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Abstract
We consider an adversarial variant of the classic K-armed linear contextual bandit problem where
the sequence of loss functions associated with each arm are allowed to change without restriction
over time. Under the assumption that the d-dimensional contexts are generated i.i.d. at random from
a known distribution, we develop computationally efficient algorithms based on the classic EXP3
algorithm. Our first algorithm, REALLINEXP3, is shown to achieve a regret guarantee of Õ(

√
KdT )

over T rounds, which matches the best known lower bound for this problem. Our second algorithm,
ROBUSTLINEXP3, is shown to be robust to misspecification, in that it achieves a regret bound of
Õ((Kd)1/3T 2/3) + ε

√
dT if the true reward function is linear up to an additive nonlinear error

uniformly bounded in absolute value by ε. To our knowledge, our performance guarantees constitute
the very first results on this problem setting.
Keywords: Contextual bandits, adversarial bandits, linear contextual bandits

1. Introduction

The contextual bandit problem is one of the most important sequential decision-making problems
studied in the machine learning literature. Due to its ability to account for contextual information,
the applicability of contextual bandit algorithms is far superior to that of standard multi-armed bandit
methods: the framework of contextual bandits can be used to address a broad range of important and
challenging real-world decision-making problems such as sequential treatment allocation (Tewari and
Murphy, 2017) and online advertising (Li et al., 2010). On the other hand, the framework is far less
complex than that of general reinforcement learning, which allows for proving formal performance
guarantees under relatively mild assumptions. As a result, there has been significant interest in
this problem within the learning-theory community, resulting in a wide variety of algorithms with
performance guarantees proven under a number of different assumptions. In the present paper, we
fill a gap in this literature and design computationally efficient algorithms with strong performance
guarantees for an adversarial version of the linear contextual bandit problem.

Perhaps the most well-studied variant of the contextual bandit problem is that of stochastic
linear contextual bandits (Auer, 2002; Rusmevichientong and Tsitsiklis, 2010; Chu et al., 2011;
Abbasi-Yadkori et al., 2011; Lattimore and Szepesvári, 2017). First proposed by Abe and Long
(1999), this version supposes that the loss of each action is a fixed linear function of the vector-valued
context, up to some zero-mean noise. Most algorithms designed for this setting are based on some
variation of the “optimism in the face of uncertainy” principle championed by Auer (2002); Auer
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et al. (2002a), or more generally by an appropriate exploitation of the concentration-of-measure
phenomenon (Boucheron et al., 2013). By now, this problem setting is very well-understood in
many respects: there exist several computationally efficient, easy-to-implement algorithms achieving
near-optimal worst-case performance guarantees (Abbasi-Yadkori et al., 2011; Agrawal and Goyal,
2013). These algorithms can be even adapted to more involved loss models like generalized linear
models, Gaussian processes, or very large structured model classes while retaining their performance
guarantees (Filippi et al., 2010; Srinivas et al., 2010; Calandriello et al., 2019; Foster et al., 2019).
That said, most algorithms for stochastic linear contextual bandits suffer from the limitation that they
are sensitive to model misspecification: their performance guarantees become void as soon as the
true loss functions deviate from the postulated linear model to the slightest degree. This issue has
very recently attracted quite some attention due to the work of Du et al. (2019), seemingly implying
that learning an ε-optimal policy in a contextual bandit problem has an extremely large sample
complexity when assuming that the linear model is ε-inaccurate (defined formally later in our paper).
This claim was quickly countered by Van Roy and Dong (2019) and Lattimore et al. (2020), who
both showed that learning a (somewhat worse) ε

√
d-optimal policy is feasible with the very same

sample complexity as learning a near-optimal policy in a well-specified linear model. Yet, since
algorithms that are currently known to enjoy these favorable guarantees are quite complex, there is
much work left to be done in designing practical algorithms with strong guarantees under model
misspecification. This is one of the main issues we address in this paper.

Another limitation of virtually all known algorithms for linear contextual bandits is that they
crucially rely on assuming that the loss function is fixed during the learning procedure 1. This is
in stark contrast with the literature on multi-armed (non-contextual) bandits, where there is a rich
literature on both stochastic bandit models assuming i.i.d. rewards and adversarial bandit models
making no assumptions on the sequence of loss functions—see Bubeck and Cesa-Bianchi (2012)
and Lattimore and Szepesvári (2019) for an excellent overview of both lines of work. Our main
contribution in the present paper is addressing this gap by designing and analyzing algorithms that
are guaranteed to work for arbitrary sequences of loss functions. While it is tempting to think that
the our bandit problem can be directly addressed by a minor adaptation of algorithms developed
for adversarial linear bandits, this is unfortunately not the case: all algorithms developed for such
problems require a fixed decision set, whereas reducing the linear contextual bandit problem to a linear
bandit problem requires the use decision sets that change as a function of the contexts (Lattimore
and Szepesvári, 2019, Section 18). As a crucial step in our analysis, we will assume that the contexts
are generated in an i.i.d. fashion and that the loss function in each round is statistically independent
from the context in the same round. This assumption will allow us to relate the contextual bandit
problem to a set of auxiliary bandit problems with a fixed action sets, and reduce the scope of the
analysis to these auxiliary problems.

Our main results are the following. We consider a K-armed linear contextual bandit problem
with d-dimensional contexts where in each round, a loss function mapping contexts and actions to
real numbers is chosen by an adversary in a sequence of T rounds. The aim of the learner is to
minimize its regret, defined as the gap between the total incurred by the learner and that of the best
decision-making policy π∗ fixed in full knowledge of the loss sequence. We consider two different
assumptions on the loss function. Assuming that the loss functions selected by the adversary are all
linear, we propose an algorithm achieving a regret bound of order

√
KdT , which is known to be

1. Or make other stringent assumptions about the losses, such as supposing that their total variation is bounded—see,
e.g., Cheung et al. (2019); Russac et al. (2019); Kim and Tewari (2019).
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minimax optimal even in the simpler case of i.i.d. losses (cf. Chu et al., 2011). Second, we consider
loss functions that are “nearly linear” up to an additive nonlinear function uniformly bounded by
ε. For this case, we design an algorithm that guarantees regret bounded by (Kd)1/3T 2/3 + ε

√
dT .

Notably, these latter bounds hold against any class of policies and the ε
√
dT overhead paid for

nonlinearity is optimal when K is large (Lattimore et al., 2020). Both algorithms are computationally
efficient, but require some prior knowledge to the distribution of the contexts.

There exist numerous other approaches for contextual bandit problems that do not rely on
modeling the loss functions, but rather make use of a class of policies that map contexts to actions.
Instead of trying to fit the loss functions, these approaches aim to identify the best policy in the
class. A typical assumption in this line of work is that one has access to a computational oracle
that can perform various optimization problems over the policy class (such as returning an optimal
policy given a joint distribution of context-loss pairs for each action). Given access to such an oracle,
there exist algorithms achieving near-optimal performance guarantees when the loss function is
fixed (Dudík et al., 2011; Agarwal et al., 2014). More relevant to our present work are the works of
Rakhlin and Sridharan (2016) and Syrgkanis et al. (2016a,b) who propose efficient algorithms with
guaranteed performance for adversarial loss sequences and i.i.d. contexts. Unlike the algorithms we
present in this paper, these methods fail to guarantee optimal performance guarantees of order

√
T .

Yet another line of work considers optimizing surrogate losses, where achieving regret of order
√
T

is indeed possible, with the caveat that the bounds only hold for the surrogate loss (Kakade et al.,
2008; Beygelzimer et al., 2017; Foster and Krishnamurthy, 2018).

The rest of the paper is organized as follows. After defining some basic notation, Section 2
presents our problem formulation and states our assumptions. We present our algorithms and main
results in Section 3 and provide the proofs in Section 4. Section 5 concludes the paper by discussing
some implications of our results and posing some open questions for future study.

Notation. We use 〈·, ·〉 to denote inner products in Euclidean space and by ‖·‖2 we denote the
Euclidean norm. For a symmetric positive semidefinite matrix A, we use λmin(A) to denote its
smallest eigenvalue. We use ‖A‖op to denote the operator norm of A and we write tr (A) for the
trace of a matrix A. Finally, we use A < 0 to denote that an operator A is positive semi-definite, and
we use A < B to denote A−B < 0.

2. Preliminaries

We consider a sequential interaction scheme between a learner and its environment, where the
following steps are repeated in a sequence of rounds t = 1, 2, . . . , T :

1. For each action a = 1, 2, . . . ,K, the environment chooses a loss vector θt,a ∈ Rd,

2. independently of the choice of loss vectors, the environment draws the context vector Xt ∈ Rd
from the context distribution D, and reveals it to the learner,

3. based on Xt and possibly some randomness, the learner chooses action At ∈ [K],

4. the learner incurs and observes loss `t(Xt, At) = 〈Xt, θt,At〉.

The goal of the learner is to pick its actions in a way that its total loss is as small as possible. Since
we make no statistical assumptions about the sequence of losses (and in fact we allow them to depend
on all the past interaction history), the learner cannot actually hope to incur as little loss as the best
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sequence of actions. A more reasonable aim is to match the performance of the best fixed policy that
maps contexts to actions in a static way. Formally, the learner will consider the set Π of all policies
π : Rd → [K], and aim to minimize its total expected regret (or, simply, regret) defined as

RT = max
π∈Π

E

[
T∑
t=1

(
`t(Xt, At)− `t(Xt, π(Xt))

)]
= max

π∈Π
E

[
T∑
t=1

〈
Xt, θt,At − θt,π(Xt)

〉]
,

where the expectation is taken over the randomness injected by the learner, as well as the sequence
of random contexts. For stating many of our technical results, it will be useful to define the filtration
Ft = σ(Xs, As,∀s ≤ t) and the notations Et [·] = E [·|Ft−1] and Pt [·] = P [·|Ft−1]. We will also
often make use of a ghost sample X0 ∼ D drawn independently from the entire interaction history
FT for the sake of analysis. For instance, we can immediately show using this technique that for any
policy π, we have

E
[〈
Xt, θt,π(Xt)

〉]
= E

[
Et
[〈
Xt, θt,π(Xt)

〉]]
= E

[
Et
[〈
X0, θt,π(X0)

〉]]
= E

[〈
X0,E

[
θt,π(X0)

]〉]
,

where the last expectation emphasizes that the loss vector θt,a may depend on the past random
contexts and actions. This in turn can be used to show

E

[
T∑
t=1

〈
Xt, θt,π(Xt)

〉]
= E

[
T∑
t=1

〈
X0,E

[
θt,π(X0)

]〉]
≥ E

[
min
a

T∑
t=1

〈X0,E [θt,a]〉

]
,

so the optimal policy π∗T that the learner compares itself to is the one defined through the rule

π∗T (x) = arg min
a

T∑
t=1

〈x,E [θt,a]〉 (∀x ∈ Rd). (1)

We will refer to policies of the above form as linear-classifier policies and are defined through the
rule πθ(x) = arg mina 〈x, θa〉 for any collection of parameter vectors θ ∈ RK×d. We will also rely
on the notion of stochastic policies that assign probability distributions over the action set to each
state, and use π(a|x) to denote the probability that the stochastic policy π takes action a in state x.

Our analysis will rely on the following assumptions. We will suppose the context distribution is
supported on the bounded set X with each x ∈ X satisfying ‖x‖2 ≤ σ for some σ > 0, and also
that ‖θt,a‖2 ≤ R for some positive R for all t, a. Additionally, we suppose that the loss function
is bounded by one in absolute value:

∣∣`t(x, a)
∣∣ ≤ 1 for all t, a and all x ∈ X . We will finally

assume that the covariance matrix of the contexts Σ = E [XtX
T
t ] is positive definite with its smallest

eigenvalue being λmin > 0.

3. Algorithms and main results

Our main algorithmic contribution is a natural adaptation of the classic EXP3 algorithm of Auer
et al. (2002a) to the linear contextual bandit setting. The key idea underlying our method is to
design a suitable estimator of the loss vectors and use these estimators to define a policy for the
learner as follows: letting θ̂t,a be an estimator of the true loss vector θt,a and their cumulative
sum Θ̂t,a =

∑t
k=1 θ̂k,a, our algorithm will base its decisions on the values 〈Xt, Θ̂t−1,a〉 serving as

estimators of the cumulative losses 〈Xt,Θt−1,a〉 =
∑t−1

k=1 〈Xt, θk,a〉. The algorithm then uses these
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values in an exponential-weights-style algorithm and plays action a with probability proportional to
exp
(
−η〈Xt, Θ̂t−1,a〉

)
, where η > 0 is a learning-rate parameter. We present a general version of

this method as Algorithm 1. As a tribute to the LINUCB algorithm, a natural extension of the classic
UCB algorithm to linear contextual bandits, we refer to our algorithm as LINEXP3.

Algorithm 1 LINEXP3
Parameters: Learning rate η > 0, exploration parameter γ ∈ (0, 1), Σ
Initialization: Set θ0,i = 0 for all i ∈ [K].
For t = 1, . . . , T , repeat:

1. Observe Xt and, for all a, set

wt(Xt, a) = exp

(
−η

t−1∑
s=0

〈Xt, θ̂s,a〉

)
,

2. draw At from the policy defined as

πt (a|Xt) = (1− γ)
wt(Xt, a)∑
a′ wt(Xt, a′)

+
γ

K
,

3. observe the loss `t(Xt, At) and compute θ̂t,a for all a.

As presented above, LINEXP3 is more of a template than an actual algorithm since it does
not specify the loss estimators θ̂t,a. Ideally, one may want to use unbiased estimators that satisfy
E
[
θ̂t,a
]

= θt,a for all t, a. Our key contribution is designing two different (nearly) unbiased estimators
that will allow us to prove performance guarantees of two distinct flavors. Both estimators are
efficiently computable, but require some prior knowledge the context distribution D. In what follows,
we describe the two variants of LINEXP3 based on the two estimators and state the corresponding
performance guarantees, and relegate the proof sketches to Section 4. We also present two simple
variants of our algorithms that work with various degrees of full-information feedback in Appendix C.

3.1. Algorithm for nearly-linear losses: ROBUSTLINEXP3

We begin by describing the simpler one of our two algorithms, which will be seen to be robust
to misspecification of the linear loss model. We will accordingly refer to this algorithm as RO-
BUSTLINEXP3. Specifically, we suppose in this section that `t(x, a) = 〈x, θt,a〉+ εt(x, a), where
εt(x, a) : Rd ×K → R is an arbitrary nonlinear function satisfying |εt(x, a)| ≤ ε for all t, x and a
and some ε > 0. Also supposing that we have perfect knowledge of the covariance matrix Σ, we
define the loss estimator used by ROBUSTLINEXP3 for all actions a as

θ̂t,a =
I{At=a}

πt(a|Xt)
Σ−1Xt`t(Xt, At). (2)

In case the loss is truly linear, it is easy to see that the above is an unbiased estimate since

Et
[
θ̂t,a

]
= Et

[
Et
[ I{At=a}

πt(a|Xt)
Σ−1Xt 〈Xt, θt,a〉

∣∣∣∣Xt

]]
= Et

[
Et
[ I{At=a}

πt(a|Xt)

∣∣∣∣Xt

]
Σ−1XtX

T
t θt,a

]
5
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= Et
[
Σ−1XtX

T
t θt,a

]
= θt,a,

where we used the definition of Σ and the independence of θt,a from Xt in the last step. A key result
in our analysis will be that, for nonlinear losses, the estimate above satisfies∣∣∣Et [〈Xt, θ̂t,a

〉
− `t(Xt, a)

]∣∣∣ ≤ ε√d.
Our main result regarding the performance of ROBUSTLINEXP3 is the following:

Theorem 1 For any positive η ≤ γλmin

Kσ2 and for any γ ∈ (0, 1) the expected regret of ROBUSTLIN-
EXP3 satisfies

RT ≤ 2
√
dεT + 2γT +

2ηKdT

γ
+

logK

η
.

Furthermore, letting η = T−2/3 (Kd)−1/3 (logK)2/3, γ = T−1/3 (Kd logK)1/3 and supposing
that T is large enough so that η ≤ γλmin

Kσ2 holds, the expected regret of ROBUSTLINEXP3 satisfies

RT ≤ 5T 2/3 (Kd logK)1/3 + 2ε
√
dT.

3.2. Algorithm for linear losses: REALLINEXP3

Our second algorithm uses a more sophisticated estimator based on the covariance matrix

Σt,a = Et
[
I{At=a}XtX

T
t

]
,

which is used to define the estimate

θ̃∗t,a = I{At=a}Σ
−1
t,aXt 〈Xt, θt,a〉 .

This can be easily shown to be unbiased as

Et
[
θ̃∗t,a

]
= Et

[
I{At=a}Σ

−1
t,aXt 〈Xt, θt,a〉

]
= Et

[
Σ−1
t,a I{At=a}XtX

T
t θt,a

]
= θt,a,

where we used the conditional independence of θt,a and Xt once again. Unfortunately, unlike the
estimator used by ROBUSTLINEXP3, the bias of this estimator cannot be bounded when the losses
are misspecified. However, its variance turns out to be much smaller for well-specified linear losses,
which will enable us to prove tighter regret bounds for this case.

One downside of the estimator defined above is that it is very difficult to compute: the matrix Σt,a

depends on the joint distribution of the context Xt and the action At, which has a very complicated
structure. While it is trivially easy to design an unbiased estimator of Σt,a, it is very difficult to
compute a reliable-enough estimator of its inverse. To address this issue, we design an alternative
estimator based on a matrix generalization of the Geometric Resampling method of Neu and Bartók
(2013, 2016). The method that we hereby dub Matrix Geometric Resampling (MGR) has two
parameters β > 0 and M ∈ Z+, and constructs an estimator of Σ−1

t,a through the following procedure:
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Matrix Geometric Resampling
Input: data distribution D, policy πt, action a.
For k = 1, . . . ,M , repeat:

1. Draw X(k) ∼ D and A(k) ∼ πt(·|X(k)),

2. compute Bk,a = I{A(k)=a}X(k)X(k)T,

3. compute Ak,a =
∏k
j=1(I − βBk,a).

Return Σ̂+
t,a = βI + β

∑M
k=1Ak,a.

Clearly, implementing the MGR procedure requires sampling access to the distribution D. The
rationale behind the estimator Σ̂+

t,a is the following. Assuming that M = ∞ and β ≤ 1
σ2 , we can

observe that Et [Bk,a] = Σt,a and, due to independence of the contexts X(k) from each other,

Et [Ak,a] = Et

 k∏
j=1

(I − βBk,a)

 = (I − βΣt,a)
k ,

we can see that Σ̂+
t,a is a good estimator of Σ−1

t,a on expectation:

Et
[
Σ̂+
t,a

]
= βI + β

∞∑
k=1

(I − βΣt,a)
k = β

∞∑
k=0

(I − βΣt,a)
k = β (βΣt,a)

−1 = Σ−1
t,a . (3)

As we will see later in the analysis, the bias introduced by setting a finite M can be controlled
relatively easily.

Based on the above procedure, we finally define our loss estimator used in this section as

θ̃t,a = Σ̂+
t,aXt`(Xt, At)I{At=a}. (4)

Via a careful incremental implementation, the estimator can be computed in O(MKd) time and M
calls to the oracle generating samples from the context distribution D. We present the details of
this efficient computation procedure in Appendix D. We will refer to the version of LINEXP3 using
the estimates above as REALLINEXP3, alluding to its favorable guarantees obtained for realizable
linear losses. Our main result in this section is the following guarantee regarding the performance of
REALLINEXP3:

Theorem 2 For γ ∈ (0, 1), M ≥ 0, any positive η ≤ 2
M+1 and any positive β ≤ 1

2σ2 , the expected
regret of REALLINEXP3 satisfies

RT ≤ 2TσR · exp

(
−γβλminM

K

)
+ 2γT + 3ηKdT +

logK

η
.

Furthermore, letting β = 1
2σ2 ,M =

⌈
Kσ2 log(Tσ2R2)

γλmin

⌉
, γ =

√
log(Tσ2R2)

T , and η =
√

logK
dKT log(Tσ2R2)

and supposing that T is large enough so that the above constraints are satisfied, we also have

RT ≤ 4
√
T +

√
dKT logK

(
3 +

√
log(Tσ2R2)

)
.
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4. Analysis

This section is dedicated to proving our main results, Theorems 1 and 2. We present the analysis in a
modular fashion, first proving some general facts about the algorithm template LINEXP3, and then
treat the two variants separately in Sections 4.1 and 4.2 that differ in their choice of loss estimator.

The main challenge in the contextual bandit setting is that the comparator term in the regret
definition features actions that depend on the observed contexts, which is to be contrasted with
the classical multi-armed bandit setting where the comparator strategy always plays a fixed action.
The most distinctive element of our analysis is the following lemma that tackles this difficulty by
essentially reducing the contextual bandit problem to a set of auxiliary online learning problems
defined separately for each context x:

Lemma 3 Let π∗ be any fixed stochastic policy and let X0 be sample from the context distribution
D independent from FT . Suppose that πt ∈ Ft−1 and that Et

[
θ̂t,a
]

= θt,a for all t, a. Then,

E

[
T∑
t=1

∑
a

(
πt(a|Xt)− π∗(a|Xt)

)
〈Xt, θt,a〉

]
= E

[
T∑
t=1

∑
a

(
πt(a|X0)− π∗(a|X0)

)〈
X0, θ̂t,a

〉]
.

(5)

Proof Fix any t and a. Then, we have

Et
[(
πt(a|X0)− π∗(a|X0)

)〈
X0, θ̂t,a

〉]
= Et

[
Et
[(
πt(a|X0)− π∗(a|X0)

)〈
X0, θ̂t,a

〉∣∣∣X0

]]
= Et

[
Et
[(
πt(a|X0)− π∗(a|X0)

)
〈X0, θt,a〉

∣∣X0

]]
= Et

[(
πt(a|X0)− π∗(a|X0)

)
〈X0, θt,a〉

]
= Et

[(
πt(a|Xt)− π∗(a|Xt)

)
〈Xt, θt,a〉

]
,

where the first step uses the tower rule of expectation, the second that Et
[
θ̂t,a
∣∣X0

]
= θt,a that holds

due to the independence of θ̂t and θt on X0, the third step is the tower rule again, and the last
step uses that X0 and Xt have the same distribution and both are conditionally independent on θt.
Summing up for all actions concludes the proof.

Notably, the lemma above is not specific to our algorithm LINEXP3 and only uses the properties
of the loss estimator. Applying the lemma to the policies πt produced by LINEXP3 and using any
comparator π∗, we can notice that the term on the right hand side is the regret RT of the algorithm.
We stress here that the above result is in fact very powerful since it does not assume anything (except
measurability) about π∗, even allowing it to be non-smooth—we provide a more detailed discussion
of this issue in Section 5. In order to interpret the term on the right-hand side of Equation (5), let
us consider an auxiliary online learning problem for a fixed x with K actions and losses ̂̀t(x, a) =〈
x, θ̂t,a

〉
for each t, a, and consider running a copy of the classic exponential-weights algorithm2 of

Littlestone and Warmuth (1994) fed with these losses. The probability distribution played by this
algorithm over the actions a is given as πt(a|x) ∝ exp

(
−η
∑t−1

s=1
̂̀
s(x, a)

)
, which implies that the

regret in the auxiliary game against comparator π∗ at x can be written as

R̂T (x) =

T∑
t=1

∑
a

(
πt(a|x)− π∗(a|x)

)〈
x, θ̂t,a

〉
.

2. For the sake of clarity, we omit the step of mixing in the uniform distribution in this expository discussion.
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This brings us to the key observation that the term on the right-hand side of the equality in Lemma 3
is exactly E [RT (X0)]. Thus, our proof strategy will be to prove an almost-sure regret bound for the
auxiliary games defined at each x and take expectation of the resulting bounds with respect to the law
of X0, thus achieving a bound on the regret RT . The following lemma provides the desired bounds
for the auxiliary games:

Lemma 4 Fix any x ∈ X and suppose that θ̂t,a is such that
∣∣η〈x, θ̂t,a〉∣∣ < 1. Then, the regret of

LINEXP3 in the auxiliary game at x satisfies

R̂T (x) ≤ logK

η
+ 2γUT (x) + η

T∑
t=1

K∑
a=1

πt(a|x)
〈
x, θ̂t,a

〉2
,

where UT (x) =
∑T

t=1

(
1
K

∑
a

〈
x, θ̂t,a

〉
−
〈
x, θ̂t,π∗(x)

〉)
.

In the above bound, UT (x) is the regret of the uniform policy, which can be bounded by T for all
algorithms on expectation. The proof is a straightforward application of standard ideas from the
classical EXP3 analysis due to Auer et al. (2002b), and we include it in Appendix A for completeness.

The lemmas above suggest that all we need to do is to bound the expectation of the second-
order terms on the right-hand side, Et

[∑K
a=1 πt(a|X0)

〈
X0, θ̂t,a

〉2
]
. This, however, is not the only

challenge due to the fact that the estimators our algorithms use are not necessarily all unbiased.
Specifically, supposing that our estimator can be written as θ̂t,a = θ̂∗t,a + bt,a, where θ̂∗t,a is such that
Et
[
θ̂∗t,a
]

= θt,a and bt,a is a bias term, we can directly deduce the following bound from Lemma 3:

RT ≤ E
[
R̂T (X0)

]
+ 2

T∑
t=1

max
a
|E [〈Xt, bt,a〉] |. (6)

The rest of the section is dedicated to finding the upper bounds on the bias term above and on the
expectation of the second-order term discussed right before for both estimators (2) and (4), therefore
completing the proofs of our main results, Theorems 1 and 2.

4.1. Proof of Theorem 1

We first consider ROBUSTLINEXP3 which uses the estimator θ̂t,a defined in Equation (2). While we
have already shown in Section 3.1 that the estimator is unbiased, we now consider the case where the
true loss function may be nonlinear and can be written as `t(x, a) = 〈x, θt,a〉 + εt(x, a) for some
nonlinear function εt uniformly bounded on X by ε. Then, we can see that our estimator satisfies

Et
[〈
X0, θ̂t,a

〉]
= Et

[ I{At=a}

π(a|Xt)
XT

0 Σ−1Xt

(
〈Xt, θt,a〉+ εt(Xt, a)

)]
= Et [〈X0, θt,a〉] + Et

[
XT

0 Σ−1Xtεt(Xt, a)
]
,

and thus the bias can be bounded using the Cauchy–Schwarz inequality as∣∣∣∣Et [XT
0 Σ−1Xtεt(Xt, a)

] ∣∣∣∣ ≤√Et [tr (X0XT
0 Σ−1XtXT

t Σ−1)] ·
√

Et
[
(εt(Xt, a))2

]
≤
√
dε. (7)

9
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Here, we used Et [X0X
T
0XtX

T
t ] = Σ2, which follows from the conditional independence of X0 and

Xt and the definition of Σ, and the boundedness of εt in the last step. The other key component of
the proof is the following bound:

Et

[
K∑
a=1

πt(a|X0)
〈
X0, θ̂t,a

〉2

]
= Et

[
K∑
a=1

πt(a|X0)
I{At=a}`t(Xt, a)2

π2
t (a|Xt)

XT
0 Σ−1XtX

T
t Σ−1X0

]

≤ Et

[
K∑
a=1

πt(a|X0) · K
γ
·
I{At=a}

πt(a|Xt)
· tr
(
Σ−1XtX

T
t Σ−1X0X

T
0

)]
≤ Kd

γ

(8)

where we used πt(a|Xt) ≥ γ
K in the first inequality and the conditional independence of Xt and X0

in the last step. The problem we are left with is to prove that η
∣∣〈X0, θ̂t,a

〉∣∣ ≤ 1:

∣∣〈X0, θ̂t,a
〉∣∣ =

I{At=a}

πt(a|Xt)

∣∣XT
0 Σ−1Xt

∣∣ `t(Xt, At) ≤
Kσ2

γλmin
,

where we used the conditions πt(a|Xt) ≥ γ
K and |`t(x, a)| ≤ 1 and the Cauchy–Schwarz inequality

to show
∣∣XT

0 Σ−1Xt

∣∣ ≤ σ2

λmin
. Having satisfied its condition, we may now appeal to Lemma 4, and

the proof is concluded by combining and Equations (6), (7), and (8).

4.2. Proof of Theorem 2

We now turn to analyzing REALLINEXP3 which uses the slightly more complicated loss estimator
θ̃t,a defined to the MGR procedure. Although we have already seen in Section 3.2 that MGR could
result in an unbiased estimate if we could set M =∞. However, in order to keep computation at
bay, we need to set M to be a finite (and hopefully relatively small) value. Following the same steps
as in Equation (3), we can show

Et
[
Σ̂+
t,a

]
= β

M∑
k=0

(I − βΣt,a)
k = Σ−1

t,a − (I − βΣt,a)
MΣ−1

t,a .

Combining this insight with the definition of θ̃t,a and using some properties of our algorithm, we can
prove the following useful bound on the bias of the estimator:

Lemma 5 Suppose that M ≥ Kσ2 log T
γλmin

, β = 1
2σ2 . Then,

∣∣Et[〈Xt, θt,a − θ̃t,a
〉]∣∣ ≤ σR√

T
.

Proof We first observe that the bias of θ̃t,a can be easily expressed as

Et
[
θ̃t,a
]

= Et
[
Σ̂+
t,aXtX

T
t θt,aI{At=a}

]
= Et

[
Σ̂+
t,a

]
Et
[
XtX

T
t I{At=a}

]
θt,a = Et

[
Σ̂+
t,a

]
Σt,aθt,a

= θt,a − (I − βΣt,a)
Mθt,a,

where we have used our expression for Et
[
Σ̂+
t,a

]
derived above. Thus, the bias is bounded as∣∣Et [XT

t (I − βΣt,a)
Mθt,a

]∣∣ ≤ ‖Xt‖2 · ‖θt,a‖2
∥∥(I − βΣt,a)

M
∥∥

op .

10
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In order to bound the last factor above, observe that Σt,a <
γ
KΣ due to the uniform exploration used

by LINEXP3, which implies that

∥∥(I − βΣt,a)
M
∥∥

op ≤
(

1− γβλmin

K

)M
≤ exp

(
−γβ
K
λminM

)
≤ 1√

T
,

where the second inequality uses 1− z ≤ e−z that holds for all z, and the last step uses our condition
on M . This concludes the proof.

The other key term in the regret bound is bounded in the following lemma:

Lemma 6 Suppose that Xt is satisfying ‖Xt‖2 ≤ σ, 0 < β ≤ 1
2σ2 and M > 0. Then for each t,

REALLINEXP3 guarantees

Et

[
K∑
a=1

πt(a|X0)
〈
X0, θ̃t,a

〉2

]
≤ 3Kd.

Unfortunately, the proof of this statement is rather tedious, so we have to relegate it to Appendix B. As
a final step, we need to verify that the condition of Lemma 4 is satisfied, that is, that η

∣∣〈X0, θ̃t,a
〉∣∣ < 1

holds. To this end, notice that

η ·
∣∣〈X0, θ̃t,a

〉∣∣ = η ·
∣∣XT

0 Σ̂+
t,aXt 〈Xt, θt,a〉 I{At=a}

∣∣ ≤ η · ∣∣XT
0 Σ̂+

t,aXt

∣∣
≤ ησ2

∥∥∥Σ̂+
t,a

∥∥∥
op
≤ ησ2β

(
1 +

M∑
k=1

‖Ak,a‖op

)
≤ η(M + 1)/2,

where we used the fact that our choice of β ensures that ‖Ak,a‖op =
∥∥∏k

j=0(I − βBj,a)
∥∥

op ≤ 1.
Thus, the condition η ≤ 2/(M + 1) allows us to use Lemma 4, so we can conclude the proof of
Theorem 2 by applying Lemma 5, Lemma 6 and the bound of Equation (6).

5. Discussion

Our work is the first to address the natural adversarial variant of the widely popular framework of
linear contextual bandits, thus filling an important gap in the literature. Our algorithm REALLINEXP3
achieves the optimal regret bound of of order

√
KdT and runs in time polynomial in the relevant prob-

lem parameters. To our knowledge, REALLINEXP3 is the first computationally efficient algorithm to
achieve near-optimal regret bounds in an adversarial contextual bandit problem, and is among the first
ones to achieve any regret guarantees at all for an infinite set of policies (besides results on learning
with surrogate losses, cf. Foster and Krishnamurthy, 2018). In the case of misspecified loss func-
tions, our algorithm ROBUSTLINEXP3 achieves a regret guarantee of order (Kd)1/3T 2/3 + ε

√
dT .

Whether or not the overhead of ε
√
dT can be improved is presently unclear: while Lattimore et al.

(2020) proved that the dependence on
√
d is inevitable even in the stochastic linear bandit setting

when K is large (say, order of T ), the very recent work of Foster and Rakhlin (2020) shows that the
overhead can be reduced to ε

√
KT in the same setting. These results together suggest that the regret

bound
√
KdT + ε

√
min {K, d}T is achievable in for stochastic linear contextual bandits. Whether

such guarantees can be achieved in the more challenging adversarial setting we considered in this
paper remains an interesting open problem.
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The reader may be curious if it is possible to remove the i.i.d. assumption that we make about
the contexts. Unfortunately, it can be easily shown that no learning algorithm can achieve sublinear
regret if the contexts and losses are both allowed to be chosen by an adversary. To see this, we
observe that one can embed the problem of online learning of one-dimensional threshold classifiers
into our setting, which is known to be impossible to learn with sublinear regret (Ben-David et al.,
2009; Syrgkanis et al., 2016a). While one can conceive other assumptions on the contexts that make
the problem tractable, such as assuming that the entire sequence of contexts is known ahead of time
(the so-called transductive setting studied by Syrgkanis et al., 2016a), such assumptions may end
up being a lot more artificial than our natural i.i.d. condition. In addition, it is unclear what the best
achievable performance bounds in such alternative frameworks actually are. In contrast, the regret
bounds we prove for REALLINEXP3 are essentially minimax optimal.

Our algorithm design and analysis introduces a couple of new techniques that could be of more
general interest. First, a key element in our analysis is introducing a set of auxiliary bandit problems
for each context x and relating the regrets in these problems to the expected regret in the contextual
bandit problem (Lemma 3). While this lemma is stated in terms of linear losses, it can be easily seen
to hold for general losses as long as one can construct unbiased estimates of the entire loss function.
In this view, our algorithms can be seen as the first instances of a new family of contextual bandit
methods that are based on estimating the loss functions rather than working with a policy class. An
immediate extension of our approach is to assume that the loss functions belong to a reproducing
kernel Hilbert space and define suitable kernel-based estimators analogously to our estimators—a
widely considered setting in the literature on stochastic contextual bandits (Srinivas et al., 2010;
Bubeck et al., 2017; Calandriello et al., 2019). We also remark that our technique used to prove
Lemma 3 is similar in nature to the reduction of stochastic sleeping bandit problems to static bandit
problems used by Kanade et al. (2009); Neu and Valko (2014).

A second potentially interesting algorithmic trick we introduce is the Matrix Geometric Resam-
pling for estimating inverse covariance matrices. While such matrices are broadly used for loss
estimation in the literature on adversarial linear bandits (McMahan and Blum, 2004; Awerbuch and
Kleinberg, 2004; Dani et al., 2008; Audibert et al., 2014), the complexity of computing them never
seems to be discussed in the literature. Our MGR method provides a viable option for tackling
this problem. For the curious reader, we remark that the relation between the iterations defining
MGR and the dynamics of gradient descent for linear least-squares estimation is well-known in
the stochastic optimization literature, where SGD is known to implement a spectral filter function
approximating the inverse covariance matrix (Robbins and Monro, 1951; Györfi and Walk, 1996;
Bach and Moulines, 2013; Neu and Rosasco, 2018).

Besides the most important question of whether or not our guarantees for the misspecified setting
can be improved, we leave a few more questions open for further investigation. One limitation of
our methods is that they require prior knowledge of the context distribution D. We conjecture that it
may be possible to overcome this limitation by designing slightly more sophisticated algorithms that
estimate this distribution from data. Second, it appears to be an interesting challenge to prove versions
of our performance guarantees that hold with high probability by using optimistically estimators as
done by Beygelzimer et al. (2011); Neu (2015b), or if data-dependent bounds depending on the total
loss of the best expert rather than T can be achieved in our setting (Agarwal et al., 2017; Allen-Zhu
et al., 2018; Neu, 2015a). We find it likely that such improvements are possible at the expense of a
significantly more involved analysis.
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Appendix A. Proof of Lemma 4

The proof follows the standard analysis of EXP3 originally due to Auer et al. (2002b). We begin by
recalling the notation wt(x, a) = exp

(
−η
∑t−1

s=1

〈
x, θ̂t,a

〉)
and introducingWt(x) =

∑K
a=1wt(x, a).

The proof is based on analyzing logWT+1(x), which can be thought of as a potential function in
terms of the cumulative losses. We first observe that logWT+1(x) can be lower-bounded in terms of
the cumulative loss:

log

(
WT+1(x)

W1(x)

)
≥ log

(
wT+1(x, π∗(x))

W1(x)

)
= −η

T∑
t=1

xTθ̂t,π∗(x) − logK.

On the other hand, for any t, we can prove the upper bound

log
Wt+1(x)

Wt(x)
= log

( K∑
a=1

wt+1(x, a)

Wt(x)

)
= log

( K∑
a=1

wt(x, a)e−η〈x,θ̂t,a〉

Wt(x)

)

= log

( K∑
i=1

πt(a|x)− γ/K
1− γ

· e−η〈x,θ̂t,a〉
)
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(a)

≤ log

( K∑
i=1

πt(a|x)− γ/K
1− γ

(
1− η

〈
x, θ̂t,a

〉
+
(
η
〈
x, θ̂t,a

〉)2))
(b)

≤
K∑
a=1

πt(a|x)

1− γ

(
− η
〈
x, θ̂t,a

〉
+
(
η
〈
x, θ̂t,a

〉)2)
+

ηγ

K(1− γ)

∑
a

〈
x, θ̂t,a

〉
,

where in step (a) we used the inequality e−z ≤ 1− z + z2, which holds for z ≥ −1, and in step (b)

we used the inequality log(1+z) ≤ z that holds for any z. Noticing that
∑T

t=1 log Wt+1

Wt
= log

WT+1

W1
,

we can sum both sides of the above inequality for all t = 1, . . . , T and compare with the lower bound
to get

−η
T∑
t=1

xTθ̂t,π∗(x) − lnK ≤
T∑
t=1

K∑
a=1

πt(a|x)

1− γ

(
− η
〈
x, θ̂t,a

〉
+
(
η
〈
x, θ̂t,a

〉)2)
+
ηγ
∑

a

〈
x, θ̂t,a

〉
K(1− γ)

.

Reordering and multiplying both sides by 1−γ
η gives

T∑
t=1

(
K∑
a=1

πt(a|x)
〈
x, θ̂t,a

〉
−
〈
x, θ̂t,π∗(x)

〉)

≤ (1− γ) logK

η
+ η

T∑
t=1

K∑
a=1

(
〈x, θ̂t,a〉

)2
+ γ

T∑
t=1

(
1

K

∑
a

〈
x, θ̂t,a

〉
−
〈
x, θ̂t,π∗(x)

〉)
.

This concludes the proof.

Appendix B. Proof of Lemma 6

The proof relies on a series of matrix operations, and makes repeated use of the following identity
that holds for any symmetric positive definite matrix S:

M∑
k=0

(I − S)k = S−1 − (I − S)MS−1.

We start by plugging in the definition of θ̃t,a and writing

Et

[
K∑
a=1

πt(a|X0)
〈
X0, θ̃t,a

〉2

]
= Et

[
K∑
a=1

πt(a|X0)
(
XT

0 Σ+
t,aXtX

T
t θt,aI{At=a}

)2]

≤ Et

[
E

[
K∑
a=1

tr
(
πt(a|X0)X0X

T
0 Σ+

t,aXtX
T
t Σ+

t,aI{At=a}
)∣∣∣∣∣X0

]]

=

K∑
a=1

Et
[
tr
(
Σt,aΣ

+
t,aΣt,aΣ

+
t,a

)]
,

17



ALGORITHMS FOR ADVERSARIAL LINEAR CONTEXTUAL BANDITS

where we used
〈
X0, θt,a

〉
≤ 1 in the inequality and observed that Σt,a = Et [πt(a|X0)X0X

T
0 ]. In

what follows, we suppress the t, a indexes to enhance readability. Using the definition of Σ+ and
elementary manipulations, we can get

E
[
tr
(
ΣΣ+ΣΣ+

)]
= E

β2 · tr

Σ

(
M∑
k=0

Ak

)
Σ

 M∑
j=0

Aj


= β2

M∑
k=0

M∑
j=0

tr (E [ΣAkΣAj ]) = β2
M∑
k=0

tr (E [ΣAkΣAk]) + 2β2
M∑
k=0

M∑
j=k+1

tr (E [ΣAkΣAj ]) .

Let us first address the first term on the right hand side. To this end, consider any symmetric positive
definite matrix H that commutes with Σ and observe that

E [(I − βBk)H(I − βBk)] = E [(I − βX(k)X(k)T)H(I − βX(k)X(k)T)]

= H − βE [X(k)X(k)TH]− βE [HX(k)X(k)T] + β2E [X(k)X(k)THX(k)X(k)T]

4 H − 2βHΣ + β2σ2HΣ = H
(
I − β(2− βσ2)Σ

)
,

where we used our assumption that ‖X(k)‖ ≤ σ which implies E
[
‖X(k)‖22X(k)X(k)T

]
4 σ2Σ.

Now, recalling the definition Ak =
∏k
j=1Bj and using the above relation repeatedly, we can obtain

tr (E [ΣAkΣAk]) = tr (E [ΣAk−1E [(I − βBk)Σ(I − βBk)]Ak−1])

≤ tr
(
E
[
ΣAk−1Σ

(
I − β(2− βσ2)Σ

)
Ak−1

])
≤ . . . ≤ tr

(
Σ2(I − β(2− βσ2)Σ)k

)
.

(9)

Thus, we can see that

β2
M∑
k=0

tr (E [ΣAkΣAk]) = β2
M∑
k=0

tr
(

Σ2(I − β(2− βσ2)Σ)k
)

=
β2

β(2− βσ2)
tr
(
Σ2Σ−1

(
I − (I − β(2− βσ2)Σ)M

))
≤ βtr (Σ)

2− βσ2
≤ 2βtr (Σ)

3
,

where we used the condition β ≤ 1
2σ2 and the fact that (I − β(2 − βσ2)Σ)M < 0 by the same

condition. We can finally observe that our assumption on the contexts implies tr (Σ) ≤ tr
(
σ2I
)

=

σ2d, so again by our condition on β we have βtr (Σ) ≤ d
2 , and the first term is bounded by d

3 .
Moving on to the second term, we first note that for any j > k, the conditional expectation

of Bj given B≤k = (B1, B2, . . . Bk) satisfies E [Aj |B≤k] = Ak(I − βΣ)j−k due to conditional
independence of all Bi given Bk, for i > k. We make use of this equality by writing

β2
M∑
k=0

M∑
j=k+1

E [tr (ΣAkΣAj)] = β2
M∑
k=0

E

E
 M∑
j=k+1

tr (ΣAkΣAj)

∣∣∣∣∣∣B≤k


= β2
M∑
k=0

E

E
 M∑
j=k+1

tr
(

ΣAkΣAk(I − βΣ)j−k
)∣∣∣∣∣∣B≤k


18
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= β
M∑
k=0

E
[
E
[

tr
(

ΣAkΣAkΣ
−1
(
I − (I − βΣ)M−k

))∣∣∣B≤k]]
≤ β

M∑
k=0

E
[
E
[

tr
(
ΣAkΣAkΣ

−1
)∣∣B≤k]]

(due to (I − βΣ)M−k < 0)

≤ β
M∑
k=0

tr
(

Σ2(I − β(2− βσ2)Σ)kΣ−1
)

(by the same argument as in Equation (9))

≤ 1

(2− βσ2)
tr
(
Σ2Σ−1

(
I − (I − β(2− βσ2)Σ)MΣ−1

))
≤ tr

(
Σ2Σ−1Σ−1

)
≤ d,

where the last line again used the condition β ≤ 1
2σ2 and (I − β(2− βσ2)Σ)M < 0. The proof of

the theorem is concluded by putting everything together.

Appendix C. Algorithms for contextual learning with full information

Clearly, our algorithm LINEXP3 can be simply adapted to simpler settings where the learner gets
more feedback about the loss functions `t chosen by the adversary. In this section, we show results for
two such natural settings: one where the learner observes the entire loss function `t, and one where
the learner observes the losses `t(Xt, a) for each action a. We refer to the first of these observation
models as counterfactual feedback and call the second one full-information feedback. We describe
two variants of our algorithm for these settings and give their performance guarantees below. Both
results will hold for general nonlinear losses taking values in [0, 1].

In case of counterfactual feedback, we can modify our algorithm so that, in each round t, it
computes the weights wt,a(Xt) = exp

(
−η
∑t−1

k=1 `k(Xt, a)
)

for each action, and then plays action
At = a with probability proportional to the obtained weight. Using our general analytic tools, this
algorithm can be easily shown to achieve the following guarantee:

Proposition 7 For any η > 0, the regret of the algorithm described above for counterfactual
feedback satisfies

RT ≤
logK

η
+
ηT

8
.

Setting η =
√

8 logK
T , the regret also satisfies RT ≤

√
(T/2) logK.

Notably, this bound does not depend at all on the dimension of the context space, the complexity of
the policy class, or any property of the loss function, and only shows dependence on the number of
actions K. The caveat is of course that the counterfactual model provides the learner with a level of
feedback that is entirely unrealistic in any practical setting: it requires the ability to evaluate all past
loss functions at any context-action pair.

The full-information setting is arguably much more realistic in that it only requires evaluating
the losses corresponding to the observed context Xt, which which is typically the case in online
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classification problems. For this setting, we use our LINEXP3 algorithm with the loss estimator
defined for each action a as ̂̀

t,a = Σ−1Xt`t(Xt, a).

Using our analysis, we can show that the bias of this estimator is uniformly bounded by ε
√
d

(cf. Equation 7). The following bound is then easy to prove by following the same steps as in
Section 4.1:

Proposition 8 For any positive η ≤ λmin
σ2 , the regret of the algorithm described above for full-

information feedback

RT ≤
logK

η
+ ηdT + ε

√
dT.

Setting η =
√

d logK
T , the regret also satisfies RT ≤ 2

√
dT logK + ε

√
dT for large enough T .

As expected, this bound scales with the dimension as
√
d due to the fact that the algorithm has to

“estimate” d, parameters, as opposed to the Kd parameters that need to be learned in the contextual
bandit problem we consider in the main text. We also note that this online learning setting is closely
related to that of prediction with expert advice, with the set of experts being the class of linear-
classifier policies (Cesa-Bianchi and Lugosi, 2006). As a result, it is possible to make use of this
framework by running any online prediction algorithm on a finely discretized set of policies, resulting
in a regret bound of order

√
dT log(KT ). Our result above improves on this by a logarithmic factor

of T , while being efficient to implement.

Appendix D. Efficient implementation of MGR

The naïve implementation of the MGR procedure presented in the main text requiresO(MKd+Kd2)
time due to the matrix-matrix multiplications involved. In this section we explain how to computề
t(x, a) =

〈
x, θ̃t,a

〉
in O(MKd) time, exploiting the fact that the matrices Σ̂t,a never actually need

to be computed, since the algorithm only works with products of the form Σ̂t,aXt for a fixed vector
Xt. This motivates the following procedure:

Fast Matrix Geometric Resampling
Input: context vector x, data distribution D, policy πt.
Initialization: Compute Y0,a = Ix.
For k = 1, . . . ,M , repeat:

1. Draw X(k) ∼ D and A(k) ∼ πt(·|X(k)),

2. if a = A(k), set
Yk,a = Yk−1,a − β 〈Yk−1,a, X(k)〉X(k),

3. otherwise, set Yk,a = Yk−1,a.

Return qt,a = βY0,a + β
∑M

k=1 Yk,a.

It is easy to see from the above procedure that each iteration k can be computed using (K + 1)d
vector-vector multiplications: sampling each action A(k) takes Kd time due to having to compute
the products

〈
X(k), Θ̂t,a

〉
for each action a, and updating Yk,a can be done by computing the product

〈Yk−1,a, X(k)〉. Overall, this results in a total runtime of order MKd as promised above.
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