4
(gt + g−ytt − gt)>A−1t (gt + g−ytt − gt)−

1

4
(gt + g−ytt )>A−1t−1(gt + g−ytt )

=
1

4
g>t A

−1
t gt −

1

2
g>t A

−1
t (gt + g−ytt ) +

1

4
(gt + g−ytt )>A−1t (gt + g−ytt )

− 1

4
(gt + g−ytt )>A−1t−1(gt + g−ytt )

6
1

4
g>t A

−1
t gt −

1

2
g>t A

−1
t (gt + g−ytt )

= −1

4
g>t A

−1
t gt −

1

2
g>t A

−1
t g−ytt

6 −1

2
g>t A

−1
t g−ytt .

Using the definition of the logistic function, we can relate gt and g−ytt ,

g−ytt =
ytxt

1 + e−ytθ̂
>
t xt

= eytθ̂
>
t xt

ytxt

1 + eytθ̂
>
t xt

= −(1 +BR)ηtgt , (20)

which implies,

Zt 6 (1 +BR)
ηt
2
g>t A

−1
t gt .

Summing over t = 1, . . . , n, the sum telescopes thanks to Lemma 10, we obtain

n∑
t=1

Zt 6 (1 +BR)

d∑
k=1

log

(
1 +

λk(Cn)

λ

)
, (21)

where Cn = 1
2

∑n
t=1 ηtgtg

>
t and λk(Cn) is the k largest eigenvalue of Cn.

Now to upper-bound the right-hand side we need to upper-bound the trace of Cn, which we do
now. Recalling that gt = −ytxt/

(
1 + exp(ytθ̂

>
t xt)

)
, we have

ηt
2
gtg
>
t =

1

2(1 +BR)

eyθ̂
>
t xt

(1 + eytθ̂
>
t xt)2

xtx
>
t 6

1

8(1 +BR)
xtx
>
t ,

where for the inequality, we used that x/(1 + x)2 6 1/4 for x > 0. Therefore, Tr(Cn) =∑d
k=1 λk(Cn) 6 nR2/(8(1 +BR)) for all k > 1. Now remark that the right-hand side of equation

21 is maximized under the constraint
∑d

k=1 λk(Cn) 6 nR2/(8(1 +BR)) when all the eigenvalues
are equals i.e.,λk(Cn) = nR2/(8d(1 +BR)) for all 1 6 k 6 d which leads to

n∑
t=1

Zt 6 d(1 +BR) log

(
1 +

nR2

8d(1 +BR)λ

)
(22)
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B.2. Upper-bound on the optimization error Ωt

It remains to bound the the approximation term Ωt.

Ωt =
1

4
[2(gt + g−ytt )A−1t−1δt − 2g−ytt A−1t δt + δtA

−1
t δt − δtA−1t−1δt︸ ︷︷ ︸

60

]

6
1

2λ

[
2‖g−ytt ‖+ ‖gt‖

]
‖δt‖

6
3R

2λ
‖δt‖ .

The last inequality is due to ‖gyt ‖ 6 R for all ‖xt‖ 6 R and y ∈ {−1, 1}. By definition of

θ̄t ∈ argminθ∈Rd
{
L̂t−1(θ) + `t(θ) + `−ytt (θ)

}
, we have ∇L̂t−1(θ̄t) +∇`t(θ̄t) +∇`−ytt (θ̄t) = 0.

Note also that gyt = ∇`yt (θ̂t) for all y ∈ {−1, 1}. So δt may be rewriten as

δt = ∇L̂t−1(θ̂t) +∇`t(θ̂t) +∇`−ytt (θ̂t)−∇L̂t−1(θ̄t)−∇`t(θ̄t)−∇`−ytt (θ̄t)

Using that∇`t and∇̂̀t areR2/4-Lipschitz (for∇̂̀t remark that ‖∇2 ̂̀
t(θ)‖ = ‖ηtgtg>t ‖ 6 R2/4)),

we have

‖δt‖ 6
[

(t+ 1)R2

4
+ 2λB

]
‖θ̂t − θ̂t‖ . (23)

Summing over t leads to
n∑
t=1

Ωt 6 3nR

(
nR2

8λ
+B

)
ε . (24)

B.3. Conculsion of the proof

Using inequalities (12), (13) and (19), we have

Rn(θ) 6 R̂n(θ) 6 λ‖θ‖2 +
n∑
t=1

Zt +
n∑
t=1

Ωt

Finally, inequalities (21) and (24) concludes the proof.

Appendix C. Lemmas

Proof of Lemma 5. Let C > 0. First, note that for all x ∈ R, f ′(x) = −(1 + exp(x))−1. To prove
Lemma 5, we need to show that for α = (1 + C)−1, we have for all a ∈ [−C,C] and b ∈ R

log(1 + e−a) > log(1 + e−b)− 1

1 + eb
(a− b) +

α

2

eb

(1 + eb)2
(a− b)2 .

To do so, we fix b ∈ R and we define the function ξ as

ξ(a) = log(1 + e−a)− log(1 + e−b) +
1

1 + eb
(a− b)− α

2

eb

(1 + eb)2
(a− b)2, −C 6 a 6 C
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It remains to show that ξ is non-negative on [−C,C]. Because ξ(b) = 0, it suffices to prove

ξ′(a)

{
6 0 for a 6 b
> 0 for a > b

(25)

First, after some computation, differentiating ξ leads to

ξ′(a) = − 1

1 + ea
+

1

1 + eb
− αeb

(1 + eb)2
(a− b) ,

which can also be rewritten as

ξ′(a) =
ea − eb

(1 + ea)(1 + eb)
− α eb

(1 + eb)2
(a− b) .

Reorganizing the terms gives the following equation

(1 + ea)(1 + eb)e−bξ′(a) = ea−b − 1− α1 + ea

1 + eb
(a− b) .

Therefore, (25) holds true as soon as

α 6
ea−b − 1

a− b
1 + eb

1 + ea
,

with the convention (e0 − 1)/0 = 1. The latter is satisfied by Lemma 8, because α = (1 +C)−1 6
(1 + |a|)−1 for all a ∈ [−C,C].

Lemma 8 For all a, b ∈ R,
1

1 + |a|
6
ea−b − 1

a− b
1 + eb

1 + ea
.

Proof Define the function h : R2 7→ R that corresponds to the right-hand side of the inequality

h(a, b) =
ea−b − 1

a− b
1 + eb

1 + ea
, (a, b) ∈ R2 .

It is worth pointing out that even h is normally not defined for a = b, setting h(a, a) = 1 makes it
well defined and infinitely differentiable on R2.

Let a > b. Then (1 + eb)/(1 + ea) > eb−a, which implies

h(a, b) >
(ea−b − 1)eb−a

(a− b)
>
eb−a − 1

b− a
>

1

1 + a− b
,

where the last inequality is because (ex − 1)/x > (1− x)−1 for all x 6 0.

Otherwise, let a 6 b. Then (1 + eb)/(1 + ea) > 1, which entails

h(a, b) >
ea−b − 1

(a− b)
>

1

1 + b− a
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Combining the two cases a 6 b and a > b together, we get

h(a, b) >
1

1 + |a− b|
. (26)

Now we show that argminb∈R h(a, b) contains a value between 0 and a, i.e., in [0, a] if a > 0 or in
[a, 0] otherwise. Rewriting the function h as follows,

h(a, b) =
1

1 + ea
ea−b − 1

a− b
+

1

1 + e−a
eb−a − 1

b− a
, (27)

it is clear that h(a, b) = h(−a,−b). We can therefore suppose without loss of generality that a is
non-negative. Indeed, if b∗(a) ∈ argminb h(a, b) then −b∗(a) ∈ argminb h(−a, b). A further look
at Equation (27) shows also that h is convex in its second argument by convexity of the function
x 7→ (ex − 1)/x and stability of convex functions by composition with affine transformations and
non-negative weighted sum.

To finish the proof, we will show that the derivative of ∂h(a, b)/∂b is non-negative for b → a
and non-positive for b = 0. Convexity of h in its second argument will then conclude. Using a > 0,
some computations (omitted here) lead to

∂

∂b
h(a, b) =

(b− a+ 1)ea−b − 1 + (b− a− 1)eb + ea

(a− b)2(1 + ea)
.

Develloping the first terms of the exponential series gives

(b− a+ 1)ea−b − 1 + (b− a− 1)eb + ea =
1

2
(ea − 1)(a− b)2 + ob→a((a− b)2) .

Therefore,

lim
b→a

∂

∂b
h(a, b) =

1

2

ea − 1

ea + 1
> 0 .

We note also that if a = 0 then ∂
∂bh(0, 0) = 0. Now, if a > 0, using (2 − x)ex 6 2 + x for all

x > 0, we have
∂

∂b
h(a, 0) = (2− a)ea − (a+ 2) 6 0

By convexity of the function b 7→ h(a, b), we conclude that argminb∈R h(a, b) ∈ [0, a]. Combined
with Inequality (26) concludes the proof of the lemma.

The following Lemma is a standard result of online matrix theory (Lemma 11.11 of Cesa-
Bianchi and Lugosi (2006)).

Lemma 9 Let V ∈ Rd×d be an invertible matrix, u ∈ Rd and U = V − uu>. Then,

u>V −1u = 1− det(U)

det(V )
.

Lemma 10 If Cn =
n∑
t=1

ηt
2 gtg

>
t and An = Cn + λI then

n∑
t=1

ηt
2
g>t A

−1
t gt 6

d∑
k=1

log

(
1 +

λk(Cn)

λ

)
where λk(Cn) is the k largest eigenvalue of Cn.
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Proof Remarking that At = At−1 + ηt
2 gtg

>
t and applying lemma 9 we have

ηt
2
g>t A

−1
t gt = 1− det(At−1/λ)

det(At/λ)

We use now that 1− u 6 log(1/u) for u > 0 which yields

ηt
2
g>t A

−1
t gt 6 log

det(At/λ)

det(At−1/λ)

Summing over t = 1, ..., n, using A0 = λI and An = Cn + λI with Cn =
n∑
t=1

ηt
2 gtg

>
t , we get

n∑
t=1

ηt
2
g>t A

−1
t gt 6 log

(
det

(
I +

Cn
λ

))

=
d∑

k=1

log

(
1 +

λk(Cn)

λ

)

Appendix D. Efficient implementation of AIOLI

Algorithm 2: AIOLI detailed version. Here eigen-dec corresponds to economic-
eigendecomposition of a symmetric matrix and chol-update to the rank 1 Cholesky update
Golub and Van Loan (2012)

L0 = λ−1/2I, b̃0 = 0, θ̃0 = 0
for t = 1, ..., n do

receives xt
Wt = L−1t (bt−1, xt), {Ut,Σt} = eigen-dec(W>t Wt), ut = Σ

1/2
t U>t e1, vt = Σ

1/2
t U>t e2

ω0
t = 0

for i = 1, ..., T do
ωit = ωi−1t − λ

4λ+R2

[
2ωi−1t − 2ut − (1 + ev

>
t ω

i−1
t )−1vt + (1 + e−v

>
t ω

i−1
t )−1vt

]
end
θ̃t = L−>t (Wt(UtΣ

−1/2
t ωTt ))

predict ŷt = θ̃>t xt
receives yt
gt = −(1 + eytθ̃

>
t xt)−1ytxt, ηt = eytθ̂

>
t xt

1+BR

Lt = chol-update(Lt−1,
√
ηt/2gt), bt = bt−1 + (ηtg

>
t θ̃t − 1)gt

end

Proof of Lemma 2 Given the definition of θ̂t, in (3), using the notation in Appendix A and Eq. (14)

θ̂t = argmin
θ∈Rd

L̂t−1(θ) + log(1 + e−θ
>
t xt) + log(1 + eθ

>xt)

= argmin
θ∈Rd

θ>At−1θ − 2θ>bt−1 + log(1 + cosh(θ>xt)).
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Since At−1 is invertible by construction and At−1 = Lt−1L
>
t−1, where Lt−1 is lower triangular

and the unique Cholesky decomposition of At−1 Golub and Van Loan (2012), we can define the
following equivalent problem, by the substitution r = L>t−1θ

rt = argmin
r∈Rd

r>r − 2r>ũt + log(1 + cosh(r>ṽt)), ũt = L−1t−1bt−1, ṽt = L−1t−1xt,

and in particular rt = L>t θ̂t. Now note that any r ∈ Rd can be always written as r = Wtq + µ
with Wt = (ũt, ṽt) ∈ Rd×2 for some q ∈ R2 and µ ∈ (spanWt)

⊥, then rt = Wtqt + µt for qt, µt
defined as

(qt, µt) = argmin
q∈R2,µ∈(spanWt)⊥

‖Wtq + µ‖2 − 2ũ>t (Wtq + µ) + log(1 + cosh(ṽ>t (Wtq + µ)))

= argmin
q∈R2,µ∈(spanWt)⊥

‖Wtq‖2 + ‖µ‖2 − 2ũ>t Wtq + log(1 + cosh(ṽ>t Wtq)),

where in the last inequality we use the fact that ũt = Wte1, ṽt = Wte2 and W>t µ = 0, by
construction. Now the solution of the problem above is given by µt = 0 and qt as

qt = argmin
q∈R2

‖Wtq‖2 − 2ũ>t Wtq + log(1 + cosh(ṽ>t Wtq)).

Now that in the problem above q is always applied to Wt, so in the case that Wt is not full rank then
all the solutions of the form qt = q0t + ζ with ζ ∈ (spanW>t Wt)

⊥ are admissible and leading to
the same rt. Then we can restrict the problem above as

qt = argmin
q∈spanW>t Wt

‖Wtq‖2 − 2ũ>t Wtq + log(1 + cosh(ṽ>t Wtq)).

To conclude, take the economic eigenvalue decomposition of W>t Wt, i.e., W>t Wt = UtΣtU
>
t with

Ut ∈ R2×pt with pt the rank of W>t Wt, such that U>t Ut = I and Σt ∈ Rpt×pt is diagonal and
positive Golub and Van Loan (2012). Now we consider the substitution ω = Σ

1/2
t U>t q, whose

inverse is q = UtΣ
−1/2
t ω since q ∈ spanW>t Wt and UtU>t is the projection matrix whose span

is exactly spanW>t Wt, i. e. UtU>t q = q for any q ∈ spanW>t Wt, which leads to the equivalent
problem

ωt = argmin
ω∈Rpt

ω>ω − 2u>t ω + log(1 + cosh(v>t ω)),

where

ut = Σ
−1/2
t U>t W

>
t ũt = Σ

−1/2
t U>t W

>
t Wte1 = Σ

1/2
t U>t e1,

vt = Σ
−1/2
t U>t W

>
t ṽt = Σ

−1/2
t U>t W

>
t Wte2 = Σ

1/2
t U>t e2.

Note that in particular ωt = Σ
1/2
t Utqt and qt = UtΣ

−1/2
t ωt. Then

θ̂t = L−>t−1rt = L−>t−1Wtqt = L−>t−1WtUtΣ
−1/2
t ωt.
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Proof of Lemma 3 Since Ωt is smooth and strongly convex, we can apply standard results on
gradient descent (see for example Theorem 3.10 of Bubeck et al. (2015)), obtaining

‖ωTt − ωt‖ 6 e−T/(2κt)‖ω0
t − ωt‖,

when gradient descent is used with step-size γ = 1/βt and where κt = βt/αt with αt a lower
bound of the strong convexity constant of Ωt and βt an upper bound the Lipschitz constant of∇Ωt.
Note indeed that if Ωt is α-strongly convex for some α, it will be also α′-strongly convex, for any
0 < α′ 6 α; moreover if ∇Ωt is β-Lipschitz for some β, it will be also β′-Lipschitz, for any
β′ > β; for more details see Chapter 3.4 of Bubeck et al. (2015). Now, by construction αt = 1,
indeed Ωt(ω) − ‖ω‖2 is still a convex problem. Moreover, for any ω, ω′ ∈ R2, by the mean value
theorem applied to the function g : [0, 1]→ R2 defined as g(r) = ∇Ω(ω + r(ω′ − ω)), there exists
a q ∈ R2 such that

∇Ωt(ω)−∇Ωt(ω
′) = ∇2Ωt(q)(ω

′ − ω).

This implies that ‖∇Ωt(ω) − ∇Ωt(ω
′)‖ 6 supq ‖∇2Ωt(q)‖‖ω′ − ω‖ so the Lipschitz constant of

∇Ωt is upper bounded by βt = supq ‖∇2Ωt(q)‖. The Hessian of Ωt is defined as

∇2Ωt(ω) = 2I +
1

1 + cosh(v>t ω)
vtv
>
t ,

then

sup
q
‖∇2Ωt(q)‖ 6 2 + ‖vt‖2 sup

w

1

1 + cosh(v>t w)
6 2 +

‖vt‖2

2
.

To conclude, note that vt in Thm. 2 is defined as vt = (W>t Wt)
1/2e2 with e2 = (0, 1), Wt =

L−1t−1(bt−1, xt), Lt−1 the lower triangular Cholesky decomposition ofAt−1 (i.e. At−1 = Lt−1L
>
t−1)

and At−1, bt−1 defined in Eq. (5). Then

‖vt‖2 = v>t vt = e2UtΣtU
>
t e
>
2 = e2W

>
t Wte2 = x>t L

−>
t−1L

−1
t−1xt = x>t A

−1
t−1xt.

So ‖vt‖2 6 ‖xt‖2‖At−1‖−1 6 R2/λ, since ‖xt‖ 6 R by assumption and At−1 � λI by con-
struction. Finally βt = 2 + ‖vt‖2/2 6 2 + R2/(2λ) and αt = 1, then κt 6 2 + R2/(2λ) and
γt = 1/(2 +R2/(2λ)). We have

‖ωTt − ωt‖ 6 exp(−T/(2κt) + log ‖) 6 exp(−T/(4 +R2/λ) + log ‖ω0
t − ωt‖).

To quantify ‖ω0
t − ωt‖ we need a bound for ‖ωt‖. Note that, since Ωt is smooth and convex, ωt is

characterized by ∇Ωt(ωt) = 0, i.e. 2ωt − 2ut − (1 + ev
>
t ωt)−1vt + (1 + e−v

>
t ωt)−1vt = 0, from

which

‖ωt‖ 6 ‖ut‖+ sup
q

∣∣∣(1 + e−v
>
t q)−1 − (1 + ev

>
t q)−1

∣∣∣ ‖vt‖/2 6 ‖ut‖+ ‖vt‖/2.

Analogously to the case of vt, by definition of ut, we have ‖ut‖2 = e1W
>
t Wte1 = bt−1A

−1
t−1bt−1,

then ‖ut‖2 6 ‖bt−1‖2‖A−1t−1‖ 6 ‖bt−1‖2/λ. Now we need a bound for bt−1. Note that for any s ∈
{1, . . . , t−1}, we have gs = ∇`s(θ̂s) = −(1+eysθ̂

>
s xs)−1ysxs, moreover ηs = eysθ̂

>
s xs/(1+BR)

and

(ηsg
>
s θ̂s − 1)gs =

ysx
>
s θ̂s

2 + 2 cosh(ysx>s θ̂s)
(1 +BR)−1ysxs +

1

1 + eysx>s θ̂s
ysxs.
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Since supz |z/(2 + 2 cosh(z))| 6 1, ys ∈ {−1, 1} and ‖xs‖ 6 R by assumption, we have
‖(ηsg>s θ̂s − 1)gs‖ 6 ((1 +BR)−1 + 1)R 6 2R, then

‖bt−1‖ =
1

2

t−1∑
s=1

‖(ηsg>s θ̂s − 1)gs‖ 6 (t− 1)R. (28)

To conclude, ‖ut‖ 6 Rλ−1/2(t−1), ‖ωt‖ 6 ‖ut‖+‖vt‖/2 6 Rλ−1/2t. By choosing ω0
t = 0, then

Pt = ‖ωt‖ 6 Rλ−1/2t and so ‖ωTt −ωt‖ 6 ε, when choosing T > (4 +R2/λ) log(Rλ−1/2t/ε).

Proof of Theorem 4 We first analyze the cost of one iteration of Algorithm 1 (which is detailed in
Algorithm 2 presented above). Note that at each step t, the cost of the gradient descent algorithm
performed to compute ωTt is the number of iterations T , since we are solving a pt-dimensional
problem, with pt ∈ {1, 2}. The two most expensive operation performed at step t (excluding
gradient descent) are the solution of triangular linear systems of dimensions d× d when computing
L−1t−1v or L−>t−1v for some vector v ∈ Rd, which costs O(d2) (this operation is performed 4 times).
The other expensive operation is the rank 1 Cholesky update of Lt−1 with the vector

√
ηt/2gt,

which costs O(d2) Golub and Van Loan (2012), indeed the eigendecomposition is performed on the
matrix W>t Wt which is 2× 2. By repeating such operation for n steps, we obtain a total cost of

O(nd2 + nT ).

The upper-bound on the regret is a direct consequence of Theorem 7 and Lemma 3, with T
chosen according to the lemma and ε =

√
λ

3nR
(
nR2

8λ
+B
) , since ‖L−1t−1‖2 = ‖A−1t−1‖ 6 λ−1 and

WtUtΣ
−1/2
t is a partial isometry, we have

‖θ̂t − θ̃t‖ 6 ‖L−1t−1‖‖WtUtΣ
−1/2
t ‖‖ωt − ωTt ‖ 6 λ−1/2ε 6

1

3nR
(
nR2

8λ +B
) , (29)

that plugged in the result of Theorem 7 gives the desired result.
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