
Proceedings of Machine Learning Research vol 125:1–51, 2020 33rd Annual Conference on Learning Theory

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with
Diagonal Constraints

Yin Tat Lee yintat@uw.edu
University of Washington, Seattle, USA

Swati Padmanabhan pswati@uw.edu

University of Washington, Seattle, USA

Editors: Jacob Abernethy and Shivani Agarwal

Abstract

We provide a first-order algorithm for semidefinite programs (SDPs) with diagonal con-
straints on the matrix variable. Our algorithm outputs an ε-optimal solution with a run
time of Õ(m/ε3.5), where m is the number of non-zero entries in the cost matrix. This

improves upon the previous best run time of Õ(m/ε4.5) by Arora and Kale (2007). As
a corollary of our result, given an instance of the Max-Cut problem with n vertices and
m� n edges, our algorithm returns a (1−ε)αGW cut in the faster time of Õ(m/ε3.5), where
αGW ≈ 0.878567 is the approximation ratio by Goemans and Williamson (1995). Our key
technical contribution is to combine an approximate variant of the Arora-Kale framework
of mirror descent for SDPs with the idea of trading off exact computations in every iteration
for variance-reduced estimations in most iterations, only periodically resetting the accumu-
lated error with exact computations. This idea, along with the constructed estimator, are
of possible independent interest for other problems that use the mirror descent framework.

1. Introduction

Consider the SDP maximizing C •X def
= Tr(CX) over the set of n× n positive semidefinite

matrices with every diagonal entry bounded by a constant:

maxC •X subject to X � 0, Xii ≤ 1 for all i ∈ [n]. (1.1)

We seek a matrix X̃∗ � 0 with X̃∗ii ≤ 1 for all i ∈ [n] satisfying C•X̃∗ ≥ C•X∗−ε
∑

i,j |Cij |,
where X∗ is an optimal solution of (1.1). This is not an ε-multiplicative guarantee (C•X̃∗ ≥
C•X∗(1−ε)), but a slightly weaker one, since

∑
i,j |Cij | ≥ C•X∗. A multiplicative guarantee

is not always easy to provide; indeed, many classical optimization algorithms also provide
a guarantee only additive in some quantity that bounds from above the difference of the
function values between the initial and optimal points. For example, gradient descent on
an L-smooth convex function f over a set with diameter D returns, after k iterations, a
point xk such that f(xk)− f(x∗) ≤ O(LD2k−1), where f(x0)− f(x∗) ≤ O(LD2).

To solve (1.1) as per the above accuracy criterion, it suffices to solve (1.2):

min f(X)
def
= −Ĉ •X +

n∑
i=1

(Xii − ρi)+, subject to X � 0. (1.2)

© 2020 Y.T. Lee & S. Padmanabhan.

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

This problem is derived from (1.1) by promoting the diagonal constraints to the objective

and appropriately scaling C to Ĉ
def
= diag(1/

√
ρ)C diag(1/

√
ρ), where ρ ∈ Rn such that

ρi =
∑

j∈[n] |Cij |. By rescaling Cij = nCij/
∑

i,j |Cij |, we assume
∑

i∈[n] ρi = n. Lemma 2
gives a solution of (1.1) from a solution of (1.2).

For (1.1), Arora and Kale (2007) have the previous best run time linear in m
def
= nnz(C),

the size of the input. Though there exist algorithms with better dependence on ε, their
dependence on n is superlinear, as we describe in Section 1.1. In this paper, we operate in
the regime of moderate ε and large n, focusing on first-order methods.

Arora and Kale (2007) use the matrix multiplicative weights (MMW) update, which can
be interpreted as mirror descent in the nuclear norm1, using the negative entropy function,
Φ(X) = X • logX, over the scaled simplex, D = {X : X � 0,TrX = n}, as the mirror
map. Their iterates at iteration t are given by

X(t) = n
exp
(
Y (t)

)
Tr exp

(
Y (t)

) , where Y (t) =

t−1∑
s=1

−η∇f(X(s)), (1.3)

with step size η = O(ε) and gradient ∇f(M) = diag(1M≥ρ) − Ĉ. Computing this gradi-
ent entails only comparing the diagonal entries of the current iterate with a fixed vector.
Therefore, the näıve computational cost of this method is dominated by Ω(nω) for the
matrix exponentiation (Pan and Chen, 1999), prohibitively expensive for a large problem
dimension. Arora and Kale (2007) circumvent this by approximating the diagonal entries
of the matrix exponential. Therefore, their overall cost is composed of the following three
parts: (1) mirror descent requiring O(1/ε2) iterations to converge, (2) degree O(1/ε) Taylor
approximation of the matrix exponential, each matrix-vector product costing O(m), and
(3) O(1/ε2) random projections (Johnson and Lindenstrauss, 1984) to estimate the diago-
nal entries of the matrix exponential; combined, these give a run time of Õ(m/ε5), which,
Allen-Zhu and Li (2017) observe, can be sped up to O(m/ε4.5) by using Chebyshev (instead
of Taylor) approximation of matrix exponentials (see (Sachdeva et al., 2014)).

Our contribution. In this work, we solve (1.1) with a run time of Õ(m/ε3.5), thus speed-
ing up the current best run time for this problem. Our result (formally stated in Theorem 3)
is effected by careful technical work that incorporates variance-reduced estimators and fast
products of matrix exponentials with vectors into the Arora-Kale framework of mirror de-
scent for SDPs. We use the generalized negative entropy, Φ(X) = X • log(X)−TrX, as our
mirror map, and our primary high-level idea is the following: instead of exactly computing
the primal iterate in each iteration, we frequently approximate it at a low accuracy (to reduce
the cost) and infrequently at a high accuracy (to “reset” the error resulting from approxi-
mation). This idea is inspired by recent variance-reduction methods (Shalev-Shwartz and
Zhang, 2013; Johnson and Zhang, 2013; Defazio et al., 2014; Hazan and Luo, 2016; Schmidt
et al., 2017). The periodic high-accuracy computations and small bias and variance of es-
timators in the low-accuracy computations ensure sufficient closeness, in the appropriate
norm, of the estimated iterates to the true ones, which, by the convergence guarantee of
approximate mirror descent, leads to an ε-optimal solution. Making this variance-reduction
work in the MMW setting requires several technical ideas, as follows.

1. The nuclear norm of a matrix X ∈ Rm×n is the sum of its singular values: ‖X‖nuc

def
=

∑min(m,n)
i=1 σi(X).

2

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

We introduce the technical idea of expanding the domain of our mirror map by a poly-
logarithmic factor. Due to the expanded domain and our choice of the mirror map, the
gradient step of mirror descent falls in the interior of this domain. The upshot of this is
that the primal iterate is related to the dual via simply a matrix exponential, with no trace
normalization as in Equation 1.3. Thus, the quantity for which we require an estimator
is greatly simplified. Drawing on the observation of Arora and Kale (2007) that the gra-
dient uses only the diagonal entries of the primal iterate, we build an estimator, with a
small bias and variance, for the change in diagonal entries of the (dual) matrix exponential.
We also prove the strong convexity parameter of our mirror map on the expanded domain
by confecting classical results from convex analysis in a novel way. Due to the ubiquity
of the MMW framework in optimization, efficient algorithms for SDPs, balanced separa-
tors, Ramanujan sparsifiers, packing/covering, and machine learning, we anticipate that our
technical contributions will be useful for problems that hinge on the MMW foundation.

Applications. When C is a graph Laplacian, (1.1) is the SDP relaxation of the Max-
Cut problem (Goemans and Williamson, 1995). An NP-complete problem (Karp, 1972),
Max-Cut has seen widespread utility in circuit design (Chen et al., 1983), statistical physics
(Barahona et al., 1988), semi-supervised learning (Wang et al., 2013), and phase recovery
(Waldspurger et al., 2015). Another instance of (1.1) is max-norm regularization (Jaggi,
2011), a convex surrogate for rank minimization (Srebro and Shraibman, 2005) enforcing
simplicity in modeling observations (Fazel et al., 2004). SDPs of the form of (1.1) have
also found applications in community detection (Abbe et al., 2015; Guédon and Vershynin,
2016; Montanari and Sen, 2016b) and as relaxations to the maximum-likelihood estimator
in the group synchronization problem (Singer and Shkolnisky, 2011; Bandeira et al., 2014).

1.1. Related work

We describe in this section previous work on (1.1) using first-order methods, other than
that of Arora and Kale (2007). Of note is that most papers below solve problems more
general than (1.1), and the run times we mention occur when specialized to (1.1).

Saddle-point formulation. Since any SDP can be instantiated as an online convex
optimization problem, we apply to our setting some notable results from this area. To
do so, we first reduce (1.1) to a feasibility problem following the approach of Arora et al.
(2005). Recall our assumption that

∑
i,j |Cij | = n. The facts X∗ � 0 and X∗ii ≤ 1 for

i ∈ [n] imply |X∗ij |2 ≤ X∗iiX
∗
jj ≤ 1, which in turn bounds the optimum from above as

OPT =
∑

i,j CijX
∗
ij ≤

∑
i,j |Cij ||X∗ij | ≤ n. We can also bound the optimum from below

by choosing X to be the zero matrix, thus bounding OPT with λ ∈ [0, n]. Let A0 = 1
λC,

b0 = 1, Ai = −eie>i , and bi = −1 for i ∈ [n]. Therefore, solving (1.1) requires, for each
guess of λ (obtained via a binary search over its range), solving the feasibility problem:

Find Z ∈ Sn≥0 subject to Ai • Z − bi ≥ 0, for all i ∈ {0, n},TrZ ≤ n. (1.4)

To do so, we leverage the saddle-point problem studied by (Garber and Hazan, 2016),

max
X∈Sn≥0,TrX=1

min
p∈Rm

≥0,‖p‖1=1

m∑
i=1

pi(Ai •X − bi). (1.5)

3

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

If the optimum of (1.5) is non-negative, solving it up to an additive accuracy of ε is equivalent
to finding a solution in the spectrahedron that satisfies all Ai •X − bi ≥ 0 upto an additive
error of ε. For (1.4), this means the solution for (1.5) satisfies Xii ≈ 1/n± ε. However, due
to the requirement of Xii ≈ 1 ± ε in (1.1), the accuracy parameter of (1.5) must be ε/n.
This causes the run time of Garber and Hazan (2016) for (1.1) to be Õ(m(n/ε)2.5). By
the same reasoning, when solving (1.1) to ε multiplicative accuracy, the work of Baes et al.
(2013), which uses a randomized Mirror-Prox algorithm, incurs a cost of Õ(n5/ε3), and the
recent algorithms of Follow the Compressed Leader by Allen-Zhu and Li (2017) and rank-1
sketch by Carmon et al. (2019) incur a cost of Õ(m(n/ε)2.5). It must be noted that Garber
and Hazan (2016), Allen-Zhu and Li (2017), and Carmon et al. (2019) provide algorithms
satisfying ε-additive accuracy. When we translate our accuracy results to their language,
the costs are not quite comparable. For instance, Carmon et al. (2019), for ε-additive
accuracy for (1.1), incurs a cost of m(n‖C‖∞/ε)2.5. Our algorithm, using this accuracy
criterion, incurs a cost of m(

∑
i,j |Cij |/ε)3.5. Unless we assume additional structure on the

matrix C, the comparison between these two costs is inconclusive.

Covering SDP. When C � 0, (1.1) is a covering SDP:

max 〈C,X〉 subject to X ∈ Sn≥0, 〈Ai, X〉 ≤ bi for all i ∈ [m],

for {Ai}i∈[d], C � 0, b ≥ 0.
(1.6)

Covering SDPs constitute a class of positive SDPs that, until recently, no positive SDP solver
(Peng and Tangwongsan, 2012; Jain and Yao, 2011; Allen Zhu et al., 2016) could provide
efficient, width-independent algorithms for, due to the non-commutativity of matrices in
general and non-monotonicity of the matrix exponential. A recent result (Jambulapati
et al., 2020) breaks this barrier; for (1.1), their cost is Õ(m/ε−5), thus still lower than ours.

Low-rank updates. When C is the graph Laplacian in (1.1), there exists an ε-accurate
solution of rank O(1/ε) (Raghavendra and Steurer, 2009; Montanari and Sen, 2016a; Mei
et al., 2017). Many papers capitalize on this fact and perform low-rank updates, which
reduces cost per iteration. For example, Klein and Lu (1996) base their algorithm on the
framework of Plotkin et al. (1991) in conjunction with the power method to achieve a
run time of Õ(mn/ε3). As another example, Hazan (2008) incorporates into the Frank-
Wolfe algorithm (Frank and Wolfe, 1956) fast computation of an approximate minimum
eigenvector and provides an Õ(mn3/ε3)-algorithm. A recent noteworthy result (Yurt-
sever et al., 2019) returns a rank-R approximation to an ε-optimal solution at a cost
Õ(R/ε2 + n/ε3). Even though, as alluded to earlier, there exists a rank-O(1/ε) solution
to the MaxCut SDP, perturbing such a solution by an appropriately small amount gives
an ε-optimal solution that is in fact full rank. Indeed, per Theorem 6.2 of Yurtsever et al.
(2019), for any r < R, the iterate X̂t returned by their algorithm in iteration t satisfies
lim supt→∞EΩ dist∗(X̂t,Ψ∗) ≤ (1 + r/(R − r − 1)) ·maxX∈Ψ∗ ‖X − [X]r‖∗, where Ω is the
randomness in their algorithm, Ψ∗ is the solution set, R is the rank of the iterate returned,
and [X]r is an r-truncated singular value decomposition of matrix X. The existence of full-
rank matrices in the solution set Ψ∗ implies a possibly large bound above, so one cannot
conclude that Yurtsever et al. (2019) improves upon our run time.

Polynomial mirror map. One of the contributions of Allen-Zhu and Li (2017) is a
“polynomial-style” mirror map such as Φ(X) = 1

1+1/2p TrX1+1/2p. The projection step

4

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

with this map is X = (Y +)2p, where Y + is the matrix obtained by zeroing out the negative
eigenvalues of Y , which is as expensive as matrix exponentiation.

Variance-reduction methods. Standard variance reduction algorithms such as SVRG
(Johnson and Zhang, 2013) minimize an objective that is a sum of functions, employing an
unbiased estimator of the gradient. Unfortunately, neither is (1.2) a sum of functions, nor
is its gradient (diag(1X>=ρ)) cheap to estimate.

1.2. Preliminaries

Notation. We use Rn to denote the subspace of n-dimensional real vectors, 1 for the
vector of all ones, and 1{E} for the all-zero vector with one at coordinates where E is true.
We use x+ to denote the non-smooth function x when x ≥ 0 and zero otherwise. Denote
by Sn the subspace of n× n symmetric matrices and by In the n× n identity matrix. For
u ∈ Rn, diag(u) is the n × n diagonal matrix with diag(u)ii = ui. For A,B ∈ Sn, the

trace inner product is A • B def
= Tr(AB) =

∑
i,j AijBij . We define |||A||| =

∑
i |Aii|. Given

a scalar function f and a vector u, we use f(u) to mean that entrywise, and similarly, for
a symmetric matrix A = UΛU>, f(A) = Uf(Λ)U>. Given A ∈ Rn×n and p ∈ Rn, A ≥ p

means Aii ≥ pi for all i ∈ [n]. For u ∈ Rn, N ∈ N, and vectors ζk
i.i.d.∼ N (0, In) for k ∈ [N],

the scalar v = RandProj(u,N)
def
= 1

N

∑N
k=1(uT ζk)

2. This implies E v = ‖u‖22. We extend
the definition to A ∈ Sn with each row of A as the vector u. Then the diagonal matrix B =
RandProj(A,N) satisfies EB = diagA2. We use Õ to denote polylogarithmic factors.
The superscript ∗ denotes optimality for variables and Fenchel conjugate for functions.

Fact 0.1 (Allen Zhu et al. (2016)) Given A � 0, B ∈ Sn, and α ∈ [0, 1], the inequality
Tr
(
BAαBA1−α) ≤ A •B2 holds.

Fact 0.2 (Wilcox (1967)) For a symmetric matrix-valued function X(t) with argument
scalar t, we have d

dt exp(X(t)) =
∫ 1
α=0 exp(αX(t)) ddtX(t) exp((1− α)X(t))dα.

Setup. Our underlying algorithm to solve (1.2) is a slight variant of lazy mirror descent
(also called Nesterov’s Dual Averaging Nesterov (2009)), which we term approximate lazy
mirror descent. To solve minx∈X f(x) using this algorithm, select a mirror map Φ : D → R
and a norm; the associated Bregman Divergence is DΦ(x, y)

def
= Φ(x)−Φ(y)−〈∇Φ(y), x− y〉;

set x(1) ∈ argminX∩D Φ(x) and z(1) ∈ ∇−1Φ(0). We repeat, in succession, the gradient
update, ∇Φ(z(t+1)) = ∇Φ(z(t))− η∇f(x(t)), and the approximate projection, finding x̃(t+1)

satisfying E ‖x̃(t+1) − x(t+1)‖ ≤ δ, where x(t+1) ∈ argminx∈X∩D DΦ(x, z(t+1)).

Theorem 1 (Convergence of Lazy Mirror Descent) Fix a norm ‖ · ‖. Given an α-
strongly convex mirror map Φ : D → R and a convex, G-Lipschitz objective f : X → R,
run Algorithm 3 with step size η and E ‖x(t) − x̃(t)‖ ≤ δ. Let D

def
= supx∈X∩D Φ (x) −

infx∈X∩D Φ (x). Then, Algorithm 3 after T iterations returns x̃t
∗
, satisfying

E f(x̃(t∗))− f (x∗) ≤ D

Tη
+

2ηG2

α
+ δG. (1.7)

5

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Lemma 2 Given C ∈ Rn×n and 0 � X, let ρ ∈ Rn with ρi =
∑n

j=1 |Cij |; diagonal matrix

S with Sii = min(1/√ρi, 1/
√
Xii) for i ∈ [n]; X̂ = SXS; Ĉ = diag (1/√ρ)C diag(1/√ρ). Then,

X̂ � 0, X̂ii ≤ 1 for all i ∈ [n], and Ĉ •X −
∑n

i=1 (Xii − ρi)+ ≤ C • X̂.

2. Our approach

We present our algorithm below, parameters in Table 1, and main result in Theorem 3.

Algorithm 1 Our Algorithm

Input: Cost matrix C ∈ Rn×n, accuracy ε
Parameters: Displayed in Table 1
Initialize t← 0, Y (1) ← 0. Set Ĉ and ρ from Lemma 2 and ∇f(X) = diag(1X≥ρ)− Ĉ
for Touter iterations do

t← t+ 1
ẽxp(1

2Y
(t))← ChebyExp(1

2Y
(t),TCheby, δCheby) . Defined in Corollary 34

X̃(t) ← RandProj(ẽxp(1
2Y

(t)),Tjl) . High-accuracy projection

Y (t+1) ← Y (t) − η∇f(X̃(t)) . Gradient update
for ti = 1→ Tinner do

t← t+ 1
θ̂(ti) ← UpdateEstimator(X̃(t−1), Y (t−1), ε, η) . See Algorithm 2

X̃
(t)
jj ← (

√
X̃

(t−1)
jj + 1 + θ̂

(ti)
j)2 − 1 for j ∈ [n] . Constant-accuracy projection

Y (t+1) ← Y (t) − η∇f(X̃(t)) . Gradient update
end

end

For t∗
unif.∼ {1, 2, . . . , t}, return Y (t∗) and S, where S is from Lemma 2.

Parameter Value Proof

Diameter D K logK Lemma 25
Strong convexity α 1/(4K) Lemma 11

Step size η 1
8×104(log(n/ε))11 ε

2 Lemma 41

Inner iteration count Tinner ε−2 Section 3.4
Outer iteration count Touter

1
ε · 24× 105(log(n/ε))11 log n Lemma 10

JL projection count Tjl (2× 105) · (log n)21 · ε−2 Lemma 41

Chebyshev approximation degree TCheby 150 log(n/ε) · ε−1/2 Lemma 36
Chebyshev approximation accuracy δCheby (ε/n)401 Lemma 36

Table 1: All Algorithm 1 parameters and where their values are set. K = 40n(log n)10.

Theorem 3 (Main Result) Given C ∈ Rn×n with m ≥ n non-zero entries and 0 < ε ≤
1
2 , we can find, in time Õ(m/ε3.5) and with high probability, a matrix Y ∈ Sn with O (m)

non-zero entries and a diagonal matrix S ∈ Rn×n so that2 X̃∗
def
= S · expY · S satisfies

X̃∗ � 0, X̃∗ii ≤ 1 for i ∈ [n], and C • X̃∗ ≥ C •X∗ − ε
∑

i,j |Cij |.

2. Since X̃∗ can be dense, we represent it implicitly by only returning the matrices Y and S.

6

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

As a corollary, for the Max-Cut problem on a graph with n nodes and m edges, our algorithm
gives a cut that is (1− ε)αGW optimal3, in time Õ(m/ε3.5), where αGW ≈ 0.878567. Before
proceeding to the proof sketch of Theorem 3, we call attention to a technical concept
crucial to our analysis: we add to (1.2) the constraint TrX ≤ K, where K = 40n(log n)10.
The optimal X∗ remains valid under this constraint because TrX∗ = n. Throughout our
algorithm, this inequality remains inactive (Lemma 10). Coupled with the Legendre dual
of our mirror map Φ(X) = X • logX − TrX, this results in the primal and the dual being
related by X = exp(Y) (Lemma 42). Since the gradient requires only diagonal entries of
the primal iterate, we need estimators only for the diagonal entries of exp(Y).

Proof [Proof Sketch of Theorem 3] In this proof sketch, we compute the run time of
Algorithm 1, proving the claims in Theorem 3. In doing so, we provide intuition for the
choice of parameters in Table 1. This sketch assumes that we are in iteration t and drops
all superscripts, and aside from that, follows the notation of Algorithm 1.

1. To compute exp(Y)ii, we first approximate ẽxp(Y/2) to ε-accuracy using Chebyshev poly-

nomials. We show in Lemma 35 that the spectrum of Y lies in the range [−O(1/ε), Õ(1)],
which allows for Chebyshev approximation with Õ(1/

√
ε) terms, thus giving the cost of

each projection to be Õ(m/
√
ε). The upper bound of Õ(1) on the spectrum is criti-

cal to getting this cost, for in case of a symmetric range of [−O(1/ε),O(1/ε)], the cost
would be Õ(1/ε). The Õ(1/

√
ε) terms is in contrast with the O(1/ε) required for Taylor

approximation. We then estimate each exp(Y)ii with Õ(1/ε2) projections via the JL

sketch in the high-accuracy steps, and Õ(1) randomized projections in the Tinner low-
accuracy steps. Therefore the total cost of the algorithm over Touter iterations is roughly
Touter · (m/

√
ε) · (1/ε2 +Tinner). From this expression, the optimal choice of Tinner (up to

polylogarithmic factors) is Tinner = 1/ε2.

2. Due to the small bias and variance of our estimator, after Tinner inner iterations, the
estimated iterate is roughly within εK distance of the true iterate. Thus, the condition
in Theorem 1 is satisfied, and its the error bound applies at the end of our algorithm:
E f(X̃∗)− f(X∗) ≤ D/(Tη) + 2ηG2/α+ δG. Using D, G, and α from Table 1 and Tinner

from Step 1 and bounding by εK, this inequality simplifies to ε2/(ηTouter) + η ≤ ε.

3. The step size η is chosen by studying the error generated in each estimation step versus
the error our framework can tolerate. Estimating (exp(Y + ∆))ii from (expY)ii via a
first-order approximation accrues an error of Tr(∆ expY). Applying Hölder’s inequality,
the value of G, and the trace bound enforced by Lemma 10 yields Tr(∆ expY) ≤ ηK.
Therefore, after Tinner iterations, the variance of the error is Tinnerη

2K2. Equivalently,
the overall error after Tinner iterations is

√
TinnerηK. For this to be bounded by εK, we

must have η ≤ ε/
√
Tinner. Plugging in Tinner from Step 1 gives the step size: η ≈ ε2.

4. The value of η from Step 3 and the inequality from Step 2 give Touter ≈ 1/ε. Plugging
this value of Touter above gives the overall algorithm cost Õ(m/ε3.5).

We boost our result to the high probability statement of Theorem 3 over multiple runs
of the algorithm. We sidestep the issue of storage cost of X̃∗ and cost of matrix-matrix

3. Assuming the Unique Games Conjecture, this is the best we can hope for Max-Cut (Khot et al., 2007).

7

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

products by dimension reduction techniques. This finishes the proof of our error guarantee.
Lemma 2 implies that X̃∗ � 0 and satisfies the diagonal constraints.

Arora and Kale (2007) Algorithm 1 (This Paper)

(Previous Best)
Low accuracy

steps
+

High accuracy
steps

Number of iterations Õ(ε−2) Õ(ε−3) + Õ(ε−1)

Number of projections per iteration Õ(ε−2) Õ(1) + Õ(ε−2)

Cost per projection O(mε−1) Õ(mε−1/2) + Õ(mε−1/2)

Total Cost Õ(mε−5) Õ(mε−3.5) + Õ(mε−3.5)

Table 2: Comparing Arora and Kale (2007) to our algorithm.

2.1. The estimator

In this section, we consider the ti’th iteration in the inner loop of Algorithm 1; suppose this
is the t’th overall iteration. For now, we drop all superscripts and fix the notation below.

Definition 4 Let ∆ = −η∇f(X), Ys = Y + s∆ for s ∈ [0, 1], τ̄ = 1 − τ , δexp =
4800ε401

n390 , θ1i = (exp(Ys)ii + 1)−1/2, θ2i = 1
2(exp(τ̄Ys)∆ exp((τ − 1/2)Ys) exp((1/2)Ys))ii,

b1i = θ1i(2δexp +
√

2(1 + 2δexp)(ε/n)400), and b2i = 15δexpηK.

To construct an estimator for the update from exp(Y) to exp(Y + ∆), we estimate the
update in

√
(expY)ii + 1. The motivation for this choice of function is two-fold: (1) because

of the square root, the variance is controlled by the trace of the matrix exponential, bounded
by Lemma 10; (2) since the derivative of square root is the inverse square root, we need√

exp(Y)ii + 1 instead of
√

exp(Y)ii to prevent the update term from becoming unbounded.
By chain rule, Fact 0.2, and the fundamental theorem of Calculus,√

(exp(Y + ∆))jj + 1 =
√

(exp(Y))jj + 1

+

∫ 1

s=0
((expYs)jj + 1)−1/2︸ ︷︷ ︸

def
= θ1j ; estimated using θ̂1j

1
2(

∫ 1

τ=0
exp(τYs)∆ exp(τ̄Ys)dτ)jj︸ ︷︷ ︸

def
= θ2j ; estimated using θ̂2j

ds

︸ ︷︷ ︸
def
= θj ; estimated using θ̂j

.

(2.1)

As indicated in Equation 2.1, we split the quantity to be estimated into two parts, separately
estimating each. Estimating the first part, θ̂1j , requires first estimating exp(Ys)jj + 1 using
a JL sketch and then passing through the following Taylor approximation for the function
g(u) = u−1/2, where g(k)(x) is the k’th derivative of g at x,

InvSqrt(X̃,N)
def
=

N−1∑
k=0

1

k!
g(k)(x0)

k∏
j=1

(xk,j − x0), where x0, xk,j
i.i.d.∼ X̃. (2.2)

8

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Since θ̂1j must be unbiased, it is essential to do the Taylor approximation instead of simply

evaluating g(u) = u−1/2 at the estimator of exp(Ys)jj + 1. Indeed, for a general f and a
random variable x̃ that is an unbiased estimator of x, E f(x̃) = f(E x̃) does not hold, as
evidenced by Jensen’s inequality; on the other hand, the intuition for the quantity from
Equation 2.2 to be unbiased is that each term in the sum is a product of independent,
unbiased random variables. Estimating θ2j is done by splitting it into carefully chosen parts
and applying the JL sketch. Algorithm 2 is the complete subroutine for the estimator.

Algorithm 2 UpdateEstimator(Primal X,dual Y, accuracy ε, step size η)

1: Parameters Testjl
= 222104(log(n/ε))2 and Testisq = 1600 log(n/ε) (set in Lemma 6)

2: Sample s and τ uniformly from [0, 1]. Compute ∆ and Ys as per Definition 4. Let
X̃s = RandProj(ẽxp(Ys/2),Testjl

). Sample ζ ∼ N (0, In).

3: Compute θ̂1j = InvSqrt(X̃sjj + 1,Testisq) for j ∈ [n].

4: Compute θ̂2j = 1
2(ẽxp((τ − 1

2)Ys)∆ẽxp(τ̄Ys)ζ)j (ẽxp(Ys/2)ζ)j for j ∈ [n].

5: Return the overall estimator, θ̂j = θ̂1j θ̂2j , for j ∈ [n]. . Coordinate-wise product

Properties of the estimator. The bounds on bias and variance of the estimator, as
required by Theorem 3, are stated in Lemma 5. Since θ̂ is constructed from θ̂1 and θ̂2, we
first state their properties and use them to sketch a proof of Lemma 5.

Lemma 5 The estimator θ̂(t) has the following bounds on its first and second moments.

(1) |E θ̂i −
∫ 1
s=0

∫ 1
τ=0 θ1iθ2idsdτ | ≤ b1iθ2i + b2iθ1i + b1ib2i for i ∈ [n].

(2) E ‖θ̂‖22 ≤ 19600 log(n/ε)Kη2 + 147000K2η2δexp.

Lemma 6 Given Testisq = 1600 log(n/ε), Testjl
= 214T2

estisq
, Z ∈ Sn, and ε ∈ (0, 1/2), let

Z̃2 = RandProj(Z,Testjl
) and θ̂1i ∼ InvSqrt((Z̃2)ii + 1,Testisq) for i ∈ [n]. Then,

(1) The first moment satisfies

∣∣∣∣E θ̂1i − 1√
(Z2)ii+1

∣∣∣∣ ≤ √2(ε/n)400√
(Z2)ii+1

.

(2) The second moment satisfies E |θ̂1i |2 ≤ 1
(Z2)ii

1630 log(n/ε).

Lemma 7 Consider Z1, Z2, Z, and ∆ all in Sn. Sample ζ ∼ N (0, In), and define θ̂2 ∈ Rn

as θ̂2i = (Z1∆Z2ζ)i (Zζ)i. Define θ2i
def
= (Z1∆Z2Z)ii. Then for i ∈ [n]:

(1) The first moment satisfies E θ̂2i = θ2i

(2) The second moment satisfies E |θ̂2i |2 ≤ 3
(
Z1∆Z2

2∆Z1

)
ii

(
Z2
)
ii

.

Proof [Proof sketch for Lemma 5] By construction,

Es,τ,ζ1,ζ2 ‖θ̂‖22 =

∫ 1

s=0

∫ 1

τ=0

n∑
i=1

Eζ1 |θ̂1i |2 Eζ2 |θ̂2i |2dsdτ.

9

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Plugging in the second moment bounds from Lemma 6 and Lemma 7 gives

Es,τ,ζ1,ζ2 ‖θ̂‖22 = 4890 log(n/ε)

∫ 1

s=0

∫ 1

τ=0
Tr(ẽxp(2τ̄Ys)∆ẽxp((2τ − 1)Ys)∆)dsdτ.

This step is made possible by the careful choice of split in θ̂2 that enable cancellations
of 1

(ẽxpYs)ii
and (ẽxpYs)ii. Applying Fact 0.1 and the fact that ẽxpYs is close to the true

expYs, the above trace term is bounded by Tr
(
exp(Y + s∆)∆2

)
(plus a small error term).

Applying Hölder’s Inequality, Lemma 10, and values of η and G completes the proof.

To provide proof sketches of Lemma 6 and Lemma 7, we need two technical lemmas
about RandProj and InvSqrt, the main workhorses for our estimators. These lemmas
follow from properties of Gaussian and the scaled chi-squared distribution.

Lemma 8 Consider a positive random variable x sampled from a distribution X with
mean µ and variance σ2. For some integer k > 0, construct the distribution G(X) =
InvSqrt (X, k) defined in Equation 2.2. Then the random variable g ∼ G(X) satisfies

(1) |E g − µ−1/2| ≤ E
(

|x−µ|k

min(µ,x)k+1/2

)
(2) E |g|2 ≤ k

∑k−1
j=0 E

(
(σ2+(µ−x)2)

j

x2j+1

)
.

Lemma 9 Given u ∈ Rn such that µ
def
= ‖u‖22 6= 0, and positive integers k > 1 and

N ≥ 4k + 6, the following are true for x sampled from X = RandProj (u,N).

(1) Ex = µ

(2) σ2 def
= E (x− µ)2 = 2µ2

N

(3) E

(
(σ2+(x−µ)2)

k

min(x,µ)2k+1

)
≤ 1

µ

(
eN/2

2N−17k + 213kk2k

Nk

)
Proof [Proof sketches of Lemmas 6 and 7] Consider x ∼ Z̃2

ii. By Lemma 9, Ex = Z2
ii.

This satisfies the bias requirement of Lemma 8, and therefore∣∣∣∣∣E θ̂1i −
1√

1 + (Z2)ii

∣∣∣∣∣ ≤ E

 ∣∣x− (Z2)ii
∣∣Testisq

min(x+ 1, (Z2)ii + 1)Testisq+
1
2

≤

√
E

(x− (Z2)ii)
2Testisq

min (x+ 1, (Z2)ii + 1)2Testisq+1

≤

√√√√ 1

(Z2)ii + 1

(
eTestisq/2

2Testjl
−17Testisq

+
213Testisq Testisq

2Testisq

Testjl

Testisq

)
.

where the first step is by Lemma 8, the second is by Jensen’s inequality, and the third
step is by a slight modification of (3) in Lemma 9. The values of Testisq and Testjl

from
Algorithm 2 give the final bias bound. The second moment bound follows similarly, and
the properties of θ̂2 follow from simple properties of the Gaussian distribution.

10

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

2.2. Technical Concepts: Domain Expansion and Strong Convexity

In this section we state and sketch the proofs of two key technical concepts: (1) the addition
of the trace constraint as described before the proof of Theorem 3, and (2) the value of the
strong convexity parameter of our mirror map over this new domain.

Lemma 10 With the choice of parameters in Algorithm 1, the iterate X̃(t) at any iteration
t satisfies Tr X̃(t) < K for K = 40n(log n)10.

Proof [Proof sketch] We assume that for any iteration t, the primal iterate is close to the
optimal point and satisfies |||X̃(t) −X∗||| ≤ 38n (log n)10. In Algorithm 1, Y (1) = 0 implies
X̃(1) = I. We also know that the optimal point satisfies TrX∗ = n. Therefore, in the
base case, |||X̃(1) −X∗||| ≤ 2n ≤ 38n (log n)10. Suppose that the hypothesis is true for some
t = t′. We complete the proof by first proving a weak bound for |||X̃(t) −X∗||| using the
triangle inequality of norms and then boosting our bound (thereby obtaining the stronger
guarantee of the induction hypothesis) by invoking the strong convexity of the Bregman
divergence. The full proof is presented in Section 3.6.

We now sketch the proof of the strong convexity parameter of our mirror map, the gen-
eralized negative entropy function. This mirror map is different from the negative entropy
function and has recently appeared in (Allen-Zhu and Orecchia, 2015).

Lemma 11 The function Φ(X) = X • logX −TrX is 1
4K -strongly convex with respect to

the nuclear norm over the domain D = {X : X � 0,TrX ≤ K}.

Proof [Proof sketch] We invoke the duality between strong convexity and smoothness by
Kakade et al. (2009), the characterization of matrix smooth functions by Juditsky and
Nemirovski (2008), and the generalization of convexity of a permutation-invariant function
on vectors to a spectral function on matrices by Lewis (1995). Our proof requires the
following definition.

Definition 12 Define the vector functions ψ1(y) =
∑n

i=1 exp yi, ψ2(y) = 2K logψ1(y) −
2K log(2K) + 2K, ψ(y) = ψ1(y) if ψ1(y) ≤ 2K and ψ2(y) otherwise; Ψ(Y) = Ψ1(Y)
if Ψ1(Y) ≤ 2K and Ψ2(Y) otherwise; and φ(x) =

∑n
i=1 xi log xi −

∑n
i=1 xi. Define the

corresponding matrix functions Ψ1(Y) = Tr expY , Ψ2(Y) = 2K log Ψ1(Y)− 2K log(2K) +
2K, and Φ(X) = X • logX − TrX.

Our first step is to show that Ψ, the matrix version of ψ, satisfies the property Ψ∗(Y) = Φ(Y)
over {Y : Y � 0,TrY ≤ K}. To prove this, we first prove that ψ and its matrix version,
Ψ, are both continuously differentiable at the boundary of definition of their respective two
parts. We then show that ψ1 and ψ2 are convex; combining this with the claim about
continuous differentiability implies convexity of ψ, which immediately extends to Ψ by a
result of Lewis (1995). We then show that ψ and φ satisfy ψ∗1(x) = φ(x) for x ∈ Rn+,
and given an input x ∈ {x : xi ≥ 0,

∑n
i=1 xi ≤ K}, the point y attaining the optimum in

computing ψ∗1(x) lies in the interior of the set {y : ψ1(y) ≤ 2K}. Therefore, given an input
x ∈ {x : xi ≥ 0,

∑n
i=1 xi ≤ K}, we invoke the preceeding facts to conclude that the point

at which the value of ψ∗(x) is attained must be the same as that for ψ∗1(x). This implies
ψ∗(x) = ψ∗1(x) for x ∈ {x : xi ≥ 0,

∑n
i=1 xi ≤ K}. By a result of Lewis (1995), this extends

to Ψ∗ = Φ on {X : X � 0,TrX ≤ K}.

11

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

We then use (Juditsky and Nemirovski, 2008) and continuous differentiability at the
boundary to show that Ψ is 4K-smooth in the operator norm which in turn implies, by
(Kakade et al., 2009), that Ψ∗ is 1/(4K)-strongly convex in the nuclear norm, finishing the
proof. Our full proof is in Section 3.1.

Acknowledgment

We would like to express our heartfelt gratitude to the following people: various anony-
mous reviewers of SODA 2019 for their careful reading, tough questions, and constructive
suggestions on improving our presentation; Kevin Tian (Stanford) for insightful questions
that strengthened our exposition and for helpful explanations of his paper (Carmon et al.,
2019); Sidhanth Mohanty (UC Berkeley) for a clear explanation of bounds on the rank of
the MaxCut SDP from (Raghavendra and Steurer, 2009) and (Montanari and Sen, 2016a);
Harish Ramadas (UW), Kuikui Liu (UW), Shashwat Garg (TU Eindhoven), and Siva Ra-
mamoorthy (UW) for helpful feedback on an early draft of the paper.

12

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

References

Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic
block model. IEEE Transactions on Information Theory, 62(1):471–487, 2015.

Zeyuan Allen-Zhu and Yuanzhi Li. Follow the compressed leader: faster online learning of
eigenvectors and faster mmwu. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 116–125, 2017.

Zeyuan Allen-Zhu and Lorenzo Orecchia. Using optimization to break the epsilon barrier:
A faster and simpler width-independent algorithm for solving positive linear programs in
parallel. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’15, 2015.

Zeyuan Allen Zhu, Yin Tat Lee, and Lorenzo Orecchia. Using optimization to obtain
a width-independent, parallel, simpler, and faster positive SDP solver. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 1824–1831, 2016.

Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite
programs. In Proceedings of the thirty-ninth annual ACM symposium on Theory of com-
puting, pages 227–236, 2007.

Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms for approximate semidefinite
programming using the multiplicative weights update method. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05), pages 339–348. IEEE, 2005.

Michel Baes, Michael Bürgisser, and Arkadi Nemirovski. A randomized mirror-prox method
for solving structured large-scale matrix saddle-point problems. SIAM Journal on Opti-
mization, 23(2):934–962, 2013.

Afonso S Bandeira, Moses Charikar, Amit Singer, and Andy Zhu. Multireference alignment
using semidefinite programming. In Proceedings of the 5th conference on Innovations in
theoretical computer science, pages 459–470, 2014.

Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An applica-
tion of combinatorial optimization to statistical physics and circuit layout design. Oper-
ations Research, 36(3):493–513, 1988.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

Yair Carmon, John C. Duchi, Aaron Sidford, and Kevin Tian. A rank-1 sketch for matrix
multiplicative weights. In Conference on Learning Theory, COLT 2019, 25-28 June 2019,
Phoenix, AZ, USA, pages 589–623, 2019.

13

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Ruen-Wu Chen, Yoji Kajitani, and Shu-Park Chan. A graph-theoretic via minimization al-
gorithm for two-layer printed circuit boards. IEEE Transactions on Circuits and Systems,
30(5):284–299, 1983.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 1646–1654. 2014.

M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system theory. In
Proceedings of the 2004 American Control Conference, 2004.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research logistics
quarterly, 3(1-2):95–110, 1956.

Dan Garber and Elad Hazan. Sublinear time algorithms for approximate semidefinite pro-
gramming. Mathematical Programming, 158(1-2):329–361, 2016.

Michel X Goemans and David P Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of the
ACM (JACM), 42(6):1115–1145, 1995.

Olivier Guédon and Roman Vershynin. Community detection in sparse networks via
grothendieck’s inequality. Probability Theory and Related Fields, 165(3-4):1025–1049,
2016.

Elad Hazan. Sparse approximate solutions to semidefinite programs. In Latin American
symposium on theoretical informatics, pages 306–316, 2008.

Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimiza-
tion. In Proceedings of the 33rd International Conference on International Conference on
Machine Learning - Volume 48, ICML’16, 2016.

Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD thesis,
ETH Zurich, 2011.

Rahul Jain and Penghui Yao. A parallel approximation algorithm for positive semidefinite
programming. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 463–471, 2011.

Arun Jambulapati, Yin Tat Lee, Jerry Li, Swati Padmanabhan, and Kevin Tian. Positive
semidefinite programming: mixed, parallel, and width-independent. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, 2020.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in neural information processing systems, pages 315–
323, 2013.

14

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

Anatoli Juditsky and Arkadii S Nemirovski. Large deviations of vector-valued martingales
in 2-smooth normed spaces. arXiv preprint arXiv:0809.0813, 2008.

Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Applications of strong
convexity–strong smoothness duality to learning with matrices. CoRR, abs/0910.0610,
2009.

R. Karp. Reducibility among combinatorial problems. In Complexity of Computer Compu-
tations, pages 85–103. Plenum Press, 1972.

Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapprox-
imability results for max-cut and other 2-variable csps? 2007.

Philip Klein and Hsueh-I Lu. Efficient approximation algorithms for semidefinite programs
arising from max cut and coloring. In Proceedings of the Twenty-eighth Annual ACM
Symposium on Theory of Computing, STOC ’96, 1996.

Adrian S Lewis. The convex analysis of unitarily invariant matrix functions. Journal of
Convex Analysis, 2(1):173–183, 1995.

László Lovász and Santosh Vempala. The geometry of logconcave functions and sampling
algorithms. Random Structures & Algorithms, 30(3):307–358, 2007.

Song Mei, Theodor Misiakiewicz, Andrea Montanari, and Roberto Imbuzeiro Oliveira. Solv-
ing sdps for synchronization and maxcut problems via the grothendieck inequality. In
Conference on Learning Theory, COLT 2017, pages 1476–1515, 2017.

Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random graphs
and their application to community detection. In Proceedings of the Forty-eighth Annual
ACM Symposium on Theory of Computing, STOC ’16, 2016a.

Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random graphs
and their application to community detection. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pages 814–827, 2016b.

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical pro-
gramming, 120(1):221–259, 2009.

Victor Y. Pan and Zhao Q. Chen. The complexity of the matrix eigenproblem. In Pro-
ceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May 1-4,
1999, Atlanta, Georgia, USA, pages 507–516, 1999.

Richard Peng and Kanat Tangwongsan. Faster and simpler width-independent parallel
algorithms for positive semidefinite programming. In Proceedings of the twenty-fourth
annual ACM symposium on Parallelism in algorithms and architectures, pages 101–108,
2012.

15

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

S. A. Plotkin, D. B. Shmoys, and E. Tardos. Fast approximation algorithms for fractional
packing and covering problems. In [1991] Proceedings 32nd Annual Symposium of Foun-
dations of Computer Science, 1991.

Prasad Raghavendra and David Steurer. How to round any csp. In Proceedings of the 2009
50th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’09, 2009.

Sushant Sachdeva, Nisheeth K Vishnoi, et al. Faster algorithms via approximation theory.
Foundations and Trends® in Theoretical Computer Science, 9(2):125–210, 2014.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochas-
tic average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regu-
larized loss minimization. Journal of Machine Learning Research, 14(Feb):567–599, 2013.

Amit Singer and Yoel Shkolnisky. Three-dimensional structure determination from common
lines in cryo-em by eigenvectors and semidefinite programming. SIAM journal on imaging
sciences, 4(2):543–572, 2011.

Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In International
Conference on Computational Learning Theory, pages 545–560, 2005.

Irène Waldspurger, Alexandre d’Aspremont, and Stéphane Mallat. Phase recovery, maxcut
and complex semidefinite programming. Mathematical Programming, 2015.

Jun Wang, Tony Jebara, and Shih-Fu Chang. Semi-supervised learning using greedy max-
cut. Journal of Machine Learning Research, 14(Mar):771–800, 2013.

R. M. Wilcox. Exponential Operators and Parameter Differentiation in Quantum Physics.
Journal of Mathematical Physics, 1967.

Alp Yurtsever, Joel A. Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher. Scalable
semidefinite programming, 2019.

16

Appendices

17

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

We organize the appendix into four parts: Section 1, analysis common to Arora and
Kale (2007) and us; Section 2 and Section 3, analysis of Arora and Kale (2007) and our
algorithm, respectively; Section 4, general technical results.

1. Analysis Common to Both Algorithms

In this section we provide proofs for two results: the first is that a solution to the reformu-
lated problem (1.2) is indeed ε close to that of the original; the second is the convergence
guarantee of approximate lazy mirror descent, the framework for both the Arora-Kale al-
gorithm as well as ours.

Algorithm 3 Approximate lazy mirror descent

Input: Objective function f : X → R, accuracy parameter ε.
Parameters: Mirror map Φ : D → R, norm ‖ · ‖, step size η, iteration T , error bound δ.
Initialize: x(1) ∈ argminx∈X∩D Φ(x), x̃(1) = x(1), and z(1) satisfying ∇Φ(z(1)) = 0.
for t = 1→ T do

∇Φ(z(t+1))← ∇Φ(z(t))− η∇f(x̃(t)) . Lazy gradient update
Find x̃(t+1) such that E ‖x̃(t+1)−x(t+1)‖ ≤ δ, where x(t+1) ∈ argminx∈X∩D DΦ(x, z(t+1))
. Approximate projection

end

For t∗
unif.∼ {1, 2, . . . , T}, return x̃(t∗).

1.1. From the Reformulated to the Original SDP

Our claim of reformulating (1.1) as (1.2) works because once we have a solution X for the
latter, we can apply the following result to obtain a matrix X̂ which satisfies all the required
constraints of (1.1), and at which the objective value in (1.1) is better than that at X in
(1.2).

Lemma 2 Given C ∈ Rn×n and 0 � X, let ρ ∈ Rn with ρi =
∑n

j=1 |Cij |; diagonal matrix

S with Sii = min(1/√ρi, 1/
√
Xii) for i ∈ [n]; X̂ = SXS; Ĉ = diag (1/√ρ)C diag(1/√ρ). Then,

X̂ � 0, X̂ii ≤ 1 for all i ∈ [n], and Ĉ •X −
∑n

i=1 (Xii − ρi)+ ≤ C • X̂.

Proof We first prove the positive semidefiniteness. Observe that since X̂ and X are similar
matrices, X � 0 implies X̂ � 0 as well. Next, we define a matrix Y as Yij =

Xij√
ρi
√
ρj

.

Without loss of generality, assume Y11 ≥ Y22 ≥ . . . ≥ Ynn. We also define a diagonal
matrix, D̂ as D̂ii = min(1, 1/

√
Yii). If Yii ≥ 1, then X̂ii = ρiYii√

ρiYii
√
ρiYii

= 1; otherwise,

X̂ii = Yii. This proves that X̂ii ≤ 1 for all 1 ≤ i ≤ n, which is precisely the claim bounding
every diagonal entry. We now prove the claim about the objective value. By definition of

18

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

D̂, X̂ and Y , we have X̂ = D̂ · Y · D̂. Therefore we get

C • (X̂ − Y)−
n∑
i=1

CiiYii(D̂
2
ii − 1) =

n∑
i=1

∑
j 6=i

CijYij(D̂iiD̂jj − 1)

= 2

n∑
i=1

∑
i<j

CijYij(D̂iiD̂jj − 1).

The definition of D̂ and the ordering assumption on {Yii} imply 0 < D̂11 ≤ D̂22 ≤ . . . ≤
D̂nn ≤ 1, which in turn means D̂iiD̂jj ≥ D̂2

ii. Further, since X � 0 and Y = diag(1/√ρ) ·X ·
diag(1/√ρ), we have Y � 0. Therefore YiiYjj ≥ YijYji. By symmetry of Y and the assumed
ordering of {Yii}n1 , this can be simplified to Yii ≥ |Yij | for i < j. These two facts simplify
the above to

C • (X̂ − Y)−
n∑
i=1

CiiYii(D̂
2
ii − 1) ≥ 2

n∑
i=1

∑
i<j

|Cij ||Yij |(D̂2
ii − 1)

≥ 2

n∑
i=1

∑
i<j

|Cij |Yii(D̂2
ii − 1)

Finally, since D̂ii ≤ 1, we have D̂2
ii − 1 ≤ 0. Rearranging the terms in the last inequality,

we get

C • (X̂ − Y) ≥
n∑
i=1

CiiYii(D̂
2
ii − 1) +

n∑
i=1

Yii(D̂
2
ii − 1)(

∑
j>i

|Cij |+
∑
j<i

|Cij |)

=
n∑
i=1

Yii(D̂
2
ii − 1)

Cii +
∑
i>j

|Cij |+
∑
i<j

|Cij |

︸ ︷︷ ︸

≤ ρi

≥
n∑
i=1

Yiiρi(D̂
2
ii − 1)

= −
n∑
i=1

ρi (Yii − 1)+

where we used D̂ii = min(1, 1/
√
Yii) in the last step. Rearranging the terms in the last

inequality gives

C • X̂ ≥ C • Y −
n∑
i=1

ρi (Yii − 1)+ = Ĉ •X −
n∑
i=1

(Xii − ρi)+,

where the last step is by definition of matrix Y .

19

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

1.2. Analysis of Approximate Lazy Mirror Descent

We now derive the convergence bound of approximate lazy mirror descent. The proof closely
follows that of Theorem 4.3 in Bubeck’s monograph (Bubeck et al., 2015).

Theorem 1 (Convergence of Lazy Mirror Descent) Fix a norm ‖ · ‖. Given an α-
strongly convex mirror map Φ : D → R and a convex, G-Lipschitz objective f : X → R,
run Algorithm 3 with step size η and E ‖x(t) − x̃(t)‖ ≤ δ. Let D

def
= supx∈X∩D Φ (x) −

infx∈X∩D Φ (x). Then, Algorithm 3 after T iterations returns x̃t
∗
, satisfying

E f(x̃(t∗))− f (x∗) ≤ D

Tη
+

2ηG2

α
+ δG. (1.7)

Proof By convexity of f ,

T∑
t=1

(f(x̃(t))− f(x)) ≤
T∑
t=1

〈
∇f(x̃(t)), x̃(t) − x

〉
=

T∑
t=1

〈
∇f(x̃(t)), x̃(t) − x(t)

〉
︸ ︷︷ ︸

A

+
T∑
t=1

〈
∇f(x̃(t)), x(t) − x

〉
︸ ︷︷ ︸

B

.

(1.1)

The term A can be bounded by Cauchy-Schwarz inequality and the invariant E
∥∥x(t) − x̃(t)

∥∥ ≤
δ:

A ≤
T∑
t=1

∥∥∥∆(t)
∥∥∥∥∥∥∇f (x̃(t)

)∥∥∥
∗
≤ δGT. (1.2)

Next, recall that Algorithm 3 initializes x(1) ∈ argminX∩D Φ(x) and z(1) satisfying∇Φ(z(1)) =
0, and repeats the following two steps:

∇Φ(z(t)) = ∇Φ(z(t−1))− η∇f(x(t))

x(t) = argmin
X∩D

DΦ(x, z(t)).

Now consider the potential function Ψ̃t(x)
def
= Φ(x) + η

〈
x,
∑t

s=1∇f(x̃(s))
〉
. Applying the

recursive definition of the gradient step, we can express x(t+1) = argmin
x∈X∩D

Ψ̃t (x). Since Φ is

α-strongly convex, so is the potential function Ψt. We can express these two statements as
follows:

Ψ̃t(x
(t+1))− Ψ̃t(x

(t)) ≤
〈
∇Ψ̃t(x

(t+1)), x(t+1) − x(t)
〉

︸ ︷︷ ︸
≤ 0, by optimality of x(t+1)

−α
2

∥∥∥x(t+1) − x(t)
∥∥∥2

≤ −α
2

∥∥∥x(t+1) − x(t)
∥∥∥2
. (1.3)

20

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

We can also write a lower bound for the left hand side of Inequality 1.3 by evaluating the
potential function Ψ̃t at points x(t+1) and x(t):

Ψ̃t(x
(t+1))− Ψ̃t(x

(t)) = Φ
(
x(t+1)

)
+ η

t∑
s=1

〈
∇f(x̃(s)), x(t+1)

〉
− Φ(x(t))− η

t∑
s=1

〈
∇f(x̃(s)), x(t)

〉
= Ψ̃t−1(x(t+1))− Ψ̃t−1(x(t))︸ ︷︷ ︸
≥ 0, since x(t) minimizes Ψ̃t−1 (x)

+η
〈
∇f(x̃(t)), x(t+1) − x(t)

〉

≥ η
〈
∇f(x̃(t)), x(t+1) − x(t)

〉
. (1.4)

Reverse and chain Inequalities 1.3 and 1.4, and apply Cauchy-Schwarz inequality to get

α

2

∥∥∥x(t+1) − x(t)
∥∥∥2
≤ η

〈
∇f(x̃(t)), x(t) − x(t+1)

〉
≤ ηG

∥∥∥x(t) − x(t+1)
∥∥∥. (1.5)

This shows that ∥∥∥x(t) − x(t+1)
∥∥∥ ≤ 2ηG

α
, (1.6)

and applying this to the second part of Inequality 1.5 gives〈
∇f(x̃(t)), x(t) − x(t+1)

〉
≤ 2ηG2

α
. (1.7)

We now claim

T∑
t=1

〈
∇f(x̃(t)), x(t) − x

〉
≤

T∑
t=1

〈
∇f(x̃(t)), x(t) − x(t+1)

〉
+ 1

η (Φ(x)− Φ(x(1))). (1.8)

Note that this claim immediately gives the desired error bound; this can be seen as follows:
the left-hand side is exactly the term 2 in Inequality 1.1; the first term of the right-hand
side is bounded in Inequality 1.7, and the second one is bounded by the definition of set
size D. Therefore Inequality 1.8 simplifies to

B ≤ 2ηG2T

α
+
D

η
. (1.9)

Combine Inequalities 1.9 and 1.2 with 1.1, apply Jensen’s inequality, and the fact that t∗

is picked uniformly at random from {1, 2, . . . , T}, to get the desired error bound. We now
prove Inequality 1.8. First, we rewrite it as

T∑
t=1

〈
∇f(x̃(t)), x(t+1)

〉
+

Φ(x(1))

η
≤

T∑
t=1

〈
∇f(x̃(t)), x

〉
+

Φ(x)

η
.

The claim is true for T = 0 for all x ∈ X , by the choice of x(1). Assume it holds for all
x ∈ X at time T = t′ − 1. Therefore in particular, it holds at the point x = x(t′+1). This

21

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

implies

t′∑
t=1

〈
∇f(x̃(t)), x(t+1)

〉
+

Φ(x(1))

η
=
〈
∇f(x̃(t′)), x(t′+1)

〉
+
t′−1∑
t=1

〈
∇f(x̃(t)), x(t+1)

〉
+

Φ(x(1))

η︸ ︷︷ ︸
Apply induction hypothesis at x(t′+1)

≤
〈
∇f(x̃(t′)), x(t′+1)

〉
+
t′−1∑
t=1

〈
∇f(x̃(t)), x(t′+1)

〉
+

Φ(x(t′+1))

η

=

t′∑
t=1

〈
∇f(x̃(t)), x(t′+1)

〉
+

Φ
(
x(t′+1)

)
η

=
1

η
Ψ̃t′

(
x(t′+1)

)
≤ 1

η
Ψ̃t′(x)

=

t′∑
t=1

〈
∇f

(
x̃(t)
)
, x
〉

+
Φ(x)

η
,

where the last inequality is by optimality of x(t′+1) in minimizing Ψ̃t′ . This completes the
induction, and therefore proves Inequality 1.8, thus completing the proof of the error bound.

2. Analysis of the Arora-Kale Algorithm

In this section, we display Algorithm 4 in the approximate mirror descent framework and
provide its analysis. In Section 2.1, we derive the values of all parameters; in Section 2.2,
we derive the computational costs of the main steps. We then conclude with the correctness
and cost of their algorithm. The main export of this section is the following theorem.

Theorem 13 (Run Time (Arora and Kale, 2007)) Given C ∈ Rn×n with m ≥ n
non-zero entries and 0 < ε ≤ 1

2 , we can find, in time Õ
(
m/ε5

)
, a matrix Y ∈ Sn with

O(m) non-zero entries and a diagonal matrix S ∈ Rn×n such that X̃∗ = S · K exp(Y)
Tr exp(Y) · S

satisfies X̃∗ � 0, X̃∗ii ≤ 1 for all i ∈ [n], and E(C • X̃∗) ≥ C •X∗ − ε ·
∑

i,j |C|ij.

2.1. Parameters

As can be seen in Algorithm 3, approximate lazy mirror descent requires five parameters:
the set diameter, Lipschitz constant of the objective, strong convexity of the mirror map,
step size, and number of iterations. The first three depend on our choice of mirror map Φ
and objective f . The last two can be chosen based on these parameters and Inequality 1.7.

Lemma 14 (Set Diameter) Given Φ (X) = X • logX and the domain {X : X �
0,TrX = n}, the set diameter measured by Φ is given by D = n log n.

22

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Algorithm 4 Reinterpreting Arora and Kale (2007)

Input: Cost matrix C ∈ Rn×n, accuracy parameter ε.
Parameters: T = 256 log n/ε2, T ′ = 10240 log n/ε2, T ′′ = (1/ε) · 64 log n, η = ε/64. Set Ĉ
and ρ as defined in Lemma 2.
Initialize Y (1) ← 0.
Define ∇f(M)

def
= diag 1M≥ρ − Ĉ.

for t = 1toT do

ẽxp
(

1
2Y

(t)
)
← TaylorExp

(
1
2Y

(t), T ′′
)
. . Approximate matrix exponential

êxpY (t) ← RandProj
(
ẽxp

(
1
2Y

(t)
)
, T ′
)
. . Approximate projection

X̃(t) ← n
êxp(Y (t))
Tr êxpY (t) . Scaling due to the trace constraint

Y (t+1) ← Y (t) − η∇f(X̃(t)). . Gradient update.
end

For t∗
unif.∼ {1, 2, . . . , T}, return Y (t∗) and S, where S is from Lemma 2.

Lemma 15 (Lipschitz constant) The problem objective f̂(X) = −Ĉ •X +
∑n

i=1(Xii −
ρi)

+ (recall that ρi =
∑n

j=1 |Cij |) is 2-Lipschitz in the nuclear norm. Recall that nuclear
norm of a matrix is the sum of its singular values.

Proof The gradient of the objective at point X is ∇f̂(X) = diag(1{X≥ρ}) − Ĉ. By the
Gershgorin Disk Theorem, we have

∥∥∥diag
(

1
ρ

)
C
∥∥∥

op
≤ max

i∈[n]

 1

ρi
· |Cii|+

1

ρi
·
∑
j 6=i
|Cij |

 = max
i∈[n]

 1

ρi
·
n∑
j=1

|Cij |

 = 1, (2.1)

where in the last equality we use the choice of ρi =
∑n

j=1 |Cij |. Since the matrices diag(1/ρ)·
C and Ĉ = diag(1/√ρ) · C · diag(1/√ρ) are similar, they have the same set of eigenvalues
(and therefore, the same operator norm). Therefore∥∥∥diag(1{X≥ρ})− Ĉ

∥∥∥
op
≤
∥∥diag(1{X≥ρ})

∥∥
op

+
∥∥∥Ĉ∥∥∥

op
= 1 + 1 = 2.

When we have
∥∥∥∇f̂∥∥∥ ≤ G for some G, it implies f is G-Lipschitz in ‖ · ‖∗ (the dual norm).

Therefore, in our case, we have that f̂ is 2-Lipschitz in the nuclear norm (dual of the
operator norm).

Lemma 16 (Strong Convexity) (Kakade et al. (2009)) The mirror map Φ (X) = X •
logX is 1/(2n)-strongly convex with respect to the nuclear norm on the domain {X ∈ Sn : X � 0,Tr (X) = n}.

Lemma 17 Choosing η = ε/64 and T = 256 log n/ε2 in Algorithm 4 gives an accuracy of
εn.

Proof We show in Lemma 23 that Algorithm 4 maintains the invariant E |||X(t) − X̃(t)||| ≤
δ = εn/4. Therefore we are in the framework of approximate lazy mirror descent and can

23

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

use its error bound from Inequality 1.7 and bound it by εK. We plug in the parameters
from Lemmas 14, 15, and 16 in the bound and get

E f(x̃(t∗))− f(x∗) ≤ n log n

Tη
+

2η · 22

1/2n
+
(εn

4

)
· 2.

We optimize for η by setting the first two terms equal, and get

η = 1
4

√
log n

T
. (2.2)

With this expression for η, setting the bound for the right-hand side above to be εn gives
T ≥ 256 log n/ε2; plug this back in Equation 2.2 to get η = ε/64.

2.2. Computational Cost

From Algorithm 4, we see that there are three main parts to be computed to get the overall
cost of the Arora-Kale algorithm: the number of iterations, the number of JL projections
per iteration, and the cost of approximating a matrix exponential and multiplying it with
a vector. We derive these values in this section.

2.2.1. Taylor Approximation for Matrix Exponential

In Algorithm 4, before we do the randomized projection to get the diagonal entries, we
approximate the matrix exponential ẽxp

(
Y (t)/2

)
= TaylorExp

(
Y (t)/2, T ′′

)
. Here we show

a bound on

∣∣∣∣ exp(Y (t))
ii

Tr exp(Y (t))
− ẽxp(Y (t))

ii

Tr ẽxp(Y (t))

∣∣∣∣ for any 1 ≤ i ≤ n. We do so by first proving a bound

on
∣∣∣ Aii

TrA −
Bii
TrB

∣∣∣ for a matrix B approximating the general matrix A; then we prove a

general result on the number of terms required to approximate a matrix exponential using
Taylor series; finally, we combine these results to get an appropriate choice of Tpoly for
approximating exp

(
Y (t)/2

)
.

Lemma 18 Given positive definite matrices A and B such that ‖A−B‖op ≤ ε, where

ε ≤ 1
2n TrA, we have

∣∣∣ Aii
TrA −

Bii
TrB

∣∣∣ ≤ 2 ε(TrA+nAii)

(TrA)2 .

Proof We have the following chain of inequalities.∣∣∣∣ BiiTrB
− Aii

TrA

∣∣∣∣ 1
≤
∣∣∣∣ Aii + ε

TrA− nε
− Aii

TrA

∣∣∣∣ =
ε (TrA+ nAii)

(TrA) (TrA− εn)

2
≤ 2

ε (TrA+ nAii)

(TrA)2 ,

where 1 is by the worst case values for Bii from the operator norm bound, and 2 is by
the bound on ε.

Lemma 19 For T ≥ e2‖Y ‖op, we have

∥∥∥∥∥exp (Y)−
T∑
j=0

Y j

j!

∥∥∥∥∥
op

≤ exp (−T).

24

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Proof We have the following chain:∥∥∥∥∥∥exp (Y)−
T∑
j=0

1
j!Y

j

∥∥∥∥∥∥
op

1
=

∥∥∥∥∥∥
∞∑

j=T+1

1
j!Y

j

∥∥∥∥∥∥
op

2
≤

∞∑
j=T+1

∥∥∥ 1
j!Y

j
∥∥∥

op
=

∞∑
j=T+1

1
j!‖Y ‖

j
op

3
≤

∞∑
j=T+1

ej

jj
‖Y ‖jop,

(2.3)
where 1 is by the Taylor series expansion of the matrix exponential, 2 is by triangle
inequality of norms, and 3 is by Stirling’s approximation, j! ≥ (j/e)j . Since the right
hand side of the above inequality is indexed over j ≥ T ≥ e2‖Y ‖op, we can bound it further
to get ∥∥∥∥∥∥expY −

T∑
j=0

1
j!Y

j

∥∥∥∥∥∥
op

≤
∞∑

j=T+1

e−j =
(e−1)T+1

1− e−1
≤ e−T .

Lemma 20 In Algorithm 4, for n ≥ 2 and ε ≤ 1
2 , set Tpoly = 64 logn

ε , and let ẽxp
(
Y (t)/2

)
:=

TaylorExp
(
Y (t)/2, Tpoly

)
. Then for each coordinate i, we have

∣∣∣∣ exp(Y (t))
ii

Tr expY (t) −
(ẽxpY (t))

ii

Tr ẽxpY (t)

∣∣∣∣ ≤
ε

8n .

Proof Let ẽxp
(
Y (t)/2

)
= exp

(
Y (t)/2

)
+ ∆, and ‖∆‖op = ε1. Then∥∥∥expY (t) − ẽxpY (t)

∥∥∥
op

=
∥∥∥(exp

(
Y (t)/2

)
)2 − (ẽxp(Y (t)/2))2

∥∥∥
op

=
∥∥∥∆2 + ∆ exp

(
Y (t)/2

)
+ exp

(
Y (t)/2

)
∆
∥∥∥

op

≤ ε2
1 + 2ε1

∥∥∥exp
(
Y (t)/2

)∥∥∥
op
. (2.4)

Observe that in each iteration of Algorithm 4, we add −η∇f(X̃(t)) to the current Y (t) in
the gradient step; therefore at the end of all the T iterations,

∥∥Y (t)
∥∥

op
≤ |ηT |‖∇f(X̃(t))‖op.

From the values of η and T as set in Algorithm 4 (and explained in Section 2), the worst-case
value is ∥∥∥Y (t)/2

∥∥∥
op
≤ 1

2
· ε

64
· 256 log n

ε2
· 2 =

4 log n

ε
. (2.5)

Next, from Lemma 19, we require the first max
{
e2
∥∥Y (t)/2

∥∥
op
, log (1/ε1)

}
terms of the Tay-

lor series of exp
(
Y (t)/2

)
to get an ε1 accuracy in approximation. Since Tpoly = 64 log n/ε ≥

e2
∥∥Y (t)/2

∥∥
op

(from Inequality 2.5), this choice of number of Taylor series terms corresponds

to an accuracy of ε1 = n−64/ε. From Inequality 2.5, we get that

‖ exp
(
Y (t)/2

)
‖op ≤ e4 logn/ε = n4/ε. (2.6)

25

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Then we have

ε2
1 + 2ε1‖ exp

(
Y (t)/2

)
‖op ≤ n−128/ε + 2n−64/εn4/ε

≤ 4n−60/ε

≤ n−4/ε

2
≤ 1

2n
Tr exp

(
Y (t)/2

)
, (2.7)

where the last inequality is by Inequality 2.6. Chaining Inequalities 2.4 and 2.7, the condi-
tion in Lemma 18 is satisfied. Applying the result of Lemma 18,∣∣∣∣∣
(
exp

(
Y (t)

))
ii

Tr exp
(
Y (t)

) − (ẽxp
(
Y (t)

))
ii

Tr ẽxp
(
Y (t)

) ∣∣∣∣∣ ≤ 2
(
ε2

1 + 2ε1‖exp (Y)‖op

) Tr exp
(
Y (t)

)
+ n exp

(
Y (t)

)
ii(

Tr exp
(
Y (t)

))2 .

≤ 2

(
ε2

1 + 2ε1n
4/ε
) (

2n1+8/ε
)(

n−8/ε
)2

≤ 4

(
ε2

10000n41/ε
+

ε

50n4/ε

)
≤ ε

8n

2.2.2. Randomized Projections

Suppose we approximate each entry of a vector using randomized projections. Then we can
state the following result about the accuracy of the function g(x) = xi/‖x‖1.

Lemma 21 For 0 6= X ∈ Sn, let X̃ = RandProj(X, 10240 log n/ε2). Then
∣∣∣ X̃ii

Tr X̃
− X2

ii
TrX2

∣∣∣ ≤
ε
8 .

To prove this result, we need the Johnson-Lindenstrauss lemma.

Lemma 22 (Johnson and Lindenstrauss (1984)) For any 0 < ε < 1, and any integer
n, let k be a positive integer such that k ≥ 20 log n/ε2. Then for any set V of n points in
Rd and random matrix A ∈ Rk×d, with high probability, for all x ∈ V ,

(1− ε)‖x‖22 ≤
∥∥∥(1/
√
k)Ax

∥∥∥2

2
≤ (1 + ε)‖x‖22.

Proof [Proof of Lemma 21] Applying Lemma 22 to X̃ = RandProj
(
X, 10240 logn

ε2

)
, we

have that with high probability,
∣∣∣X2

ii − X̃ii

∣∣∣ ≤ ε
32

∣∣X2
ii

∣∣. Therefore, TrX2
(
1− ε

32

)
≤ Tr X̃2 ≤

TrX2
(
1 + ε

32

)
. Therefore

X2
ii(1−ε/32)

TrX2(1+ε/32)
≤ X̃ii

Tr X̃
≤ X2

ii(1+ε/32)

TrX2(1−ε/32)
which can be simplified to

X2
ii

TrX2 (1− ε/16) ≤ X̃ii

Tr X̃
≤ X2

ii
TrX2 (1 + ε/8), where the last simplification is by the inequalities

1−x
1+x ≥ 1 − 2x and 1+x

1−x ≤ 1 + 4x for x ∈
(
0, 1

2

)
. Therefore we have that

∣∣∣ X̃ii

Tr X̃
− X2

ii
TrX2

∣∣∣ ≤
(ε/8)

X2
ii

TrX2 ≤ ε/8.

26

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

2.2.3. Number of Iterations

From Lemmas 20 and 21 proved above, we can infer that the choice of T ′′ and T ′ in
Algorithm 4 gives us the following overall error in approximating the true primal iterate.

Lemma 23 In Algorithm 4, we have that |||X̃(t) −X(t)||| ≤ εn
4 .

Proof The quantity we want to bound is ||| n exp(Y (t))
Tr exp(Y (t))

− X̃(t)

Tr X̃(t)
|||. Each term is bounded as:

∣∣∣∣∣n exp
(
Y (t)

)
ii

Tr exp
(
Y (t)

) − X̃
(t)
ii

Tr X̃(t)

∣∣∣∣∣ ≤ n
∣∣∣∣∣ exp

(
Y (t)

)
ii

Tr exp
(
Y (t)

) − ẽxp
(
Y (t)

)
ii

Tr ẽxp (Y t)

∣∣∣∣∣︸ ︷︷ ︸
TaylorExp error

+

∣∣∣∣∣nẽxp
(
Y (t)

)
ii

Tr ẽxp
(
Y (t)

) − nêxp
(
Y (t)

)
ii

Tr êxp
(
Y (t)

)∣∣∣∣∣︸ ︷︷ ︸
RandProj error

.

Apply the results of Lemmas 20 and 21 to the right hand side terms.

Corollary 24 The number of iterations for convergence of the Arora-Kale algorithm is
O(1/ε2).

Proof Since the Arora-Kale algorithm only depends on the diagonal entries of X, we can
assume that X̃ and X match on the off-diagonal entries. Then, |||X̃(t) −X(t)||| ≤ εn

4 is

exactly equivalent to ‖X̃(t) −X(t)‖nuc ≤ εn
4 . Therefore the algorithm meets the conditions

of Algorithm 3 with δ = εn
4 . Therefore by Theorem 1, the number of outer iterations

required for convergence is O(1/ε2).

2.2.4. Combining All the Costs

Recall from Algorithm 4 that T ′ = O(1/ε2), T ′′ = O(1/ε), and the number of iterations is
O(1/ε2). The cost of a matrix-vector product is O(m). Therefore, multiplying these costs
gives O(m/ε5), the claimed cost of Arora-Kale algorithm. This completes the analysis.

3. Analysis of our Proposed Algorithm

We now analyze Algorithm 1, organizing this section as follows. In Section 3.1 we derive
the values of parameters that appear in the error bounds. Next, in Section 3.2, we show
how we construct a polynomial to approximate the matrix exponential. In Section 3.3, we
prove properties of the constructed estimators. We derive the number of inner iterations
we have in Section 3.4. In Section 3.5, we establish the crucial distance invariance between
true and estimated iterates, which ensures that our error is always under control. We next
show in Section 3.6 why we do not need to normalize our projection step, which enables us
to have a simple projection. Finally, we derive the error bound in Section 3.7.

27

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

3.1. Parameters of Mirror Map

As before, there are two parameters of the mirror map that we need to use in Theorem 1:
the diameter of the constraint set as measured by it, and its strong convexity parameter.

Lemma 25 (Set Diameter) Given Φ(X) = X • logX −TrX and the domain D = {X :
X � 0,TrX ≤ K}, where K ≥ n, the set diameter measured by Φ is given by D = K logK.

Lemma 11 The function Φ(X) = X • logX −TrX is 1
4K -strongly convex with respect to

the nuclear norm over the domain D = {X : X � 0,TrX ≤ K}.

To prove the claimed strong convexity, we need the following tools.

Definition 26 A function f : Rn → R is L-smooth in norm ‖ · ‖ if it is continuously
differentiable and satisfies ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for all x and y in dom f .

For functions on symmetric matrices, we use the following equivalent definition of smooth-
ness.

Definition 27 A function f : Sn → R is L-smooth in ‖ · ‖ if and only if for h : R → R
defined as h (t) = f(X + tH) for H ∈ Sn such that X + tH ∈ dom(f), we have h′′ (0) ≤
L‖H‖2.

Theorem 28 (Kakade et al. (2009)) Assume that f is a closed and convex function.
Then f is β-strongly convex with respect to a norm ‖ · ‖ if and only if its Fenchel dual, f∗,
is 1

β -smooth with respect to the dual norm ‖ · ‖∗.

Theorem 29 (Juditsky and Nemirovski (2008)) Let ∆ be an open interval on the
real axis, and f be a twice differentiable function on ∆ satisfying, for a certain θ ∈ R, for

all a < b, where a, b ∈ ∆, f ′(b)−f ′(a)
b−a ≤ θ f

′′(a)+f ′′(b)
2 . Let Xn(∆) be the set of all n × n

symmetric matrices with eigenvalues belonging to ∆. Then for X ∈ Xn(∆), the function
F (X) = Tr f(X) is twice differentiable, and for every H ∈ Sn, we have D2F (X)[H,H] ≤
θTr(Hf ′′(X)H).

Theorem 30 (Lewis (1995)) Suppose that the function f : Rn → R is symmetric (that
is, f(σx) = f(x) for all x ∈ dom f and all permutations σ). Then if f is convex and lower
semicontinuous, the corresponding unitarily invariant function f ◦ λ is convex and lower
semicontinuous on Rn×n

For our proof, we use definitions from Definition 12 in the following way. We first show
that Ψ satisfies

Ψ∗(Y) = Φ(Y), on {Y : Y � 0,TrY ≤ K}, (3.1)

where Φ(Y) = Y • log Y − TrY is the mirror map, as defined in the statement of the
lemma. We then prove that Ψ is β-smooth with respect to the operator norm for a certain
β > 0. Theorem 28 then immediately implies 1/β-strong convexity of Ψ∗ with respect to
the nuclear norm. Then Equation 3.1 implies that Φ is 1/β-strongly convex with respect
to the nuclear norm on the domain {Y : Y � 0,TrY ≤ K}, which is to be proved. We
accomplish our first goal (Equation 3.1) in the following sequence of steps.

28

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Claim 1 proves that the function ψ and its matrix version, Ψ, are both continuously
differentiable at the boundary of definition of the two pieces. Claim 2 then proves that
ψ1 and ψ2 are convex; in conjuncation with Claim 1, this implies ψ is convex. Applying
Theorem 30 extends the property of convexity to Ψ. Claim 3 proves that the vector functions
ψ and φ satisfy ψ∗1(x) = φ(x) for x ∈ Rn+. Claim 4 proves that given an input point
x ∈ {x : xi ≥ 0,

∑n
i=1 xi ≤ K}, the point y which attains the optimum in computing ψ∗1(x)

lies in the interior of the set {y : ψ1(y) ≤ 2K}. Claim 5 shows that ψ∗(x) = ψ∗1(x) for
x ∈ {x : xi ≥ 0,

∑n
i=1 xi ≤ K}. This is obtained by combining the results of Claim 2 and 4.

We then use these results as follows: since on the set {x : xi ≥ 0,
∑n

i=1 xi ≤ K}, we
have ψ∗ = φ, this implies Ψ∗ = Φ on the corresponding set, {X : X � 0,TrX ≤ K}. Next,
to show smoothness of Ψ, we use Theorem 29 to compute the smoothness constants of each
part of Ψ (in Claims 6 and 7), and then combine with continuous differentiability at the
boundary (from Claim 1) to get the overall smoothness constant of Ψ. By the argument at
the start of this proof, this immediately proves the desired strong convexity parameter. We
now proceed to prove all the claims aluded to above.

Claim 1 The functions Ψ and ψ are both continuously differentiable at the boundary.

Proof [Proof of Claim] One can check that ψ1(y) = ψ2(y) at the boundary. This implies
continuity of the function ψ. The derivatives of the two functions are also the same at the
boundary. The i-th component of the gradient is given by ∇iψ2(y) = 2K∇iψ1(y)

ψ1(y) . At the

boundary of the two parts of the function, we have ψ1(y) = 2K. Substituting this into the
above gradient gives ∇ψ2(y) = ∇ψ1(y). This shows that ψ is continuously differentiable
at the boundary. We only used chain rule of derivatives here, which applies to matrices as
well, so the exactly same reasoning also gives that Ψ is continuously differentiable at the
boundary.

Claim 2 The functions ψ and Ψ are convex on their domains.

Proof The function ψ is a piecewise function, each piece composed of a standard convex
function (see Boyd and Vandenberghe (2004)). Combine with continuous differentiability
from Claim 1 gives convexity of ψ. Applying Theorem 30 implies convexity of Ψ.

Claim 3 For any input x ∈ Rn+, we have ψ∗1(x) = φ(x).

Proof [Proof of Claim] By definition, we have ψ∗1(x) = supy(x
>y−

∑n
i=1 exp(yi)). Observe

that the domain of ψ∗1 is Rn+ (because if there exists an input with a negative coordinate, then
the corresponding coordinate of the maximizer y∗ can be made to go to −∞). Therefore,
given an input x ∈ Rn+, the supremum is attained at y∗ satisfying xi = exp(y∗i). This means
the maximizer is y∗i = log xi. Therefore the conjugate is ψ∗1(x) =

∑n
i=1 xi log xi−

∑n
i=1 xi =

φ(x).

Claim 4 For any x in the set {x : xi ≥ 0,
∑n

i=1 xi ≤ K}, the point y∗ = argmax
(
xT y − ψ1(y)

)
lies in int {y : ψ1(y) ≤ 2K}, where int denotes the interior of the set.

29

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Proof [Proof of Claim] From the proof of Claim 3, for any x ∈ Rn+, we have that y∗ =
argmax

(
xT y − ψ1(y)

)
satisfies y∗i = log xi for 1 ≤ i ≤ n. In addition to this, the statement

of the lemma also requires the input x to satisfy xi ≥ 0,
∑n

i=1 xi ≤ K. Plug in the values of
x in terms of y in the above inequality to get

∑n
i=1 exp y∗i ≤ K, which is the same as saying

ψ1(y∗) ≤ K < 2K. This shows that the optimum, y∗, lies in int {y : ψ1(y) ≤ 2K}.

Claim 5 We have ψ∗(x) = ψ∗1(x) on all x ∈ {x : xi ≥ 0,
∑n

i=1 xi ≤ K}.

Proof [Proof of Claim] By definition of conjugate and ψ,

ψ∗(x) = sup
y
xT y − ψ(y) (3.2)

= sup
y
xT y −

{
ψ1(y) if ψ1(y) ≤ 2K
ψ2(y) otherwise

From Claim 2, ψ is convex. Therefore the function to be maximized in Equation 3.2 is
concave. From Claim 4, for input x in the set {x : xi ≥ 0,

∑n
i=1 xi ≤ K}, we have that the

maximizer argmaxy
(
xT y − ψ1(y)

)
lies in the interior of {y : ψ1(y) ≤ 2K}. Therefore for

input x ∈ {x : xi ≥ 0,
∑n

i=1 xi ≤ K}, the maximizer of Equation 3.2 is also the same as that
of ψ∗1(x). This gives ψ∗(x) = ψ∗1(x).

Claim 6 The function Ψ1(Y) defined over {Y : Tr expY ≤ 2K} is 4K-smooth.

Proof [Proof of Claim] Let g (u)
def
= exp(u). The function g is convex and differentiable

(any number of times). In particular, g′′ is convex. For any a, b, applying the Mean Value
theorem to some point ζ ∈ (a, b), convexity of g′′, and g′′ ≥ 0 (due to convexity of g) gives

g′ (b)− g′ (a)

b− a
= g′′ (ζ) ≤ max

(
g′′ (a) , g′′ (b)

)
≤ 2

g′′ (a) + g′′ (b)

2
.

This satisfies the right-hand side condition for Theorem 29 with θ = 2; so Theorem 29 im-

plies that on the domain {Y : Tr expY ≤ K}, for h (t)
def
=

n∑
i=1

g (λi (Y + tH)) = Tr exp(Y + tH),

we have,

h′′ (0) = D2Ψ1(Y)[H,H] ≤ 2 Tr
(
Hg′′(Y)H

)
= 2 Tr

(
exp(Y)H2

)
≤ 2 Tr exp(Y) · ‖H‖2op

≤ 2 · 2K · ‖H‖2op

= 4K‖H‖2op, (3.3)

where we used the domain constraint for Ψ1 in the last inequality, and the fact that matrix
exponential is positive semidefinite in the first (Hölder’s) inequality. By Definition 27 then,
we have the lemma.

30

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Claim 7 The smoothness constant of Ψ2(Y) over the set {Y : Tr expY ≥ 2K} is 4K.

Proof For ease of exposition, let a
def
= 2K. Consider the same scalar function from Claim 6,

h (t) = Tr exp(Y + tH) and ` (t)
def
= a log (h (t))+2K−2K log(2K). Then `′ (t) = ah

′(t)
h(t) and

`′′ (t) = a

(
h′′(t)
h(t) −

(
h′(t)
h(t)

)2
)
≤ ah

′′(t)
h(t) . In particular,

`′′ (0) ≤ ah
′′(0)

h(0)
. (3.4)

We already showed in Inequality 3.3 that h′′ (0) = D2Ψ1(Y)[H,H] ≤ 4K‖H‖2op. We also
have that h(0) = Tr exp(Y) ≥ 2K (by assumption of the lemma). Plugging these along
with the value of a into Inequality 3.4 gives us `′′ (0) ≤ 2K 4K

2K · ‖H‖
2
op = 4K‖H‖2op. This

implies the claimed smoothness constant.

Proof [Proof of Lemma 11] For the functions defined in Definition 12, we can combine
Claims 3 and 5 to get that ψ∗(x) = φ(x) for x ∈ {x : xi ≥ 0,

∑n
i=1 xi ≤ K}. This implies

the matrix version of this statement, Ψ∗(X) = Φ(X) for X ∈ {X : X � 0,TrX ≤ K}.
Next, applying Claims 1, 6, and 7, we get that the function Ψ is continuously differentiable
with smoothness constant 4K. Invoking Theorem 28, we immediately obtain that Ψ∗ is
strongly convex with parameter 1

4K . This implies that Φ is strongly convex with the same
parameter over the set {X : X � 0,TrX ≤ K}.

3.2. Chebyshev Approximation of the Matrix Exponential

In this section, we show how to construct a polynomial approximation of our matrix expo-
nential. The standard technique to do so involves truncating the Taylor series of the matrix
exponential; however, a quadratically improved bound on the number of terms required for
the computation is provided by Sachdeva and Vishnoi (Sachdeva et al., 2014) using Cheby-
shev polynomials. We follow their notation and summarize their main results below for the
sake of completeness.

3.2.1. A Brief Summary of Chebyshev Approximation

For a non-negative integer d, we denote by Td(x) the Chebyshev polynomials of degree d,
defined recursively as follows:

T0(x) = 1,

T1(x) = x,

Td(x) = 2xTd−1(x)− Td−2(x).

Let Yi be i.i.d. variables taking values 1 and −1 each with probability 1/2. Let Ds =∑s
i=1 Yi, D0

def
= 0, and

ps,d(x)
def
= EY1,Y2,...,Ys

(
TDs(x)1|Ds|≤d

)
. (3.5)

We can use these to construct a polynomial with degree roughly
√
s that can well approxi-

mate xs. The formal statement follows.

31

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Theorem 31 (Theorem 3.3 in Sachdeva et al. (2014)) For any positive integers s and
d, the degree d polynomial ps,d defined by Equation 3.5 satisfies

sup
x∈[−1,1]

|ps,d(x)− xs| ≤ 2 exp
(
−d2/(2s)

)
.

Using this result, define the polynomial:

qλ,t,d(x)
def
= exp(−λ)

t∑
i=0

(−λ)i

i!
pi,d(x). (3.6)

Then we can use q to approximate an exponential with the following error guarantee.

Lemma 32 (Lemma 4.2 of Sachdeva et al. (2014)) For every λ > 0 and δ ∈ (0, 1/2],
we can choose t = max(λ, log(1/δ)) and d =

√
t log(1/δ) such that

sup
x∈[−1,1]

|exp(−λ− λx)− qλ,t,d(x)| ≤ δ.

This is a quadratic improvement over the standard cost (degree) of approximating an ex-
ponential using truncated Taylor series. Finally, this lemma can be used to generalize the
approximation from the [−1, 1] interval to the interval [0, b], as stated below.

Theorem 33 (Theorem 4.1 of Sachdeva et al. (2014)) For every b > 0, and 0 < δ ≤
1, there exists a polynomial rb,δ that satisfies

sup
x∈[0,b]

|exp(−x)− rb,δ(x)| ≤ δ

and has degree O(
√

max(b, log(1/δ)) · log(1/δ)).

The proof of this theorem uses λ
def
= b/2, and t and d from Lemma 32 and the polynomial

rb,δ(x)
def
= qλ,t,d

(
1

λ
(x− λ)

)
. (3.7)

Corollary 34 (Our Chebyshev Approximation) For every b > 0, a < b, 0 < δ ≤ 1,

and d =
√

max
(

1
2(b− a), log

(
1
δ

))
log
(

1
δ

)
, there exists a degree-d polynomial ChebyExp(u, d, δ)

such that
sup
u∈[a,b]

|exp(u)−ChebyExp(u, d, δ)| ≤ δ exp(b). (3.8)

Proof Using a simple linear transformation, Theorem 33 generalizes to:

sup
z∈[a,b]

∣∣∣∣∣exp

(
−1

2
(b− a)

) t∑
i=0

(−1
2(b− a))i

i!
pi,d(

z − (b+ a)/2

(b− a)/2
)− exp(−(z − a))

∣∣∣∣∣ ≤ δ.

32

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

By choosing λ = 1
2(b− a), and transforming −z + a = u− b, we get

sup
u∈[a,b]

∣∣∣∣q1
2 (b−a),t,d

(
−u+ (b+ a)/2

(b− a)/2

)
− exp(u− b)

∣∣∣∣ ≤ δ.
Using Equation 3.7 above gives

sup
u∈[a,b]

|exp(b)rb−a,δ(b− u)− exp(u)| ≤ δ exp(b).

Therefore, let d =
√

max
(

1
2(b− a), log

(
1
δ

))
log
(

1
δ

)
and ChebyExp(u, d, δ) = exp(b)rb−a,δ(b−

u). Substitute these into the last inequality to get the statement of the lemma.

3.2.2. Chebyshev Approximation in Our Algorithm

We can use the above results to approximate a matrix exponential as follows. Observe that

‖exp(Y)−ChebyExp(Y, d, δ)‖op = max
i∈[n]
|exp(λi)−ChebyExp(λi, d, δ)|,

where λi are the eigenvalues of Y and ChebyExp is the subroutine described in Corol-
lary 34. We only need the spectrum of Y in order to complete the approximation, and that
is what we proceed to derive below. Once we have the spectrum, we simply combine it with
the above results to get Lemma 36.

Lemma 35 The spectrum of Y lies in the range
[
−1
ε60 log n, logK

]
.

Proof Recall that Y = −η∇f(X). Since we start Algorithm 1 with Y (1) = 0, at the
t-th iteration, we have Y (t) = −

∑t
i=1 η∇f

(
X(t)

)
. Plugging in the parameters displayed

in Table 1, we get that the total number of iterations of the algorithm is Tinner × Touter =
1
ε3

24×105 (log(n/ε))11 log n, the Lipschitz constant of the objective function is ‖∇f‖op ≤ 2,

and the step size is η = ε2

8×104(log(n/ε))11 . Multiplying these gives

∥∥∥Y (t)
∥∥∥

op
≤ 2 · ε2

8× 104 × (log(n/ε))11 ·
24× 105 × (log(n/ε))11 log n

ε3
=

1

ε
60 log n.

Therefore, the spectrum of Y (t) lies in

λ(Y (t)) ∈
[
−1

ε
60 log n,

1

ε
60 log n

]
. (3.9)

We now show a better upper bound on the spectrum. Since our algorithm maintains
TrX(t) ≤ K (see Lemma 10), and X(t) = exp

(
Y (t)

)
, it implies Tr exp

(
Y (t)

)
≤ K. Since the

matrix exponential is positive definite, this implies
∥∥exp

(
Y (t)

)∥∥
op
≤ K, and therefore,

λmax(Y (t)) ≤ logK. (3.10)

Combining the inclusion 3.9 and Inequality 3.10 gives the claimed bound on the spectrum.

33

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Lemma 36 In Algorithm 4, for n ≥ 2 and ε ≤ 1
2 , set TCheby = 150√

ε
log(n/ε), δCheby =

(ε/n)401, and let ẽxp
(
Y (t)/2

)
:= ChebyExp

(
Y (t)/2,TCheby, δCheby

)
. Then for all 1 ≤ i ≤

n, ∣∣∣exp
(
Y (t)

)
ii
−
(

ẽxpY (t)
)
ii

∣∣∣ ≤ δexp
def
= 4800ε401

n390 .

Proof We plug into Inequality 3.8 the following bounds obtained from Lemma 35:

a = −60 logn
ε , b = logK

u = λ = 1
2(b− a) = logK

2 + 30 logn
ε

Applying Inequality 3.8, we then get

sup

λ∈
[
−30 logn

ε ,
1
2 logK

]
∣∣∣∣Kr1

2 logK+
30 logn

ε ,δ

(
1
2 logK − 1

2λ
)
− exp

(
1
2λ
)∣∣∣∣ ≤ δK

We have K = 40n (log n)10; therefore, if we want the error bound to be roughly ε
n , then we

need to pick δ = polylog(ε, n). Because of technical details in Lemma 41, we choose

δCheby =
(ε
n

)401
. (3.11)

This gives us the following result.∥∥∥exp
(
Y (t)/2

)
−ChebyExp(Y (t)/2,TCheby, δCheby)

∥∥∥
op
≤ 40

ε401

n396
.

From Lemma 32, we get that the degree of polynomial required to achieve this guarantee is

Required Degree =

√
2× 104

ε
log n log(n/ε) ≤ 150√

ε
log(n/ε).

This is the value of TCheby that we choose. We now bound the quantity we actually care

about. We can write ẽxp
(

1
2Y

(t)
)

= exp
(

1
2Y

(t)
)

+ ∆, where ‖∆‖op = 40 ε
401

n396 , the error

guarantee obtained above. Simplifying with the application of
∥∥exp

(
Y (t)

)∥∥
op
≤ K obtained

from Lemma 10 gives∥∥∥exp
(
Y (t)

)
− ẽxp

(
Y (t)

)∥∥∥
op

=

∥∥∥∥(exp
(

1
2Y

(t)
))2
−
(

ẽxp
(

1
2Y

(t)
))2

∥∥∥∥
op

=
∥∥∥∆2 + ∆ exp

(
1
2Y

(t)
)

+ exp
(

1
2Y

(t)
)

∆
∥∥∥

op

≤ (40
ε401

n396
)2 + 2(40

ε401

n396
)
∥∥∥exp

(
1
2Y

(t)
)∥∥∥

op

≤ (40
ε401

n396
)2 + 2(40

ε401

n396
)K

≤ 3(40
ε401

n396
)K

≤ 3 · 40ε401

n396
· 40n (log n)10

≤ 4800ε401

n390
.

34

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Substituting our assumption n ≥ 4 above gives the claimed bound.

In conclusion, we showed that we can approximate our matrix exponential to ε-accuracy
using O(1/

√
ε) terms in the polynomial approximation.

3.3. Properties of Estimators

Since we have an inner loop in Algorithm 1 with estimated quantities, it is crucial for the
convergence that these estimators have a small bias and variance. In this section we show
that this is indeed the case. We first prove two technical results about the functions InvSqrt
and RandProj which are “building blocks” of our estimators. We then apply these results
in proving properties of θ̂1 and θ̂2, and subsequently those of the overall estimator θ̂.

3.3.1. Two Technical Results about Estimators

Lemma 8 Consider a positive random variable x sampled from a distribution X with
mean µ and variance σ2. For some integer k > 0, construct the distribution G(X) =
InvSqrt (X, k) defined in Equation 2.2. Then the random variable g ∼ G(X) satisfies

(1) |E g − µ−1/2| ≤ E
(

|x−µ|k

min(µ,x)k+1/2

)
(2) E |g|2 ≤ k

∑k−1
j=0 E

(
(σ2+(µ−x)2)

j

x2j+1

)
.

Proof Recall that given a distribution X̃ with a positive support, and integer N > 0, we
define InvSqrt as the approximation for g (u) = u−1/2 at x0 sampled from X̃:

InvSqrt(X̃,N) =

N−1∑
k=0

1

k!
g(k)(x0)

k∏
j=1

(xk,j − x0), where x0, xk,j
i.i.d.∼ X̃,

where g(k) (u) = (−1)k

2k
u−j−1/2

j∏
`=1

(2`− 1) denotes the k-th derivative of g evaluated at u.

Then the expected value of g with respect to the distribution G(X) is

E g = E

k−1∑
j=0

1

j!
g(j)(x)

j∏
`=1

(xj,` − x)

= E

k−1∑
j=0

1

j!
g(j)(x)

j∏
`=1

(Exj,` − x)

= E

k−1∑
j=0

1

j!
g(j)(x) (µ− x)j . (3.12)

To see how the term on the right hand side of Equation 3.12 differs from the true quantity
to be estimated, we apply Taylor’s remainder theorem: for some point ζ lying between µ

35

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

and x, we have ∣∣∣∣∣∣
k−1∑
j=0

1

j!
g(j)(x) (µ− x)j − µ−1/2

∣∣∣∣∣∣ ≤ g(k) (ζ)

k!
|x− µ|k

≤ |x− µ|k

min (x, µ)k+1/2
,

where the second inequality follows from∣∣∣∣∣g(k) (u)

k!

∣∣∣∣∣ ≤ u−k− 1
2 , (3.13)

and the fact that ζ lies between x and µ. Combining this with Jensen’s inequality gives us
the final bound on the first moment,∣∣∣E g − µ−1/2

∣∣∣ ≤ E
∣∣∣g − µ−1/2

∣∣∣ ≤ E
|x− µ|k

min (x, µ)k+1/2
. (3.14)

To prove the bound on the second moment, we again start with the definition of InvSqrt,

E |g|2 = E

k−1∑
j=0

1

j!
g(j)(x)

j∏
`=1

(xj,` − x)

2

1
≤ kE

k−1∑
j=0

(
g(j)(x)

j!

j∏
`=1

(xj,` − x)

)2

2
= k

k−1∑
j=0

E

(g(j)(x)

j!

)2 (
σ2 + (x− µ)2

)j
3
≤ k

k−1∑
j=0

E

(
σ2 + (x− µ)2

)j
x2j+1

 . (3.15)

Here 1 is by Cauchy-Schwarz inequality; 2 is by using the fact that each xj,` is sampled
independently and adding and subtracting µ from the term inside the square and using the
definition of σ2; 3 uses Inequality 3.13.

Lemma 9 Given u ∈ Rn such that µ
def
= ‖u‖22 6= 0, and positive integers k > 1 and

N ≥ 4k + 6, the following are true for x sampled from X = RandProj (u,N).

(1) Ex = µ

(2) σ2 def
= E (x− µ)2 = 2µ2

N

(3) E

(
(σ2+(x−µ)2)

k

min(x,µ)2k+1

)
≤ 1

µ

(
eN/2

2N−17k + 213kk2k

Nk

)
36

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Before diving into this proof, we state below a tool we need about logconcave distribu-
tions.

Theorem 37 (Theorem 5.22 in Lovász and Vempala (2007)) If X ∈ Rn is a ran-
dom point sampled from a logconcave distribution, then (E |X|k)1/k ≤ 2kE |X|.

Proof [Proof of Lemma 9]By linearity of the Gaussian distribution, given a ζ ∼ N (0, In)
and for some u ∈ Rn, we have ζTu ∼ N (0, ‖u‖22). Therefore RandProj(u,N) gives us a
scaled chi-squared distribution, X = µ

Nχ
2
N . For a point x ∼ X, using the parameters of a

standard chi-squared distribution gives us the following properties.

Ex =
µ

N
·N = µ, and Varx =

(µ
N

)2
N (N + 2)− µ2 = 2

µ2

N
, (3.16)

which proves (1) and (2). To prove (3), we first scale the random variable x by N/µ to
make it of a standard chi-squared distribution; this makes our computations easier, since we
later need to use the closed-form expression of the probability density function of x. After
the scaling, we have

Ex∼χ2
N
x = N Varx∼χ2

N
= 2N. (3.17)

Therefore,

Ex∼X

(
σ2 + (µ− x)2

)k
min (x, µ)2k+1

 1
≤ 2k Ex∼X

(
σ2k + (µ− x)2k

min (x, µ)2k+1

)

2
= 2k

N

µ
Ex∼χ2

N

(
(2N)k + (N − x)2k

min (x,N)2k+1

)
︸ ︷︷ ︸

A

. (3.18)

Here 1 follows from Jensen’s inequality applied to the function g(x) = xk for k > 1 and

x > 0; the equation 2 follows from Equation 3.16. We now bound A by considering the
random variable in two disjoint intervals as follows.

A = Ex∼χ2
N

(
(2N)k + (N − x)2k

min (x,N)2k+1
1{x<N

4 }

)
+ Ex∼χ2

N

(
(2N)k + (N − x)2k

min (x,N)2k+1
1{x≥N

4 }

)
.

≤ Ex∼χ2
N

(
(2N)k + (N − x)2k

x2k+1
1{x<N

4 }

)
︸ ︷︷ ︸

B

+
1

(N/4)2k+1
Ex∼χ2

N

(
(2N)k + (N − x)2k

)
︸ ︷︷ ︸

C

.

(3.19)

37

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

To bound B , we divide the region {x < N/4} into intervals of geometrically-varying lengths
as follows.

B =
∞∑
j=2

Ex∼χ2
N

(
(2N)k + (N − x)2k

x2k+1
1{ N

2j+1≤x<
N

2j

}
)

≤
∞∑
j=2

N2k5k

(N/2j+1)2k+1
Prob

(
x < N/2j

)︸ ︷︷ ︸
D

, (3.20)

where the inequality follows from the worst case upper bounds for the numerator and
1 + 2k ≤ 5k for k ≥ 1 and the worst case lower bounds for the denominator over each
interval {N/2j+1 ≤ x < N/2j}. For a > 0 and a random variable x ∼ χ2

N , we have the
following cumulative distribution function:

Prob (x ≤ a) =

∫ a

0

e−x/2xN/2−1

2(N/2)Γ (N/2)
dx

≤
∫ a

0

e−x/2xN/2−1

2N/2(N/2e)(N−1)/2
dx

≤ 2aN/2−1eN/2

N (N−1)/2
,

where we used the Sterling approximation of Gamma function in the second inequality.
Substituting a = 2−jN above and simplifying gives the following bound on the quantity
from Inequality 3.20.

D ≤ 2j+1

√
N

(e
2j

)N
2
. (3.21)

Substitute into Inequality 3.20 to get

B ≤
∞∑
j=2

N2k5k
(

2j+1

N

)2k+1
2j+1

√
N

(e
2j

)N/2

=
5k22k+2eN/2

N 3/2

∞∑
j=2

1

2j(N/2−2k−2)

≤ 25k+2eN/2

N 3/2

2

2N−4k−4

≤ eN/2

N 3/22N−9k−7
, (3.22)

38

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

where we used the condition that N ≥ 4k + 6 in the first two inequalities. Next, we bound
C .

C = (2N)k
(

E

∣∣∣∣x−N√
2N

∣∣∣∣2k + 1

)
1
≤ (2N)k

(
22k (2k)2k

(
E
|x−N |√

2N

)2k

+ 1

)

2
≤ (2N)k

22k (2k)2k

√

E |x−N |2
√

2N

2k

+ 1

= (2N)k

(
22k (2k)2k + 1

)
≤ (2N)k

(
32k2

)k
, (3.23)

where 1 is by invoking Theorem 37, which is valid by logconcavity of chi-squared distri-
bution, and 2 is by Jensen’s inequality. Plugging Inequality 3.22 and Inequality 3.23 into
Equation 3.18 gives:

Ex∼X

(
σ2 + (x− µ)2

)k
min (x, µ)2k+1

 ≤ 2k
N

µ

(
eN/2

N 3/22N−9k−7
+

42k+1

N2k+1
(2N)k

(
32k2

)k)

≤ 1

µ

(
eN/2

2N−17k
+

213kk2k

Nk

)
,

which is what is to be proved.

3.3.2. Properties of θ̂1

We prove the bounds on first and second moments of θ̂1. Note that this is where we make
our choice of Testisq and Testjl

for the modules InvSqrt and RandProj used in estimating
θ1 in the subroutine Estimator1.

Lemma 6 Given Testisq = 1600 log(n/ε), Testjl
= 214T2

estisq
, Z ∈ Sn, and ε ∈ (0, 1/2), let

Z̃2 = RandProj(Z,Testjl
) and θ̂1i ∼ InvSqrt((Z̃2)ii + 1,Testisq) for i ∈ [n]. Then,

(1) The first moment satisfies

∣∣∣∣E θ̂1i − 1√
(Z2)ii+1

∣∣∣∣ ≤ √2(ε/n)400√
(Z2)ii+1

.

(2) The second moment satisfies E |θ̂1i |2 ≤ 1
(Z2)ii

1630 log(n/ε).

Proof Consider a random variable x sampled from the distribution (Z̃2)ii. Because of
Lemma 9, we have Ex = (Z2)ii. Then x+1 satisfies the required bias condition of Lemma 8

39

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

for constructing a polynomial approximation for 1/
√

1 + (Z2)ii. Then θ̂1i satisfies∣∣∣∣∣E θ̂1i −
1√

1 + (Z2)ii

∣∣∣∣∣ 1
≤ E

(∣∣x− (Z2)ii
∣∣Testisq

min(x+ 1, (Z2)ii + 1)Testisq+1/2

)
2
≤

√
E

(x− (Z2)ii)
2Testisq

min (x+ 1, (Z2)ii + 1)2Testisq+1

3
≤

√√√√ 1

(Z2)ii + 1

(
eTestjl/2

2Testjl
−17Testisq

+
213Testisq Testisq

2Testisq

Testjl

Testisq

)
.

where 1 is by Lemma 8, 2 is by Jensen’s inequality, and 3 is by a slight modification
of the proof of (3) in Lemma 9 (instead of scaling by N/µ, we scale by Nµ/(µ + 1) in the
proof). Finally, set Testisq = 1600 log

(
n
ε

)
and Testjl

= 214T2
estisq

to get the claimed bias.
Next, we can bound the variance as follows.

E |θ̂1i |2
1
≤ Testisq

Testisq−1∑
k=0

E

(
σ2 +

(
x− (Z2)ii

)2)k
(x+ 1)2k+1

≤ Testisq

Testisq−1∑
k=0

E

(
σ2 +

(
x− (Z2)ii

)2)k
min (x+ 1, (Z2)ii + 1)2k+1

2
≤

Testisq

(Z2)ii

Testisq−1∑
k=0

(
eTestjl

/2

2Testjl
−17k

+
213kk2k

Tk
estjl

)

3
=

Testisq

(Z2)ii

Testisq−1∑
k=0

(
217k

(√
e

2

)214T2
estisq

+
k2k

2kT2k
estisq

)

where 1 is by (2) in Lemma 8, 2 is by (3) in Lemma 9, and 3 is by writing Testjl
in

terms of Testisq . We have the simplications,
∑Testisq−1

k=0 217k
(√

e
2

)214T2
estisq ≤ 2

17Testisq

1.2
214Testisq 216

and

Testisq−1∑
k=0

(
k2

2T2
estisq

)k
≤ 1+

1

2T2
estisq

+
4

T4
estisq

+

Testisq/2∑
k=3

(
k2

2T2
estisq

)k
+

∑
k>Testisq/2

(
k2

2T2
estisq

)k
.

Finally, plug in the values of Testisq to get the desired bound.

In Algorithm 1, we construct the matrix Z as an approximation to exp
(

1
2

(
Y (t) + s∆

))
by the subroutine ChebyExp

(
1
2

(
Y (t) + s∆

)
, TCheby, δCheby

)
, with details as provided in

Lemma 36. With this value of Z and the same rest of the notation as in the above lemma,
we therefore wish to compare E θ̂1i with 1√

exp(Y (t−1)+s∆)
ii

+1
. Note that the above lemma

40

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

only tells us that we are close to 1√
(Z2)ii+1

, but Z, as defined above in Lemma 36, is only an

approximation to exp
(

1
2

(
Y (t−1) + s∆

))
. We therefore obtain the following corollary which

gives us a precise bound on the bias we care about.

Corollary 38 (Bias of θ̂1i) The estimator θ̂1i described in Algorithm 2 satisfies∣∣∣∣∣∣E θ̂1i −
1√

exp
(
Y (t−1) + s∆

)
ii

+ 1

∣∣∣∣∣∣ ≤ b1i def
=

(1 + 2δexp)
√

2(εn)400 + 2δexp√
exp

(
Y (t−1) + s∆

)
ii

+ 1
,

where δexp = 4800 ε
401

n390 .

Proof From Lemma 36, we know that Z = ChebyExp
(

1
2

(
Y (t−1) + s∆

)
,TCheby, δCheby

)
satisfies ∣∣∣(exp

(
Y (t−1)+s∆

)
− Z2

)
ii

∣∣∣ ≤ 4800ε401

n390
.

For ease of notation, let δexp
def
= 4800ε401

n390 . Given a− δ ≤ b ≤ a+ δ, we use the Taylor series
approximation to compute the error 1√

a
− 1√

b
. We have:∣∣∣∣ 1√

a
− 1√

b

∣∣∣∣ ≤ ∣∣∣∣ 1√
a
− 1√
−δ + a

∣∣∣∣
=

1√
a

∣∣∣∣∣1− 1√
1− δ/a

∣∣∣∣∣
≤ 1√

a

2δ

a
=

2δ

a3/2
,

where we used the Taylor approximation of 1√
1−x for small x. Thus, we have, from the

above and Lemma 6,∣∣∣∣∣∣E θ̂1i −
1√

exp
(
Y (t−1) + s∆

)
ii

+ 1

∣∣∣∣∣∣ ≤
√

2(ε/n)400√
Z2
ii + 1

+
2δ√

exp
(
Y (t−1) + s∆

)
ii

+ 1

≤ (1 + 2δ)
√

2(ε/n)400 + 2δ√
exp

(
Y (t−1) + s∆

)
ii

+ 1
,

which proves the claim.

3.3.3. Properties of θ̂2

Lemma 7 Consider Z1, Z2, Z, and ∆ all in Sn. Sample ζ ∼ N (0, In), and define θ̂2 ∈ Rn

as θ̂2i = (Z1∆Z2ζ)i (Zζ)i. Define θ2i
def
= (Z1∆Z2Z)ii. Then for i ∈ [n]:

(1) The first moment satisfies E θ̂2i = θ2i

41

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

(2) The second moment satisfies E |θ̂2i |2 ≤ 3
(
Z1∆Z2

2∆Z1

)
ii

(
Z2
)
ii

.

Proof The bias is defined as

E θ̂2i = 1Ti Z1∆Z2

(
E ζζT

)
Z1i

= (Z1∆Z2Z)ii = θ2i ,

where the second step is from the fact that ζ ∼ N (0, In) and linearity of expectation, and
the last is by definition of θ2. Next, from Lemma 45, given a, b ∈ Rn and ζ ∼ N (0, In), we
conclude that E((ζTa)2(ζT b)2) ≤ 3‖a‖22‖b‖

2
2. Therefore,

E
∣∣∣θ̂2i

∣∣∣2 = E(1Ti Z1∆Z2ζ)2)(ζTZ1i)
2

≤ 3‖Z2∆Z11i‖2‖Z1i‖2

= 3(Z1∆Z2
2∆Z1)ii(Z

2)ii.

This proves the bound on the second moment.

As before, we can obtain, as a corollary of this result, a comparison of the mean of our
estimator with the quantity we actually are trying to compute.

Corollary 39 (Bias of θ̂2i) The estimator θ̂2i described in Algorithm 2 satisfies∣∣∣E θ̂2i −
(

exp
(
τ̄(Y (t−1) + s∆)

)
∆ exp

(
(τ − 1

2)(Y (t−1) + s∆)
)

exp
(

1
2(Y (t−1) + s∆)

))
ii

∣∣∣ ≤ 15δexpηK

where δexp = 4800ε401

n390 .

Proof This proof simply involves writing out some matrix products and bounds on the diag-
onal entries of the products (using the operator norm of the individual matrices). We show
this below. Let Z1 = exp

(
τ̄
(
Y (t−1) + s∆

))
+U1, Z2 = exp

(
(τ − 1/2)

(
Y (t−1) + s∆

))
+U2,

and Z = exp
(

1
2

(
Y (t−1) + s∆

))
+ U . From Lemma 7, we have that E θ̂2i = θ2i . We now

express θ2i in terms of the matrix exponentials we care about. For ease of notation, we use
Ys = Y (t−1) + s∆.

E θ̂2i −
(
exp (τ̄Ys) ∆ exp ((τ − 1/2)Ys) exp

(
1
2Ys
))
ii

= (exp (τ̄Ys) ∆ exp ((τ − 1/2)Ys)U)ii

+
(
exp (τ̄Ys) ∆U2 exp

(
1
2Ys
))
ii

+ (exp (τ̄Ys) ∆U2U)ii

+
(
U1∆ exp ((τ − 1/2)Ys) exp

(
1
2Ys
))
ii

+ (U1∆ exp ((τ − 1/2)Ys)U)ii
+
(
U1∆U2 exp

(
1
2Ys
))
ii

+ (U1∆U2U)ii .

We can bound this by bounding the operator norm of each of the terms. Matrix norm is
sub-multiplicative, so this in turn is bounded by the operator norm of the individual terms
in the matrices. From Inequality 3.10, we know that ‖exp (αYs)‖op ≤ Kα, ‖∆‖op ≤ ηG,

‖U1‖op ≤ δexp, ‖U2‖op ≤ δexp, and ‖U‖op ≤ δexp, where δexp = 4800ε401

n390 . Substituting these
values here and bounding each term by the largest of all terms gives us the bound to be
proved.

42

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

3.3.4. Properties of the Overall Estimator, θ̂

Lemma 5 The estimator θ̂(t) has the following bounds on its first and second moments.

(1) |E θ̂i −
∫ 1
s=0

∫ 1
τ=0 θ1iθ2idsdτ | ≤ b1iθ2i + b2iθ1i + b1ib2i for i ∈ [n].

(2) E ‖θ̂‖22 ≤ 19600 log(n/ε)Kη2 + 147000K2η2δexp.

Proof We can get the bound on the bias by applying the results of Corollaries 38 and 39
in E θ̂i = E θ̂1i E θ̂2i . We need the following definition to concisely write out expressions in
this proof.

Definition 40 Let θ1i = 1√
exp(Ys)ii+1

, θ2i = 1
2

(
exp (τ̄Ys) ∆ exp

(
(τ − 1

2)Ys
)

exp
(

1
2Ys
))
ii

,

b1i = θ1i(2δexp + (1 + 2δexp)
√

2(ε/n)400), and b2i = 15δexpηK for Ys = Y (t−1) + s∆.

We have the following error bound.∣∣∣∣E θ̂i −
∫ 1

s=0
θ1i

∫ 1

τ=0
θ2idτds

∣∣∣∣ =

∣∣∣∣∫ 1

s=0
E θ̂1i

∫ 1

τ=0
E θ̂2idτds−

∫ 1

s=0
θ1i

∫ 1

τ=0
θ2idτds

∣∣∣∣
≤
∫ 1

s=0

∫ 1

τ=0

∣∣∣E θ̂1i E θ̂2i − θ1iθ2i

∣∣∣dτds
≤
∣∣∣E θ̂1i E θ̂2i − θ1iθ2i

∣∣∣.
From Corollary 38, we have E θ̂1i ∈ [θ1i±b1i]. From Corollary 39, we have E θ̂2i ∈ [θ2i±b2i].
Therefore, the right hand side above is bounded by:∣∣∣∣E θ̂i −

∫ 1

s=0
θ1i

∫ 1

τ=0
θ2idsdτ

∣∣∣∣ ≤ b1iθ2i + b2iθ1i + b1ib2i .

We now compute a quantity which will be useful later:

n∑
i=1

(
E θ̂i −

∫ 1

s=0
θ1i

∫ 1

τ=0
θ2idsdτ

)2

≤ b21i
n∑
i=1

θ2
2i + (2b1ib2i)(1 + b1i)

n∑
i=1

θ2i + nb22i(1 + b1i)
2.

(3.24)

Here we used the fact that θ1i = 1√
exp(Ys)ii+1

≤ 1. We compute each of these terms

separately.

n∑
i=1

θ2
2i =

n∑
i=1

((
exp (τ̄Ys) ∆ exp ((τ − 1/2)Ys) exp

(
1
2Ys
))
ii

)2
A

≤
n∑
i=1

(
exp (τ̄Ys) ∆ exp ((τ − 1/2)Ys) exp

(
1
2Ys
)

exp (τ̄Ys) ∆ exp ((τ − 1/2)Ys) exp
(

1
2Ys
))
ii

= Tr (exp (τ̄Ys) ∆ exp (Ys) ∆ exp (τYs))

= Tr (exp (Ys) ∆ exp (Ys) ∆)

≤ K2η2G2. (3.25)

43

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Here, A was because
∑n

i=1(Aii)
2 ≤

∑n
i=1(A2)ii, which can be checked by a simple compu-

tation. Similarly, the sum in the cross-term can be computed as follows.

n∑
i=1

θ2i =
n∑
i=1

(
exp (τ̄Ys) ∆ exp ((τ − 1/2)Ys) exp

(
1
2Ys
))
ii

= Tr
(
exp (τ̄Ys) ∆ exp ((τ − 1/2)Ys) exp

(
1
2Ys
))

= Tr (exp (τ̄Ys) ∆ exp (τYs))

= Tr (exp (Ys) ∆)

≤ KηG. (3.26)

Substituting Inequalities 3.25 and 3.26 into Inequality 3.24, and using 1√
exp(Ys)ii+1

≤ 1 gives

us:

n∑
i=1

(
E θ̂i −

∫ 1

s=0
a1

∫ 1

τ=0
a2dsdτ

)2

≤ (2δexp + (1 + 2δexp)
√

2(ε/n)400)2K2η2G2

+ 900nδ2η2K2

+ 60ηδK(2δexp + (1 + 2δexp)
√

2(ε/n)400)KηG

≤ 6K2η2(
√

2(ε/n)400 + 2δexp)

≤ 400nK2η2(
√

2(ε/n)400 + 2δexp). (3.27)

We now prove the final variance bound.

Es,τ,ζ1,ζ2 ‖θ̂‖22 = Es,τ,ζ1,ζ2

n∑
i=1

|θ̂i|2

=

∫ 1

s=0

∫ 1

τ=0

n∑
i=1

Eζ1 |θ̂1i |2 Eζ2 |θ̂2i |2dsdτ.

Combining Lemmas 6 and 7, we get:

Es,τ,ζ1,ζ2 ‖θ̂‖22 =

∫ 1

s=0

∫ 1

τ=0

n∑
i=1

1630 log(n/ε)
(Z2)ii︸ ︷︷ ︸

1

·3
(
Z2∆Z2

1∆Z2

)
ii

(
Z2
)
ii︸ ︷︷ ︸

2

dsdτ,

A
=

n∑
i=1

∫ 1

s=0

∫ 1

τ=0
4890 log(n/ε)(Z2∆Z2

1∆Z2)iidsdτ

= 4890 log(n/ε)

∫ 1

s=0

∫ 1

τ=0
Tr
(
Z2

2∆Z2
1∆
)
dsdτ, (3.28)

where Z1 = exp
(
(τ − 1/2)

(
Y (t−1) + s∆

))
+ U1 and Z2 = exp

(
τ̄
(
Y (t−1) + s∆

))
+ U2 as

defined in Corollary 39. The term A shows the significance of carefully choosing the

split in the estimator θ̂2, which enabled the cancellation of 1
(Z2)ii

and (Z2)ii. We now bound

Tr
(
Z2

2∆Z2
1∆
)
. In Lemma 36 we showed how to construct Z1 and Z2 as δexp = 4800ε401/n390

44

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

approximations to the respective matrix exponentials. Thus, writing ‖U1‖op = ‖U2‖op =

δexp and expanding out the product Z2
2∆Z2

1∆ in terms of the true matrix exponentials and
the error matrices, we get the following:

Tr
(
Z2

2∆Z2
1∆
)
≤ Tr

(
exp
(

2τ̄(Y (t−1) + s∆)
)

∆ exp
(

(2τ − 1)(Y (t−1) + s∆)
)

∆
)

+30η2δexpK
2.

Choosing A = exp
(
Y (t−1) + s∆

)
and B = ∆ and combining with the fact that matrix

exponential is positive semidefinite, and ∆ is a symmetric matrix since the gradient of the
objective is symmetric, invoking Fact 0.1 gives:

Tr
(
Z2

2∆Z2
1∆
)
≤ Tr

(
exp
(
Y (t−1) + s∆

)
∆2
)

+ 30η2δexpK
2 ≤ 4Kη2 + 30η2δexpK

2,

where the last inequality follows from applying Holder’s inequality with the nuclear norm
and operator norm. Plugging this back into Equation 3.28 and completing the integration
gives

Es,τ,ζ1,ζ2 ‖θ̂‖22 ≤ 4890 log(n/ε)
(
4Kη2 + 30K2η2δexp

)
≤ 19600 log(n/ε)Kη2 + 147000K2η2δexp.

3.4. Number of Inner Iterations

We can use the general expression for overall running time to choose a value for number of
‘low-accuracy’ iterations. The total computational cost of the algorithm is

Touter ×
105 (log n)21

ε2
Texp + Touter × Tinner × 230

(
log

(
1

ε

))4

Texp, (3.29)

where the first term is the total cost of exact computations, and the second term is the
total cost of approximate computations (done inside the inner loop); Texp is the cost of
approximating the products of matrix exponentials with a vector. This is optimal (ignoring
polylogarithmic terms) when setting Tinner = O(1/ε2). We set Tinner = 1/ε2 due to technical
reasons arising in Lemma 41.

3.5. Distance Bound Between Estimated and True Iterates

Since the estimators in the inner loop iterations are constructed to have a low variance, the
estimated and true iterates aren’t far apart, as we show now. This is also where we choose
the step size η.

Lemma 41 In Algorithm 1, after t ≤ Tinner iterations, we have E ‖X(t) − X̃(t)‖nuc ≤
1.132nε. Recall, X̃(t) is the approximate primal iterate, while X(t) is the exact iterate.

45

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Proof By the definition of ||| · ||| and some algebra, we have

E |||X(t) − X̃(t)||| = E
n∑
i=1

∣∣∣X(t)
ii − X̃

(t)
ii

∣∣∣
= E

n∑
i=1

∣∣∣∣∣
(√

X
(t)
ii + 1

)2

−
(√

X̃
(t)
ii + 1

)2
∣∣∣∣∣

= E
n∑
i=1

2

√
X

(t)
ii + 1

∣∣∣∣√X(t)
ii + 1−

√
X̃

(t)
ii + 1

∣∣∣∣+ E
n∑
i=1

∣∣∣∣√X(t)
ii + 1−

√
X̃

(t)
ii + 1

∣∣∣∣2.
Next, apply Cauchy-Schwarz inequality and Lemma 10 to get

E |||X(t) − X̃(t)||| ≤ 2 E
√

TrX(t) + n

√√√√ n∑
i=1

(√
X

(t)
ii + 1−

√
X̃

(t)
ii + 1

)2

+ E
n∑
i=1

(√
X

(t)
ii + 1−

√
X̃

(t)
ii + 1

)2

≤ 2
√
K + nE

√√√√ n∑
i=1

(√
X

(t)
ii + 1−

√
X̃

(t)
ii + 1

)2

︸ ︷︷ ︸
A

+ E

n∑
i=1

(√
X

(t)
ii + 1−

√
X̃

(t)
ii + 1

)2

︸ ︷︷ ︸
B

.

(3.30)

We first bound B . We can write a recursive formulation for as follows.

√
X̃

(t)
ii + 1−

√
X

(t)
ii + 1 =

(√
X̃

(0)
ii + 1−

√
X

(0)
ii + 1

)
︸ ︷︷ ︸

C

+
t∑

s=1

(
θ̂

(s)
i −

√
X

(s)
ii + 1 +

√
X

(s−1)
ii + 1

)
︸ ︷︷ ︸

D

.

We invoke Johnson-Lindenstrauss lemma (restated in Lemma 22 for completeness) and

choose the accuracy parameter for it to be such that
∣∣∣X(0)

ii − X̃
(0)
ii

∣∣∣ ≤ ε̃X(0)
ii = ε

100(logn)10X
(0)
ii .

Therefore, C ≤ ε̃
2

√
X

(0)
ii + 1 = ε

200(logn)10

√
X

(0)
ii + 1. Summing over all indices and taking

expectations gives

B ≤ E
n∑
i=1

(
ε

200 (log n)10

√
X

(0)
ii + 1 +

t∑
s=1

(
θ̂

(s)
i −

√
X

(s)
ii + 1 +

√
X

(s−1)
ii + 1

))2

1
≤ 2

ε2

40000 (log n)20 (TrX(0) + n) + 2 E

∥∥∥∥∥
t∑

s=1

(
θ̂(s) −

√
diag

(
X(s)

)
+ 1 +

√
diag

(
X(s−1)

)
+ 1

)∥∥∥∥∥
2

2

2
≤ Kε2

10000 (log n)20 + 2 E

∥∥∥∥∥
t∑

s=1

(
θ̂(s) −

√
diag

(
X(s)

)
+ 1 +

√
diag

(
X(s−1)

)
+ 1

)∥∥∥∥∥
2

2︸ ︷︷ ︸
E

,

46

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

where 1 is by Cauchy-Schwarz inequality, and 2 by Lemma 10. A subtle point here is that
even though the very first iterate in the algorithm satisfies a stronger inequality, namely,
TrX(0) ≤ n, we cannot use this stronger bound because we care about all iterations, and
this stronger bound doesn’t hold later on. We now bound E below. Note that since

the random variable θ̂(s) is not entirely unbiased, the term E is not the variance. Let

θ(s) def
= E θ̂(s) and d(s) =

√
diag

(
X(s)

)
+ 1−

√
diag

(
X(s−1)

)
+ 1. Then,

E = E

∥∥∥∥∥
t∑

s=1

(
θ̂(s) −

(√
diag

(
X(s)

)
+ 1−

√
diag

(
X(s−1)

)
+ 1

))∥∥∥∥∥
2

2

= E

∥∥∥∥∥
t∑

s=1

(
θ̂(s) − θ(s) + θ(s) − d(s)

)∥∥∥∥∥
2

2

= E
n∑
i=1

 t∑
s=1

(
θ̂

(s)
i − θ

(s)
i

)2
+

t∑
s=1

(
θ

(s)
i − d

(s)
i

)2
+ 2

∑
s6=`

(
θ̂

(s)
i − θ

(s)
i

)(
θ

(`)
i − d

(`)
i

)
=

t∑
s=1

E
∥∥∥θ̂(s) − θ(s)

∥∥∥2

2
+

t∑
s=1

n∑
i=1

(
θ

(s)
i − d

(s)
i

)2

︸ ︷︷ ︸
F

+0

≤
t∑

s=1

(
E
∥∥∥θ̂(s)

∥∥∥2
+ F

)
,

where the last step is by the bound on variance by its second moment. Recall that we
already have from Inequality 3.27, F ≤ 400nK2η2(

√
2(ε/n)400 + 2δexp). Substitute this

into the bound for E and B , and apply the result of Lemma 5 to bound E ‖θ̂(s)‖22; we
choose t = Tinner = 1

ε2
and get

B ≤ Kε2

10000 (log n)20 +
1

ε2

19600 log(n/ε)Kη2 + 147000K2η2δexp︸ ︷︷ ︸
second-moment bound from Lemma 5

+ 400nK2η2
(√

2(ε/n)400 + 2δ
)

︸ ︷︷ ︸
squared error in bias

︸ ︷︷ ︸

G

.

(3.31)

Next, we bound A using Jensen’s inequality, and use Inequality 3.31 in Inequality 3.30 to
get

E |||X(t) − X̃(t)||| ≤ 2
√
K + n

√
G + G . (3.32)

Note that to bound G , we only need to take care of the second term in Inequality 3.31,
because the first term is already fixed, and the remaining can be fixed by appropriate choices
of δexp. We choose the step size to be

η = ε2 1

8× 104(log(n/ε))11
. (3.33)

47

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Substituting this in Inequality 3.31 gives

G ≤ Kε2

104 (log n)20 +
Kε2

6× 105 (log(n/ε))21 +
Kε2nδexp

2500 (log(n/ε))12 +
Kε2n2

(√
2(ε/n)400 + 2δexp

)
4× 105 × (log(n/ε))12 .

Plugging this back into Lemma 3.32 with the value of δexp from Definition 4 gives:

G ≤ Kε2

104 (log n)20 +
Kε2

6× 105 (log n)21 +
2Kε403

(log(n/ε))12 n389
+

3Kε402

41 (log(n/ε))12 n388

≤ Kε2

(
1

104 (log n)20 +
1

6× 105 (log(n/ε))21 +
2ε401

(log(n/ε))12 n389
+

3ε402

41n388 (log(n/ε))12

)
≤ Kε2

(
1

5× 103 (log n)20 +
6ε401

(log n)20 n380

)
≤ Kε2

4999 (log n)20

Plugging this back into Inequality 3.32 and using K = 40n (log n)10 gives E |||X(t) − X̃(t)||| ≤
1.132nε. Since Algorithm 1 only uses the diagonal entries of X̃(t) at any iteration t, we can
assume the off-diagonal entries exactly equal those in X(t). Therefore X̃(t) − X(t) is a
diagonal matrix. For a diagonal matrix A, we can see that |||A||| = ‖A‖nuc. Therefore, we

have E ‖X(t) − X̃(t)‖nuc ≤ 1.132nε.

3.6. The Expanded Domain Trick for Projection

The goal of this section is two-fold: first, we show that if the trace constraint is inactive,
the projection step is simple and requires no trace normalization; second, we prove that
the trace constraint remains inactive throughout the run of our algorithm. We remark that
this is also the lemma where we choose the optimal number of iterations in the outer loop
of Algorithm 1.

Lemma 42 Consider the mirror map Φ(X) = X • logX − TrX over the domain {X :
X � 0,TrX ≤ K}. Assuming that the trace inequality is never active, we have that
expY = argminX�0,TrX≤K Φ(X)− Y •X.

Proof We wish to solve

minX • logX − TrX −X • Y, subject to X � 0,TrX ≤ K. (3.34)

By diagonalizing X as X = UΛU> and Y as Y = V ΣV >, we can rewrite this problem as

min

n∑
i=1

λi log λi −
n∑
i=1

λi −
n∑
i=1

λiỹi, subject to λi ≥ 0,

n∑
i=1

λi ≤ K, (3.35)

where ỹi is the i’th diagonal entry of the matrix U>Y U . The Lagrangian is given by
L(λi, ν) =

∑n
i=1 λi log λi −

∑n
i=1 λi −

∑n
i=1 λiỹi + ν (

∑n
i=1 λi −K). Setting the gradient to

48

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

zero gives ∇ΛL = 1 + log λ∗ − 1− ỹ + ν1 = 0, which gives λ∗i = exp(ỹi − ν) for all i. Since
we assumed that the trace constraint is not active, it means, by complementary slackness,
ν = 0 (note that this assumption is justified because we prove it in Lemma 10). This gives
λ∗i = exp(ỹi) which translates to X∗ = exp(Y), as claimed.

Before we start the second proof, we need the following result.

Lemma 43 Fix a norm ‖ · ‖. Given an α-strongly convex mirror map Φ : D → R,

a convex, G-Lipschitz objective f : X → R, the diameter of X ∩ D denoted by D
def
=

sup
x∈X∩D

Φ(X)− inf
x∈X∩D

Φ (x), step size η, and parameter δ′ where E
∥∥x(t) − x̃(t)

∥∥ ≤ δ′, running

mirror descent for T iterations gives iterates {x̃(t)}Tt=1 that satisfy the inequality

f

(
1

T − 1

T−1∑
t=1

x̃(t)

)
− f (x∗) ≤ ηG2

2α
+

1

η (T − 1)
(DΦ(x∗, x̃(1))−DΦ(x∗, x̃(T))) + δ′G.

This can be derived the same way as Theorem 4.2 in Bubeck et al. (2015), by incorporating
the error in iterate, just as we did in the proof of Theorem 1.

Lemma 10 With the choice of parameters in Algorithm 1, the iterate X̃(t) at any iteration
t satisfies Tr X̃(t) < K for K = 40n(log n)10.

Proof We prove this by induction on the iteration count.
Induction Hypothesis. We assume that for any iteration t, the primal iterate is not

too far from the optimal point, satisfying |||X̃(t) −X∗||| ≤ 38n (log n)10.
Base Case. Since Y (1) = 0, the primal iterate X̃(1) = I. We also know that the optimal

point satisfies TrX∗ = n. Therefore, |||X̃(1) −X∗||| ≤ 2n ≤ 38n (log n)10. The hypothesis is
thus true for the base case, t = 1.

Induction. Suppose that the hypothesis is true for some t = t′. We prove that this
would make it true for t = t′ + 1 as well. Our technique is to first prove a weak bound for
|||X̃(t) −X∗||| using triangle inequality of norms; then we boost our bound (and obtain the
stronger guarantee of the induction hypothesis) by invoking strong convexity of Bregman
Divergence. We now show the details.

|||X̃(t′+1) −X∗||| ≤ |||X̃(t′+1) − X̃(t′)|||+ |||X̃(t′) −X∗|||

≤
∥∥∥X̃(t′+1) − X̃(t′)

∥∥∥
nuc︸ ︷︷ ︸

Inequality 1.6

+ |||X̃(t′) −X∗|||︸ ︷︷ ︸
induction hypothesis

.

≤ 2ηG

α︸︷︷︸
A

+38n (log n)10 . (3.36)

The first step here used the fact that |||M ||| ≤ ‖M‖nuc(We can show this by Hölder’s In-
equality, 〈X,Y 〉 ≤ ‖Y ‖op‖X‖nuc. Select Y = diag (sgn (diagX)), that is, Y is a diagonal
matrix with Yii = sgn (Xii)). We can plug in parameters of the mirror map and the step
size, as displayed in Table 1, to obtain:

A = 2 · ε2

80000(log(n/ε))11
· 2 · 4(40n(log n)10) ≤ nε2

125
.

49

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Plugging this back into Equation 3.36 while using ε < 1/2 and K = 40n(log n)10 gives

|||X̃(t′+1) −X∗||| ≤ nε2

125 +38n (log n)10, which implies that Tr
(
X̃(t′)

)
< (n(ε2/125+38(log n)10)+

n) < 40n(log n)10 = K, which says that the trace constraint on the iterates is not active on
the first t′ iterations.

Since the trace constraint is not active on the first t′ iterations, the projection step does
not require a normalization. This implies that Algorithm 3 now is identical to Approximate
Mirror Descent with this mirror map and objective. We now recall Lemma 43 for T = t′+1:

f

(
1

t′

t′∑
t=1

X̃(t)

)
− f (X∗) ≤ ηG2

2α
+

1

ηt′
(DΦ(X∗, X̃(1))−DΦ(X∗, X̃(t′+1))) + δ′G.

Multiplying throughout by ηt′ and rearranging the terms gives

DΦ(X∗, X̃(t′+1)) ≤ η2G2t′

2α
+DΦ(X∗, X̃(1))− ηt′

(
f

(
1

t′

t′∑
t=1

X̃(t)

)
− f (X∗)

)
︸ ︷︷ ︸

positive

+ηt′δ′G

(3.37)

Since Φ is α-strongly convex in the nuclear norm, we have DΦ(X∗, X̃) ≥ α
2 ‖X

∗ − X̃‖2nuc.

Since this is at least α
2 |||X

∗ − X̃|||
2
. Chaining this with Inequality 3.37 gives

|||X̃(t′+1) −X∗|||
2
≤ η2G2t′

α2︸ ︷︷ ︸
B

+
2DΦ(X∗, X̃(1))

α︸ ︷︷ ︸
C

+
2

α
ηt′δ′G︸ ︷︷ ︸

D

, (3.38)

We now bound each of the terms on the right-hand side. We remark that this is actually
where we choose the appropriate value of Touter.

B =
η2G2TinnerTouter

α2

=
ε4

64× 108 (log(n/ε))22 · 4 ·
1

ε2
· 1

ε
24× 105 (log(n/ε))11 log n · 16

(
40n (log n)10

)2

≤ 40εn2 (log n)10

To bound the second term C = 2DΦ(X̃(1),X∗)
α , we need to compute DΦ(X̃(1), X∗). Recall

that X̃(1) = I by our algorithm. Therefore, Φ(X̃(1)) = −n and ∇Φ(X̃(1)) = 0. Applying
Hölder’s inequality gives Φ(X∗) ≤ TrX∗ log ‖X∗‖op ≤ n log n. Therefore DΦ(X∗, X̃(1)) ≤
n log n. Now we go back to the quantity we were trying to bound:

C ≤ 2 · n log n · 4(40n(log n)10) ≤ 320n2 (log n)11 .

Finally, the last term is:

D =
2

α
ηTinnerTouterδ

′G ≤ 2 · 4K · 30 log n

ε
· 1.132nε · 2 = 21735n2 (log n)11

50

An Õ(m/ε3.5)-Cost Algorithm for Semidefinite Programs with Diagonal Constraints

Summing these terms and plugging back into Inequality 3.38 gives

|||X̃(t′+1) −X∗|||
2
≤ n2(40ε(log n)10 + 320(log n)11 + 21735(log n)11).

< n2(0.77(log n)20 + 17(log n)20 + 1150(log n)20)

≤ 1168n2 (log n)20 ≤ 35n (log n)10 ,

which completes the induction. Therefore we have |||X̃(t) −X∗||| ≤ 38n (log n)10 for all t.
Since TrX∗ = n, this proves Tr X̃(t) < 40n (log n)10 = K.

3.7. Error bound

Finally, we put together all the parameters derived above to obtain our claimed error bound.

Lemma 44 Running Algorithm 1 gives an output for (1.2) that has an error bound of Kε.

Our algorithm is in the framework of approximate lazy mirror descent, with error bound
given by Theorem 1, restated below.

Theorem 1 (Convergence of Lazy Mirror Descent) Fix a norm ‖ · ‖. Given an α-
strongly convex mirror map Φ : D → R and a convex, G-Lipschitz objective f : X → R,
run Algorithm 3 with step size η and E ‖x(t) − x̃(t)‖ ≤ δ. Let D

def
= supx∈X∩D Φ (x) −

infx∈X∩D Φ (x). Then, Algorithm 3 after T iterations returns x̃t
∗
, satisfying

E f(x̃(t∗))− f (x∗) ≤ D

Tη
+

2ηG2

α
+ δG. (1.7)

Proof Our proof involves plugging in the values of the parameters (from Table 1) in the
above bound. Since we assume n ≥ 4, we use log n ≤

√
n in one of the calculations below.

D

Tη
= Kε

logK

30 log n
≤ Kε log 40 + 6 log n

30 log n
≤ 0.29Kε.

2ηG2

α
=

32ε2K

8× 104 (log n)11 =
Kε

2500 (log n)11 ≤ 2× 10−5Kε

δG = 1.132nε ≤ Kε

35 (log n)10 ≤ 11× 10−4Kε

Summing these quantities gives the upper bound on the error to be εK, as claimed.

4. General Technical Results

Lemma 45 Given a, b ∈ Rn , we have that Eζ∼N (0,I)

(
(ζTa)2(ζT b)2

)
≤ 3‖a‖22‖b‖

2
2.

Proof By Cauchy-Schwarz inequality, the functions f1 and f2 satisfy Eζ∼N (0,I)(f1 (ζ) f2 (ζ)) ≤√
Eζ(f1 (ζ))2 Eζ(f2 (ζ))2. Choose f1 (ζ) = (ζTa)2 and f2 (ζ) = (ζT b)2. Since ζ ∼ N (0, I)

and all the coordinates of ζ are independent, Var(ζTa) =
∑n

i=1 Var(ζiai) =
∑n

i=1 a
2
i =

‖a‖22. Therefore ζTa ∼ N (0, ‖a‖22). For X ∼ N (0, σ2), we have EX4 = 3σ4. Applying this
to ζTa and ζT b proves the desired inequality.

51

	Introduction
	Related work
	Preliminaries

	Our approach
	The estimator
	Technical Concepts: Domain Expansion and Strong Convexity

	Appendices
	Analysis Common to Both Algorithms
	From the Reformulated to the Original SDP
	Analysis of Approximate Lazy Mirror Descent

	Analysis of the Arora-Kale Algorithm
	Parameters
	Computational Cost
	Taylor Approximation for Matrix Exponential
	Randomized Projections
	Number of Iterations
	Combining All the Costs

	Analysis of our Proposed Algorithm
	Parameters of Mirror Map
	Chebyshev Approximation of the Matrix Exponential
	A Brief Summary of Chebyshev Approximation
	Chebyshev Approximation in Our Algorithm

	Properties of Estimators
	Two Technical Results about Estimators
	Properties of "03621
	Properties of "03622
	Properties of the Overall Estimator, "0362

	Number of Inner Iterations
	Distance Bound Between Estimated and True Iterates
	The Expanded Domain Trick for Projection
	Error bound

	General Technical Results

