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Abstract

Identifying causal relationships for a treatment intervention is a fundamental problem in
health sciences. Randomized controlled trials (RCTs) are considered the gold standard
for identifying causal relationships. However, recent advancements in the theory of causal
inference based on the foundations of structural causal models (SCMs) have allowed the
identification of causal relationships from observational data, under certain assumptions.
Survival analysis provides standard measures, such as the hazard ratio, to quantify the
effects of an intervention. While hazard ratios are widely used in clinical and epidemiolog-
ical studies for RCTs, a principled approach does not exist to compute hazard ratios for
observational studies with SCMs. In this work, we review existing approaches to compute
hazard ratios as well as their causal interpretation, if it exists. We also propose a novel
approach to compute hazard ratios from observational studies using backdoor adjustment
through SCMs and do-calculus. Finally, we evaluate the approach using experimental data
for Ewing’s sarcoma.

1. Introduction

Experimental studies such as randomized controlled trials (RCT) are considered the gold-
standard in hypothesis testing. For safety and efficacy reasons and regulatory purposes,
most new drugs or treatments are studied through RCTs (Greene and Podolsky, 2012).
RCTs provide the best mechanism to identify the causal effect of treatments or interven-
tions, by adjusting for observed and unobserved confounders under the rubric of a potential
outcome framework (Fisher et al., 1960). Despite clear advantages of RCTs in drug-trials, in
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practice, they are expensive, time-consuming, and not feasible in many cases due to ethical
reasons. Other issues with RCTs include low recruitment rate, loss to follow-up, insufficient
sample size, and being prone to selection bias (Nichol et al., 2010; Frieden, 2017). While
RCTs remain the best way to establish causation, large amounts of data captured with new
technologies during routine healthcare (e.g., electronic health records (EHR) or wearable
devices), colloquially termed big health data, has the potential to discover causal effects
from observational studies to complement RCTs. With proper methodological considera-
tions, observational studies can provide a way to emulate RCTs and go beyond statistical
correlation (Hernán et al., 2008; Hernán and Robins, 2017).

In the 1970s, the potential outcome framework was extended to observational studies
to identify causal relationships from observational data through the Rubin Causal Model
(RCM) (Rubin, 1974; Rosenbaum and Rubin, 1983; Holland, 1986). Recent advances in
structural causal model (SCM) provides the methodological framework under the potential
outcome framework for graphically formalizing the identification of causal effects from ob-
servational and experimental data (Pearl, 2009; Pearl et al., 2016). SCMs can be used to
emulate RCTs from observational data in many cases if the graphical model is identifiable
(Bareinboim and Pearl, 2016), which signifies the capability of estimating the interventional
distribution (P (yjdo(x))) from the available data with the assumptions incorporated in the
model.

Experimental studies (including RCTs) frequently explore and report survival analysis
measures. Survival analysis is the branch of statistics that analyzes the expected duration
of time-to-event with outcome statistics such as hazard ratio, odds ratio, and risk ratio.
Survival analysis has been well-studied under the potential outcome framework with exper-
imental studies and with RCM for observational studies (Cole and Hernán, 2004; Hernán,
2010). Recent research has also studied survival analysis with RCM for observational studies
considering the data generating mechanism or the study designs to estimate outcome statis-
tics such as hazard ratio, odds ratio, risk ratio, and risk difference (Didelez and Sheehan,
2007; Hernán, 2004).

Commonly reported outcomes from survival analysis in experimental clinical studies
include the survival curve and hazard ratio (HR). The survival curve graphically reports
the hazard in a population and represents the fraction of the population that survived in the
treatment and the control group over time. HR describes the comparative hazard between
the treatment and the control group. Hazard function, or simply hazard signifies the rate of
events-of-interest (e.g., a death) at time t, conditional on survival until time t and beyond
(Spruance et al., 2004). For example, we present a survival curve (Figure 1) as reported
in (Girard et al., 2018), where probability of overall survival of patients in drug groups
(starting at 100%) is presented with time passed, and the probability declines with time.

Even though HR is widely used in practice as a standard tool for comparative evaluation
of the outcome between treatment and control groups, it depends on the length of the study
and, by definition, has an inherent selection bias (since only the survived population at time
t are selected at time t+1) (Hernán, 2010). In addition, both the survival curve and HR do
not consider the study design, that is RCT versus observational study, in their formalization.
Consequently, it is difficult to interpret the results of an intervention from only the reported
hazard ratio (Hernán, 2010) and compare different studies with varying study designs and
time lengths. The researcher has to consider the design of the study, length of the study
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Figure 1: An example survival curve, collected from (Girard et al., 2018)

as well has the hazard ratio to understand the e�ectiveness of the treatment. Structural
causal models (SCMs) provide a framework to explicitly de�ne the design of the study, the
assumptions for the study, as well as the length of the study. However, to the best of our
knowledge, a framework to compute the hazard ratio with SCMs does not exist.

Previous approaches for adjusted survival curves under the rubric of RCM used inverse
probability weighting (IPW) to adjust for confounders in the estimand (Cole and Hern�an,
2004). However, this approach has a strong assumption, namelyignorability (Rubin, 1978;
Angrist et al., 1996). The ignorability assumption states that there are no unobserved con-
founders in the model, and the variables considered for IPW satisfy the backdoor criterion.
Although an approach with instrumental variable can be used when the treatment assign-
ment is non-ignorable (Angrist et al., 1996), in practice, this is rather a strong assumption
and a variable can be a mediator, a collider, an M-bias, or a confounder (Lederer et al.,
2019). In this paper, we formulate the estimation of the hazard ratio from observational
studies under the rubric of SCMs that does not depend on the ignorability assumption.
We provide a principled approach to de�ne observational studies using SCMs, rede�ne
with time-speci�c survival as outcomes (instead of survival time as the only outcome), and
therefore mathematically transform observational studies to the corresponding experimental
studies by adjusting for confounders with the backdoor criterion and then, sample from the
experimental studies to estimate hazard ratios. We provide the mathematical formalization
of the approach with a simple causal graph and with detailed mathematical derivation,
and validate the results with a simulated data set and a benchmark data set on Ewing's
sarcoma.

1.1. Clinical Relevance

Most clinical research reports HR with survival analysis. However, the reported HR and
its process of calculation do not take into account the study design (e.g., RCT vs. obser-
vational study) and corresponding assumptions (e.g., ignorability). This makes it harder
to compare the results of di�erent studies with di�erent study designs, sample populations,
study lengths and assumptions. Our proposed method with SCMs estimates HR by explic-
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itly describing the study designs and assumptions for a better clinical understanding of the
e�ect of the treatment of interest.

1.2. Technical Signi�cance

We propose a novel approach to estimate the HR from observational studies with SCM,
taking the causal relationship between treatment and outcome into account. In HR calcu-
lation for survival analysis of observational studies, our review of the literature identi�es a
lack of causal interpretation. Our proposed approach �rst develops a time-invariant causal
model and estimates the survival time after adjusting for the confounders in the SCM using
backdoor adjustment and do-calculus. The development of an SCM enables us to iden-
tify the confounding variables, unlike with the ignorability assumption where we adjust for
every variable available (except treatment and outcome), as well as properly adjust using
the minimal set, thus reducing computational requirements. The computed survival times
are considered \as-if" they were sampled from an RCT. The newly adjusted survival times
are capable of expressing the true causal e�ect of treatment on the outcome through the
survival curve and HR. We validate the proposed method in both simulated experiments
and with observational data.

1.3. Generalizable Insights

We propose a novel method of estimating the HR for observational studies under the rubric
of SCMs. The method can be used for any observational studies with survival data, after
de�ning the SCM. Our method of estimating the HR through SCMs clearly de�nes the
study-design and assumptions in the model. All the source code for this study is shared
with the research community through a GIT repository. A Python-based library has been
released that takes the data, the graph, and length of the study as input and provides
the adjusted survival curve with backdoor adjustment and the hazard ratio as the output.
Our approach is limited in the cases when i) the SCM is not de�ned and ii) the SCM is
not identi�able through the adjustment formula or backdoor adjustment (i.e., there is no
backdoor set).

2. Related Work

Survival analysis (Kleinbaum and Klein, 2010) is a methodological approach for modeling
and comparing the time-to-event between two populations. The event is called a hazard,
which can be death, an adverse clinical event, or a mechanical failure for physical systems.
It compares the condition of survival in the treatment versus control group, and reports
outcomes with statistical measures such as the HR. Frequently reported approaches in
survival analysis include Kaplan Meier survival curve, Cox proportional hazards model,
life tables, and survival trees,. We review a non-parametric approach of the Kaplan Meier
survival curve and the semi-parametric approach of the Cox proportional hazards model.

The Kaplan Meier survival curve (Kaplan and Meier, 1958) is a non-parametric statistic
representing the survival function and HR in the treatment and the control group. It
provides a visual comparison between survival functions in di�erent treatment or control
groups; it does not di�erentiate between RCTs or observational studies. Data from both
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of the approaches can be plotted as the Kaplan Meier curve. It is up to the individual
researcher to interpret and explain the Kaplan Meier curve based on the study design. Cox
PH model, on the other hand, is computationally complex. However, it is a commonly used
approach for survival analysis, and is widely used to compute the HR in epidemiological
studies. The key aspect of it is the underlying proportional hazards assumption (Cox, 1972),
stating that the HRs of the treatment and control group are proportional and is a function
of the covariates. It is a semi-parametric model since no assumption is made about the
baseline hazard function (i.e., hazard function with no covariates). In general, it is e�ective
in estimating both regression coe�cients (� i ) and the HR (Kleinbaum and Klein, 2010).
Futher, it is unbiased (when estimated considering all possible covariates).

We review existing approaches to compute the HR for observational and experimental
studies. Previous work on survival analysis for observational data with RCM under potential
outcome used IPW to adjust for confounders (Cole and Hern�an, 2004). However, RCM
requires the ignorability assumption that all variables considered for adjustment with IPW
satisfy the backdoor criterion. In reality, a variable can also be a mediator, and in those cases
adjusting for the mediators will result in inaccurate analysis. It has also been shown that the
HR estimation approach has an inherent selection bias (Hern�an et al., 2004; Hern�an, 2010)
as only the patients who survived at time t were sampled at timet + 1 to be considered
for the estimation. SCMs provide the mathematical machinery to identify the backdoor
variables given a causal graph. We used the same Ewing's sarcoma data set as studied
in (Cole and Hern�an, 2004) with the same assumptions (i.e., all the covariates satisfy the
backdoor criterion) to arrive at the same result as a validation strategy for our approach.

For survival analysis, it was shown that in some cases the Kaplan Meier curve may
show no di�erence between the treatment and control groups when in reality there is a
statistically signi�cant di�erence in the HR, if it is adjusted properly (Makuch, 1982).
The rationale behind this phenomenon is that a non-parametric approach is used to plot
the survival curve, whereas a semi-parametric method is used to calculate the HR. The
authors (Makuch, 1982) presented an approach to construct a plot of the survival curve
consistent with the HR calculated. In this work, the adjusted survival curve for a speci�c
treatment group was estimated by calculating a mixture of the estimated survival functions
for separate strata, and weighted based on the distribution of the covariate in the sample
dataset. However, the approach does not consider the design of the study in the survival
analysis.

To extend the existing de�nition of the Cox PH Model, the Marginal Structural Cox
PH Model has been introduced and used to �nd the e�ect of Zidovudine on the survival
of HIV-positive men (Hern�an et al., 2000). Statistical analysis in the presence of time-
dependent confounders is commonly done through a standard Cox PH model. However,
Robin (Robins, 1997) has previously shown that this approach cannot adjust for all biases.
Similar to previous work under the RCM, the authors used the conditional ignorability
assumption. This is a much stronger assumption compared to using the SCM to identify
confounding variables opening the backdoor. Several other researchers (Satten and Datta,
2001; Rotnitzky and Robins, 2014) have used the IPW approach, although without using
SCMs.

The existing literature to compute the HR does not consider the study design and
might lead to misinterpretation if the data were not sampled correctly or adjusted for the
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right confounding variables. While previous research alludes to this problem, they do not
provide the mathematical machinery for survival analysis. Although the traditional Cox PH
Model can minimize the e�ects of biases, it is not the same as \adjustment" of confounding
variables. The bias is reduced by �tting the Cox PH regression model until convergence
(Cox, 1972), it does not consider the study design or the data generating mechanism.
The model �tting approach does not generate a causally meaningful interpretation despite
reduction in biases. Our goal is to formulate an approach that estimates the HR through a
causal formulation considering the data generating mechanism with SCM, that portrays the
direct causal e�ect of treatment on outcome, in terms of the HR metric. The assumption
of variables opening the backdoor path in the SCM as confounders and adjustment on the
dataset based on that enables a more causally interpretable estimation of the HR.

3. Background

3.1. Hazard Ratio

To de�ne the HR, we use the hazard function (Spruance et al., 2004) in the Cox proportional
hazard model:

h(t; X ) = h0(t) exp(
pX

i =1

� i X i ) (1)

Based on this, the Hazard Ratio (HR) is de�ned (Kleinbaum and Klein, 2010) as:

HR =
h(t; X x=1 )
h(t; X x=0 )

(2)

Here, h(t; X ) represents the hazard function at time t and the vector with the covari-
ates of the modelX . X can also be written as [w0; w1; :::; wm ; z0; z1; :::; zn ; x], where x is
the treatment, zi are the confounders, andwi are the other associated covariates.X x=1

represents the value of the covariate vectorX with value of the treatment set as 1 (x = 1),
making X x=1 = [ w0; w1; :::; wm ; z0; z1; :::; zn ; 1]. � represents themaximum likelihood esti-
mates (MLE) for each covariate. In other words,� is the corresponding coe�cient for each
covariate that �ts the data into a converging model for the Cox regression.

As expressed in Equation 1, the proportional hazard assumption de�nes the hazard
function h(t; X ) to be composed of the baseline hazard functionh0(t) (i.e., hazard when all
covariates are set to 0), multiplied with the exponential of the sum of � multiplied by the
corresponding covariate.

Since we have de�ned the HR and hazard function, we can simplify the equation of the
HR to:

HR =
h(t; X x=1 )
h(t; X x=0 )

=
h0(t) exp(� x1 + � zZ + :::)
h0(t) exp(� x0 + � zZ + :::)

= exp( � x )

(3)
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In other words, the HR is equivalent to the exponential of the regression coe�cient � .
However, computing � is non-trivial since, in practice, one does not know the baseline
hazard function (h0(t)). We can only estimate the HR using the maximum likelihood
function, and iterating until the model converges to a pre-de�ned error bound (Kleinbaum
and Klein, 2010).

Although the HR is an important outcome, it has limitations in explaining causal re-
lationships. No causal mechanism is understood from the HR. This is because the HR is
calculated from the convergence of regression models and, confounding and other such bias
is handled by simply including the covariates to the model. It is then up to the individual
researcher to make sure that the right data are used to measure the HR and interpret ac-
cordingly. For example, an HR calculated from an RCT provides the casually linked hazard
for the intervention, whereas the same HR calculated from an observational study simply
provides a correlated hazard. This existing approach simpli�es the calculation and reduces
the burden on the researcher. However, we frequently �nd di�erences between the survival
curve and the HR. This di�erence, or bias, arises because of the inherent de�nitions of the
survival curve and Cox PH model.

3.2. Structural Causal Models

Structural causal models (SCMs), developed on the foundations of probabilistic graphical
models, draw inferences that explain the causal relationship between variables. With an
SCM, a causal model is de�ned �rst and is expressed with a graphical representation.
De�nition 1 gives the formal description of an SCM: (Bareinboim and Pearl, 2016; Pearl,
2009).

De�nition 1 (Structural Causal Model) A structural causal model M is a 4-tuple
hU; V; f; P (u)i where:

1. U is a set of background (exogenous) variables that are determined by factors outside
of the model,

2. V is a set f V1; V2; :::; Vng of observable (endogenous) variables that are determined by
variables in the model (i.e., determined by variables inU [ V ),

3. F is a set of functionsf f 1; f 2; :::; f ng such that eachf i is a mapping from the respective
domains ofUi [ PA i to Vi , whereUi � U and PA i � V Vi and the entire setF forms a
mapping from U to V . In other words, eachf i in vi  f i (pai ; ui ); i = 1 ; :::; n, assigns
a value to Vi that depends on the values of the select set of variables(Ui [ PA i ), and

4. P(u) is a probability distribution over the exogenous variables.

An SCM is often expressed by a causal graphG. Each node V in G represents an
observed or unobserved variable, and each directed edgeE represents the causal relation-
ships between them. To �nd the causal e�ect of variable X on variable Y , do-calculus is
introduced (Pearl et al., 2016). Do-calculus is used to map the observational reality to the
corresponding experimental reality with the identi�ability equation by adjusting for di�er-
ent kinds of biases (e.g., confounding bias), if it exists. The backdoor criterion provides a
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powerful tool to identify the variables that need to be adjusted for this transformation (in
other words, adjust for confounding bias) and is de�ned in de�nitions 2 and 3.

De�nition 2 (Backdoor Criterion) Given an ordered pair of variables(X; Y ) in a di-
rected acyclic graphG, a set of variablesZ satis�es the backdoor criterion relative to (X; Y )
if no node in Z is a descendant ofX , and Z blocks every path betweenX and Y that contains
an arrow into X .

De�nition 3 (Backdoor Adjustment) If a set of variablesZ satis�es the back-door cri-
terion relative to (X; Y ), then the causal e�ect of X on Y is identi�able and is given by the
formula: P(yjdo(x)) =

P
z P(yjx; z)P(z)

3.3. Problem De�nition

Our research problem is to develop a method to compute the HR for observational studies
by leveraging the SCM by explicitly declaring our assumptions and adjusting for the right
confounders. The goal is to acknowledge the de�ned roles of variables in the SCM, and
use a minimum set of confounders to adjust for backdoor, thus building a computationally-
e�cient and more accurate model for objective estimation and comparison. The algorithm
will take three sets/inputs, (1) observational dataset D consisting of treatment, outcome in
survival-time and other covariates, (2) SCM supporting the causal mechanism and dataset,
G, and, (3) length-of-trial T . At the completion of the algorithm, the output will be: (1)
adjusted survival curve S (non-parametric estimation) , and (2) hazard ratio of treatment,
HR (semi-parametric estimation) (Figure 2). The assumption in our approach is that the
observational data are available, and the SCM is fully speci�ed.

4. Methods

In this section, we formalize our approach to mathematically transform the time-dependent
observational data to the corresponding experimental data by leveraging the SCM. We
then use the adjusted dataset for estimating HR using Cox PH Model. Our proposed
approach focuses on causal e�ect of treatment on outcome to measure HR. We start with
an observational study scenario and de�ne all related assumptions. The schematic diagram
for the proposed approach is shown in Figure 2.

4.1. Assumptions

We assume a simple observational study for a population, consisting of treatmentX , con-
founding variable Z , and outcome in survival time T. In this scenario, treatment X is a
dichotomous variable (X = 1 signifying treatment and X = 0 signifying control). Outcome
T is the survival time from the beginning of the study and is a continuous variable in time
units. Although the confounding variables can be a categorical or continuous variable, for
simplicity, we assume the confounderZ to be a dichotomous variable. This observational
study can be expressed as an SCM and with a graphical formG through causal directed
acyclic graph (causal DAG) in Figure 3, where treatment, confounder, and outcome is
expressed by the nodesX , Z and T respectively.
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Figure 2: Schematic overview of the proposed approach. Observational data, corresponding
causal diagram and the length of study is provided as input. The approach �rst
use backdoor adjustment to create sample data from experimental study, and
then compute the hazard ratio from the sampled experimental data.

Figure 3: Simple observational study treatment X , outcome in survival-time T and sin-
gle confounderZ , expressed using causal directed acyclic graph(nodes are the
variables, edges portray causal relationships between variables)

From the de�nition of the SCM, we can express the underlying functions de�ning the
causal relationships between variables by:Z  f z(Uz), X  f x (Z; Ux ), T  f t (Z; X; U t ; h0(t)).
Here, U = f Ux ; Ut ; Uzg is the set of exogenous variables,V = f Z; X; T g is the set of en-
dogenous variables,f = f f z; f x ; f t g is the set of structural functions.

� f z(Uz) shows that confounderZ is independent of any other endogenous variables.

� f x (Z; Ux ) expresses the dependency ofX on Z . SinceZ is parameter for both functions
f x and f y , Z imposes a bias on the model (P(X jZ = 0) 6= P(X jZ = 1)), and the
function f x de�nes whether the bias is strong or weak.

� f t (Z; X; U t ; h0(t)) de�nes the e�ect of X and Z on the survival time T. This function
also depends on the baseline hazard functionh0(t; X ) since this de�nes the rate of
decline in survival.
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We also assume to know the sample size of populationn and a maximum length of survival
time tmax .

4.2. Approach

4.2.1. Transformation of single study to multiple studies

Experimental studies commonly have di�erent study time-lengths, e.g., di�erent number of
days as the outcome endpoints (e.g., 30-day survival, 90-day survival, etc.). This variable is
a dichotomous variable and describes a patients' status of survival at the end of the study.
While analyzing a study similar to these, we do not take into account survival at each day,
or survival after end-of-trial day, since we do not have the opportunity to do so. In our
problem de�nition, we only have the survival time of individuals; however there is no de�ned
end time for the trial. From the individual survival time, We can easily get the i -th day
survival of every individual in the dataset, i being the number of days from the beginning
of the study. We use days as smallest unit of time, since we assume the dataset reports
survival in units of days. However, it could be any other units of times (e.g. minutes, or
weeks) depending on the problem domain and dataset.

Since our observational study has a maximum survival time of all individualstmax , we
assume we calculate the variablesYi , signifying the i -th day survival, i ranging from 0 to
tmax . Conversion of continuous variableT describing survival time into multiple variables
Yi , each describing survival at thei -th day, essentially breaks down the single observational
study into tmax number of observational studies with variablesX , Z and Yi , each of which
is now a dichotomous variable.

Through the transformation, from a single SCM G, we end up with n di�erent SCMs,
each with the same treatment X and the confounder Z , but di�erent outcome (survival
at i -th day). Note that, in our assumption, the causal graph is time-invariant, i.e., the
functional relationship between the variables does not change over time. This conversion is
represented byn di�erent SCMs (Transformed graphs A, Figure 4 (a)), where n � tmax .

An important point to note here is that, the single confounder Z and treatment X from
the original observational study is not being transformed, only the outcome is distributed
into multiple variables. In other words, we assume a point intervention and the confounding
variables are invariant in time. And since we are transforming from a single trial to multiple
trials, the outcomesYi s of these separate trials are not conditionally dependent on each other
(e.g. a RCT with 30-day survival as outcome does not analyze about whether any patient
died at 20th day or 29th day.).

However, in extracting information from obs. data, there is dependency between them.
Speci�cally, Yi has causal e�ect onYj (where j > i ), since if Yi is 0 (e.g. patient died at
i -th day), all Yj (where j > i ) is 0 (e.g. patient remains dead for all consecutive days).
Also, Yi only has direct causal e�ect on Yi +1 , every other corresponding e�ect is mediated
through. If X has causal e�ect onYi , it is mediated through Yi � 1. For example,X ?? Y1jY0,
in absence of any backdoor variables. Reasoning behind this assumption is that, without
having any underlying e�ect of treatment on outcome at i -th day, subject is suddenly prone
to hazard on i + 1-th day. For example, this is unlikely that, if a subject is advised a
treatment (drug), the subject has no hazardous e�ect until 10-th day and suddenly �nds a
hazardous e�ect on 11-th day. It is possible that the subject does not show any symptom
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on 10-th day, or we cannot measure the internal hazardous e�ect of the drug on 10-th day
(due to lack of symptoms).

The relationship between Yi s is reected through a single transformed SCM (Trans-
formed graph B, Figure 4 (b)), where n � tmax . The similarities between transformed
graphs A and transformed graph B is that they both have sameZ and X , and the dissimi-
larities are:

1. Transformed graphs A portrays n di�erent trials with di�erent outcomes, whereas
transformed graph B is a single trial.

2. For transformed graphs A, Yi ?? Yj (where j 6= i ), however for transformed graph B,
Yi 6?? Yj (where j 6= i ).

3. Since two causal DAGs are di�erent, transformed graphs A and transformed graph B
have two di�erent equations for P(Yi jdo(X )).

For outcome Y0 For outcome Y1 For outcome Yn

(a) Converted Causal DAGs with no dependency betweenYi s

(b) Converted single Causal DAG with dependencies betweenYi s

Figure 4: Converted Causal DAGs with survival time converted to binary outcome of sur-
vival at di�erent timepoints

In summary, we transform the single observational study into multiple di�erent trials
expressed through two di�erent transformations (transformed graphs A and transformed
graph B, Figure 4), each with the same treatmentX and confoundingZ , but with di�erent
survival time as the outcomes, as the death (or failure) increases over time. These outcomes
are the status of survival (or death) at i -th day, where i is 0 to n (n � tmax ).
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