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Abstract
The Combinatorial Multi-Armed Bandit problem is a sequential decision-making problem in which
an agent selects a set of arms at each round, observes feedback for each of these arms and aims
to maximize a known reward function of the arms it chose. While previous work proved regret
upper bounds in this setting for general reward functions, only a few works provided matching
lower bounds, all for specific reward functions. In this work, we prove regret lower bounds for
combinatorial bandits that hold under mild assumptions for all smooth reward functions. We derive
both problem-dependent and problem-independent bounds and show that the recently proposed Gini-
weighted smoothness parameter (Merlis and Mannor, 2019) also determines the lower bounds for
monotone reward functions. Notably, this implies that our lower bounds are tight up to log-factors.
Keywords: Combinatorial Multi-Armed Bandits, Lower Bounds, Gini-Weighted Smoothness

1. Introduction

Combinatorial Multi-Armed Bandits (CMABs) are a well-known extension of Multi-Armed Bandits
(MABs) (Robbins, 1952), where instead of choosing a single arm at each round, the agent selects a set
of arms. It then observes noisy feedback for each arm in this set (‘semi-bandit feedback’) and aims
to maximize a known reward function of the selected arms and their parameters. More specifically, it
aims to minimize its regret, which is the expected cumulative difference between the reward of the
best action and the reward of the agent’s actions. The applications of this framework are numerous
and vary between reward functions; the most common one is the linear reward function (Kveton
et al., 2015c), which can be applied for problems such as spectrum allocation, shortest paths, routing
problems and more (Gai et al., 2012). Another common application is the Probabilistic Maximum
Coverage (PMC) problem (Merlis and Mannor, 2019), which is closely related to problems such as
influence maximization and ranked recommendations.

Due to its usefulness, many previous works analyze regret upper bounds for different variants of
this setting. While some works focus on specific reward functions, others derive bounds that hold for
general reward functions. In these cases, the bounds usually depend on some measure of smoothness
of the reward, for example, its global Lipschitz constant, or its Gini-weighted smoothness. The latter
is a more refined smoothness criterion, recently suggested in (Merlis and Mannor, 2019), that takes
into account the interaction between the local gradients of the reward and concentration properties of
the arms. On the other hand, there are almost no works on matching lower bounds; to the best of our
knowledge, all existing lower bounds for CMABs were derived for specific reward functions – either
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the linear one or the PMC problem. Notably, there is no characterization of lower bounds for general
reward functions, and it is unclear whether existing upper bounds are tight.

The gain from general lower bounds is threefold: (i) When the bounds are loose, understanding
which quantities affect the lower bounds allows devising tighter algorithms; (ii) When the bounds are
tight, the instances on which the bounds were derived can help to determine under which additional
assumptions the lower bounds do not hold. Such assumptions might allow us to derive improved
upper bounds; (iii) When we can control some parameters of the problem, e.g., the number of arms
in an action, their effect on the lower bound can help us tune them for each application.

In this work, we derive problem-dependent (Theorem 1) and problem-independent (Theorem
2) lower bounds that hold for general reward functions under mild assumptions. The problem-
dependent bound shows that for any ‘good’ bandit strategy, there exists a CMAB instance such
that the asymptotic regret must be larger than a certain logarithmic rate. The problem-independent
bound shows that for any strategy and any large enough horizon T , there exists a horizon-dependent
instance with a

p
T regret. To derive these bounds, we define a family of action sets for CMAB

problems, which we call I-disjoint. There, a subset of arms I appear in all actions and independent
of other actions, while the rest of the arms appear in a single action. We then prove that for I-disjoint
problems, both bounds depend on a new modified Gini-smoothness measure; specifically, they
reproduce existing lower bounds for both the linear reward function and the PMC problem. If the
reward function is also monotone, as in most practical applications, we derive an additional bound
that depends on the Gini-smoothness of the reward and matches the upper bound of (Merlis and
Mannor, 2019) up to logarithmic factors (Proposition 4). Thus, our results demonstrate that without
any additional assumptions, the bounds are tight for almost any reward function.

2. Related Work

The general framework of combinatorial bandits with semi-bandit feedback was first presented in
(Chen et al., 2013). Since then, it has had many extensions, e.g., for the case of probabilistically-
triggered arms, where the set of arms in an action might be random (Chen et al., 2016a; Wang and
Chen, 2017), and for reward functions that depend on the arm distribution (Chen et al., 2016b).
Moreover, many previous works focus on specific instances of this problem, e.g., linear reward
functions (Kveton et al., 2015c; Combes et al., 2015; Degenne and Perchet, 2016), cascading bandits
(Kveton et al., 2015a,b) and more. Recently, Merlis and Mannor (2019) presented BC-UCB, a
Bernstein-based UCB algorithm with regret bounds that depend on a new smoothness measure,
which they call the Gini-weighted smoothness. Specifically, they show that by combining the reward
nonlinearity with the local behavior of the confidence intervals, the dependency of previous regret
bounds in the maximal action size can be removed. In this work, we show that for monotone
reward functions, the Gini-smoothness also characterizes the lower bounds for CMAB problems and
therefore prove that this upper bound is tight. In addition, while all previously stated papers assume
that the reward function is monotone, a few papers also support non-monotone reward functions
(Wang and Chen, 2018; Hüyük and Tekin, 2019). We also present lowers bounds for this scenario.

Although there has been extensive work on regret upper bounds for CMABs, there are almost no
results on lower bounds for this setting. Kveton et al. (2015c) derived lower bounds for the linear
reward function with general arm distributions, and when arms are also independent, lower bounds
can be found in (Degenne and Perchet, 2016; Combes et al., 2015). Also, Kveton et al. (2015a)
derived lower bounds for cascading bandits and Merlis and Mannor (2019) derived bounds for the
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Table 1: Upper (UB) and lower (LB) bounds of different CMAB problems for arbitrary action sets. Dep./Ind.
are problem-dependent and problem-independent bounds, and the notations follow Section 3. 1 is the global
Lipschitz constant of a reward function, and for the Gini-smoothness g, it holds that g �

p
K 1 (Merlis

and Mannor, 2019).� min is the minimal gap.

CMAB problem Type Previous UB Previous LB Theorem 1 or 2 Proposition 4

General reward functions
Dep. O

�
 2

1 mK ln T
� min

� y
None 


�
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~ 2
g ( � ;I ) m ln T

� min K I
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Ind. None None 
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max� ;I

q
~ 2
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K I
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Linear reward function
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y(Wang and Chen, 2018), requires independent arms.z(Merlis and Mannor, 2019)x(Kveton et al., 2015c)

PMC problem. Nevertheless, and to the best of our knowledge, there are no lower bounds for general
reward functions. A comparison of our bounds to previous related bounds can be found in Table 1.

In contrast to the CMAB problem, the lower bounds for MABs are well characterized. In their
seminal work, Lai and Robbins (1985) presented the �rst general problem-dependent lower bound for
MABs, which was later extended by Burnetas and Katehakis (1996). In terms of problem-independent
bounds, Auer et al. (2002) derived an
(

p
KT ) lower bound forK -armed bandit problems with time

horizonT, whose constants were later improved by Cesa-Bianchi and Lugosi (2006). Also, Mannor
and Tsitsiklis (2004) proved problem-independent lower bounds with both linear and logarithmic
regimes. Recently, Garivier et al. (2018) presented a general tool that allows deriving various lower
bounds for MABs. We adapt this tool for the CMAB problem to derive our new regret bounds.

3. Preliminaries and Notations

We start with some notations. Let[n] = f 1; : : : ; ng, and for any vectorx 2 Rn and setI � [n],
denote byx I , a sub-vector ofx that contains only elements fromI . We denote the Kullback-Leibler
(KL) divergence between two distributions� ; � 0by DKL (� ; � 0), and the KL divergence between two
Bernoulli random variables with expectationsp; q by kl( p; q). For any vectorx 2 Rn , let xs be a
permutation such thatxs

1 � : : : � xs
n , and de�ne the increasing permutation of vectorx 2 Rn w.r.t. a

setI aspx;I =[ xs
I c ; x I ]2 Rn ; namely, the beginning of the vectorpx;I contains a sorted permutation

of the elements ofx in I c = [ n]=I , and its end contains the elements ofx in I . Finally, for any setI
of bounded sizejI j � K , we denote byK I = K � j I j the size of the complementary set w.r.t.K .

We work under the combinatorial multi-armed bandit setting with semi-bandit feedback. Denote
the number of arms (`base arms') bym, and letS � 2[m] be the set of possible actions (`super
arms'), that is, the set that contains all valid combinations of base arms that the agent can choose.
The number of base arms in each actionS 2 S is bounded byjSj � K , and w.l.o.g., assume
that jSj = K . At the beginning of each roundt, the arms generate an observation vectorX (t ) =
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�
X (t )

1 ; : : : ; X (t )
m

�
2 [0; 1]m , sampled from a �xed distribution independently of other rounds. Then,

the agent chooses an actionSt 2 S and observes feedbackX (t )
S ,

n�
i; X (t )

i

�
; 8i 2 St

o
. Denote

the means of base arms byE
�
X (t )

�
= � = ( � 1; : : : ; � m ). The goal of the agent is to maximize a

known reward functionr (S; � ), without knowing� . Speci�cally, the agent aims to minimize its
regretR(T) =

P T
t=1 (r (S� ; � ) � r (St ; � )) ,

P T
t=1 � St , whereS� 2 arg maxS2S r (S; � ) is an

optimal action1 and� St = r (S� ; � ) � r (St ; � ) is the suboptimality gap ofSt . To prove the lower
bounds, we require a mild assumption on the reward function, which we callindex invariance:

De�nition 1 A reward functionr (S; � ) : S � [0; 1]m ! R is called differentiable if for anyS 2 S,
it is differentiable in� 2 [0; 1]m .

De�nition 2 A differentiable reward functionr (S; � ) : S � [0; 1]m ! R is called smooth index
invariant if for anyS 2 S, it only depends on the arms inS, i.e.,r (S; � ) = r (� S).

When the function is index invariant, and with a slight abuse of notations, we also writer (� ),
with � 2 RK , to represent the mean of arms� S for jSj = K . This assumption helps avoiding cases
in which speci�c arms behave inherently different than other arms, such that the problem becomes
much easier. For example, for the biased linear functionr (S; � ) =

P
i 2 S(� i + mi ) and for any

� 2 [0; 1]m , the optimal action isS� = arg maxS2S
P

i 2 S i , regardless of the arm means; therefore,
both the upper and lower bounds for this reward function trivially equal zero. In contrast, the lower
bound for the linear function are nonzero (see Table 1); thus, without the index-invariance, the lower
bounds cannot be characterized solely by the gradient of reward function w.r.t.� , in contrast to
the existing upper bounds. To the best of our knowledge, this assumption holds for all practical
applications for CMABs. We also believe that our analysis will hold for reward functions that depend
on theorder of arms inside an action. However, we leave this extension for future work. Besides this
assumption, we later move our focus to monotone reward functions, which are de�ned as follows:

De�nition 3 A differential reward functionr (S; � ) : S � [0; 1]m ! R is called monotone if for
anyS 2 S, any� 2 [0; 1]m and anyi 2 [m], it holds thatr i r (S; � ) � 0.

We remark that in most previous work, the upper bounds only hold for monotone functions, which
include most of the practical application, e.g., the linear and PMC problems. We end this part
of the preliminaries with an important inequality that was derived for MABs and will enable us
to derive our new bounds for CMABs. Let[m] be a set of arms, where each arma 2 [m] is
characterized by a distribution� a overRK , and denote� = f � aga2 [m].

2 Assume that at each round,
when playingat , a sampleYt is drawn independently at random from� at . Let  be a strategy that
chooses an arm according to the history and internal i.i.d randomizationUt 2 [0; 1]. Namely, if
H t = ( U0; Y1; U1; : : : ; Ut ; Yt ), thenat+1 =  t (H t ). Also, letN  ;a (T) be the number of times an
arma was played under strategy up to timeT. Under these notations, the following holds:

Lemma 4 (Garivier et al. 2018) For all bandit problems� ; � 0, for all � (HT )-measurable random
variablesZ with values in[0; 1],

mX

a=1

E� [N  ;a (T)]DKL (� a; � 0
a) � kl

�
E� [Z ]; E� 0[Z ]

�
; (1)

1. Previous work on regret upper bounds also allows approximate maximization ofr . We focus on the best achievable
performance, so we assume we can ef�ciently maximizer .

2. Garivier et al. (2018) assume that� a are distributions overR, but the exact same proof holds for distributions overRK .
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