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Abstract

Survival function estimation is used in many disciplines, but it is most common in medical
analytics in the form of the Kaplan-Meier estimator. Sensitive data (patient records) is
used in the estimation without any explicit control on the information leakage, which is a
significant privacy concern. We propose a first differentially private estimator of the survival
function and show that it can be easily extended to provide differentially private confidence
intervals and test statistics without spending any extra privacy budget. We further provide
extensions for differentially private estimation of the competing risk cumulative incidence
function, Nelson-Aalen’s estimator for the hazard function, etc. Using eleven real-life clinical
datasets, we provide empirical evidence that our proposed method provides good utility
while simultaneously providing strong privacy guarantees.

1. Introduction

A patient progresses from HIV infection to AIDS after 4.5 years. A study using the patient’s
data publishes the survival function estimates (a standard practice in clinical research).
An adversary, with only access to the published estimates (even in the form of survival
function plots) can reconstruct user-level data (Wei and Royston, 2018; Fredrikson et al.,
2014), effectively leading to the disclosure of sensitive information (Dinur and Nissim, 2003).
This is just one scenario. The survival function is used for modeling any time to an event,
taking into account that some subjects will not experience the event at the time of data
collection. The survival function is used in many domains, some examples are the duration
of unemployment (in economics); time until the failure of a machine part (in engineering);
time to the next purchase (for churn identification in business); time to disease recurrence,
time to infection, time to death (in healthcare); etc.

Our personal healthcare information is the most sensitive private attribute, protected by
law, violations of which carry severe penalties. And as the initial example suggests, of all
application areas, information leakage in the healthcare domain is the most serious issue
and is our focus in this study. For estimation of the survival function, we focus on the
Kaplan-Meier’s (KM) (Kaplan and Meier, 1958) non-parametric method. KM’s method is

c© 2020 L. Gondara & K. Wang.



Differentially Private Survival Function Estimation

ubiquitous in clinical research. A quick search of the term on PubMed1 yields more than
110,000 results. It is not an overstatement to say that almost every clinical study uses KM’s
method to report summary statistics on their cohort’s survival. Statistical agencies around
the world use this method to report on the survival of the general population or specific
disease-related survival estimates.

To best of our knowledge, there does not exist any method that can provide formal
privacy guarantees for estimation of survival function using the KM method. The only
related work is by Nguyên and Hui (2017), which uses the output and objective perturbation
for regression modeling of discrete time-to-event data. However, this approach is limited to
discrete-time models, whereas our focus is on the continuous-time paradigm. Furthermore,
this approach is limited to “multivariate” regression models; and hence cannot be directly
used to estimate survival function in a differentially private fashion. One can argue that
generative models such as the differentially private generative adversarial networks (Xie
et al., 2018; Zhang et al., 2018; Triastcyn and Faltings, 2018; Beaulieu-Jones et al., 2017;
Esteban et al., 2017; Yoon et al., 2019) can be trained to generate differentially private
synthetic data. Which can then be used to estimate the survival function. But, GANs do
not generalize well to the datasets typically encountered for our use-case (very small sample
size (can be less than a hundred), highly constrained dimensionality (d ∈ [2, 3]), a mixture
of categorical and continuous variables, no data pre-processing (scaling, etc.) allowed, etc.).

We propose the first differentially private method for estimating the survival function
based on the KM method. Grounded by the core principles of differential privacy, our
method guarantees the differentially private estimation of the survival function. Also, we
show that our method easily extends to provide differentially private confidence intervals
and differentially private test statistics (for comparison of survival function between multiple
groups) without any extra privacy cost. We further extend our method for differentially
private estimation of the competing risk cumulative incidence function and the hazard
function using the Nelson-Aalen estimator (Nelson, 1972, 1969; Aalen, 1978) (other popular
estimates in clinical research). Using eleven real-life clinical datasets, we provide empirical
evidence that our proposed method provides good utility while simultaneously providing
strong privacy guarantees. Lastly, we release our method as an R2 (R Core Team, 2018)
package for rapid accessibility and adoption.

2. Preliminaries and Technical Background

This work assumes familiarity with survival analysis and differential privacy. We present
some introductory concepts below, and direct readers to Kleinbaum and Klein (2010) and
Kalbfleisch and Prentice (2011) for a detailed exposition on survival analysis and Dwork
and Roth (2014) for a detailed introduction to differential privacy.

2.1. Survival Function

The survival function is used to model time to event/time to failure data (we use event and
failure interchangeably throughout the paper), where the event may not have yet occurred

1. A free search engine indexing manuscripts and abstracts for life sciences and other biomedical topics.
Link - https://www.ncbi.nlm.nih.gov/pubmed/

2. Most often used programming language in medical statistics
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(but the probability of occurrence is non-zero). Such as for HIV infection to AIDS timeline
data, at the end of the follow-up period, some patients would have progressed (an event/our
event of interest), while others would not have yet progressed (censored). Accounting for
censored observations (patients that never experience the event during our follow-up) is the
central component in the estimation of the survival function. Formally,

S(t) = P (T > t) =

∫ ∞
t

f(u) du = 1− F (t) (1)

where f is probability density function and F is the cumulative distribution function, survival
function gives us the probability of not having an event just before time t, or more generally,
the probability that the event of interest has not occurred by time t.

In practice, survival function (given in Eqn. (1)) can be estimated using more than
one approach. Several parametric methods (that make assumptions on the distribution
of survival times) such as the ones based on the exponential, Weibull, Gompertz, and
log-normal distributions are available. Or one can opt for the most famous and most often
used non-parametric method (Kaplan-Meier’s method (Kaplan and Meier, 1958)), which
does not assume how the probability of an event changes over time. Our focus in this paper
is the latter, which has become synonymous with survival models in clinical literature. KM
estimator of the survival function is defined as follows

Ŝ(t) =
∏
j:tj≤t

rj − dj
rj

(2)

where tj , (j ∈ [1, · · · , k]) is the set of k distinct failure/event times (not censored), dj is the
number of failures/events at tj , and rj are the number of individuals at risk before the j-th
failure time. We can see that the function Ŝ(t) only changes at each failure time, resulting
in a step function (the characteristic feature of KM estimate).

2.2. Differential Privacy

Releasing any form of data (raw data, function estimates, derived statistics, etc.) can
potentially leak sensitive information (Dinur and Nissim, 2003). Differential privacy (Dwork
et al., 2006), a de facto standard for providing provable privacy guarantees provides us
with the method to quantify such information leakage. Differential privacy is based on the
concept of neighbouring datasets, that is

Definition 1 (Neighbouring datasets (Dwork et al., 2006)) Two datasets D,D′ are said to
be neighbouring if

∃ i ∈ D s.t. D\i = D′ (3)

which means that D and D′ are neighboring datasets if they only differ in any one user.

Definition 2 (Differential privacy (Dwork et al., 2006)) A randomized mechanism M :
Dn → Rd preserves (ε, δ)-differentially privacy if for any pair of databases (D,D′ ∈ Dn)
such that d(D,D′) = 1, and for all sets S of possible outputs:

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ (4)
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The definition guarantees that it is information-theoretically impossible for an adversary
to infer whether the input dataset to the mechanism M is D or D′ (where D,D′ are
neighboring datasets, that is, d(D,D′) = 1) beyond a certain probability. The probability
is a multiplicative factor of eε. We can see that by making ε smaller, we can make the
probability small, leading to a strong degree of plausible deniability for an individual’s
presence or absence in the dataset. The definition above allows the relaxation of strict
privacy guarantees by an additive factor of δ. As is clear from the definition, smaller (ε, δ)
provide stronger privacy guarantees. When δ = 0, we have pure-ε differential privacy.

Differential privacy has many interesting properties, here we briefly introduce the most
useful for our use-case. That is the post-processing. The post-processing theorem states that
differential privacy is immune to post-processing. That is, any function acting solely on the
output of a differentially private mechanism is also differentially private, formally

Theorem 3 (Post processing (Dwork and Roth, 2014)) Let M : Dn → R be a randomized
mechanism that is (ε, δ)-differentially private. Let f : R→ R′ be a deterministic function.
Then f ◦M : Dn → R′ is (ε, δ)-differentially private.

This result is directly used in our proposed model. Where after adding noise to our
main quantity of interest, we claim that any estimates derived solely from the differentially
private quantity are differentially private.

3. Differentially Private Estimation of Survival Function

Now we introduce our method for differentially private estimation of the survival function
using the Kaplan-Meier’s method. We follow the basic principles of differential privacy to
ensure that our estimate of the survival function is differentially private. We subsequently
show that following our simple approach, it is possible to estimate a wide variety of
accompanying statistics (such as the confidence intervals, comparison test statistics, etc.) in
a differentially private way without spending any extra privacy budget.

3.1. Estimation

Before we begin, we recap some of the notations introduced in Section 2.1. We have a
vector of unique failure time points (tj , j ∈ [1, · · · , k]), and for each time point, we have
a corresponding number of subjects at risk rj (number of subjects not experiencing a
progression/event up to that time point), and we have the number of subjects experiencing
the event at that time point (number of progressions/events), which we denote as dj .

Specifically, we define a function f(D)→M that takes a dataset D as an input, where
each row of D represents an individual with three attributes (tj , d, r), that are the unique
timepoints tj , an indicator for event d (1/0), and an indicator for being at risk r (1/0).
Output of f(D) is a partial matrix Mk×2, which stores the results of sum queries on D for
dj for the time tj ; j ∈ [1, · · · , k], and for r1 for the time t1. That is, M has the data on
the number of events (d1) and the number at risk (r1) for t1, and for the rest of the time
points (tj , j ∈ [2, · · · , k]), we only have the data on the number of events (dj). We use this
initial setup to ensure our privacy guarantees hold, as if we do not use the partial matrix M
to start but it’s full version with dj , rj ; j ∈ [1, · · · , k], we can encounter scenarios where a
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specific person is at risk for multiple time-points (an extreme example is of a person starting
the study and never experiencing the event till the maximum followup, leading to their
presence in rj for all time points), leading to large sensitivity, and hence an extremely noisy
result, we avoid this with our partial matrix setup. After creating M , using the derived
L1 sensitivity (S) (details in Section 3.2), we draw a noise matrix Z from the Laplace
distribution (Lap(S/ε)), where ε is the privacy parameter and Z is of the same size as M .
Adding Z to M (M ′ = M + Z) guarantees that M ′ is differentially private (formal proof in
Section 3.2).

Please note that the matrix M ′, although differentially private, is still incomplete as we
only have the number at-risk for the first time point (r′1 for t1, after noise addition). To
complete the matrix, we derive the rest of the at-risk population using our noisy events (d′j).
That is, to obtain the number at risk (r′j) for a subsequent time point (tj), we subtract the
number of events (d′j−1) from the number at risk (r′j−1) for the previous timepoint. This
approach is similar to how number at-risk is generally calculated in a non-noisy case, as cases
that have experienced an event are no longer at risk for the same event and are removed
from the risk set, we use the noisy number of events (d′j) to ensure our privacy guarantees
hold. We present our method succinctly as Algorithm 1 followed by a detailed discussion.

Algorithm 1 Differentially Private Estimation of Ŝ(t)

1: procedure DP(Ŝ(t))
2: f(D)→M . Create a partial matrix M ; [r1, dj ] ∈M ; for every tj
3: M ′ = M + Lap(S/ε); [r′1, d

′
j ] ∈M ′

4: for j = 2, · · · , k do
5: r′j = r′j−1 − d′j−1
6: end for
7: Ŝ′(t) =

∏
j:tj≤t

r′j−d′j
r′j

8: return Ŝ′(t)
9: end procedure

3.1.1. Discussion

We use this paragraph to briefly discuss Algorithm 1. We begin with the noticeable simplicity
of the procedure, that is, the minimal changes required to the original estimation procedure
to make it differentially private. This simplistic approach serves a crucial two-fold role. This
boosts the accessibility of our differentially private version (it can be implemented using
any readily available software package), and aids in ensuring that many other required and
reported statistics with the survival function (test statistics, confidence intervals, etc.) are
differentially private without spending any extra privacy budget (details follow). Also, in our
method, the required changes for differential privacy come with no computational overhead
compared to the original estimation (our method is equally computationally cheap).

An important observation is that with current Algorithm 1, using M ′ for estimating the
survival function, we might have scenarios where d′j or rarely r′j are negative, leading to the
non-monotonic behavior of the differentially private survival function. We fix this issue as
follows: After completion of M ′, we check to ensure that any noisy values are not violating
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our data integrity constraints (i.e. r′j , d
′
j < 0), if they are, we replace such values by 03. This

extra step does not require any additional privacy budget and it does not violate our privacy
claims, as it is a standard case of post-processing in differential privacy, in spirit similar to
label smoothing (Wang et al., 2016) or enforcing data integrity constraints (Flaxman, 2019).
Another observation is that the algorithm 1 applies to the scenarios in the absence of interval
censoring, that is, subjects either have the event or participate to the end of study (up to the
maximum follow-up time). However, in many scenarios subjects leave study unexpectedly
(moved out of state/country, did not wish to continue/withdrew, etc.) before completion,
for such cases our Algorithm 1 can be easily extended, where M is created with [r1, dj , cj ],
where cj are the number censored at a time point j. The number at risk completion after
noise addition now involves c′j−1, that is, to get r′j we subtract the sum of noisy events and
noisy censored at time j − 1 from the number at risk at time j − 1. All privacy guarantees
including sensitivity calculations remain the same in case of interval censoring.

Next, we provide the formal privacy guarantees and further details on how our proposed
method can be easily extended for differentially private estimation of “other” associated
statistics.

3.2. Privacy Guarantees

Now we are ready to formally state the differential privacy guarantees of our proposed method.
Before we state our main theorem, we start with a supporting Lemma for establishing the
global L1 sensitivity (S) for our method.

Lemma 4 L1 sensitivity (S) of f(D) is two.

Proof As f(D) outputs result of sum queries for dj and r1 for tj , changing one single
individual can change the counts (sum) by at most two (that is being in at-risk group and
having an event).

Theorem 5 Algorithm 1 is ε-differentially private.

Proof Proof of the differential privacy of M ′ follows from an instantiation of the Laplace
mechanism from Dwork and Roth (2014) with the sensitivity defined in Lemma 4.

As our function estimation (Ŝ′(t)) uses everything from M ′ (our differentially private
version of M) and nothing else from the sensitive data, our survival function estimation is
differentially private by the post-processing Theorem (Dwork and Roth, 2014).

4. Extending to Other Estimates

As mentioned in the introduction and the previous section, one of the advantages of our
approach is its easy extension to other essential statistics often required and reported along
with the estimates of the survival function. Such as the confidence intervals, test statistics for
comparing the survival function distributions among patient groups, etc. Here we formally
define the extensions with their privacy guarantees.

3. Once the at-risk population is 0, we do not consider any future time points.
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4.1. Confidence Intervals and Test Statistics

When reporting survival function estimates, it is often required to include the related
confidence intervals, reported to reflect the uncertainty of the estimate. And for the group
comparison, such as comparing the infection rates between two treatment arms of a clinical
trial, hypothesis testing is used with the help of test statistic. So, it is of paramount interest
to provide the differentially private counterparts of both (confidence intervals and test
statistics). We start with the confidence intervals.

4.1.1. Confidence Intervals

Confidence intervals for survival function estimates are calculated in a “point-wise” fashion,
that is, they are calculated at discrete time-points whenever an event is observed (for the
same time points at which the survival function changes its value). We start with proving
that the calculations required for obtaining confidence intervals are differentially private
following the changes made to the data in Algorithm 1.

Theorem 6 Greenwood’s (Greenwood et al., 1926) linear point-wise confidence intervals
for Ŝ′(t) are ε-differentially private.

Proof
Greenwood’s formula for the confidence intervals is given as

Ŝ(t)± z1−α/2σS(t) (5)

where
σ2s(t) = V̂ [Ŝ(t)] (6)

and

V̂ [Ŝ(t)] = Ŝ(t)2
∑
tj≤t

dj
rj(rj − dj)

(7)

Replacing by their respective differentially private counterparts from Algorithm 1.

V̂ ′[Ŝ(t)] = Ŝ′(t)2
∑
tj≤t

d′j
r′j(r

′
j − d′j)

(8)

estimate for V̂ ′[Ŝ(t)] is now differentially private, using it in conjunction with Ŝ′(t) makes
the confidence intervals differentially private by the post-processing theorem (Dwork and
Roth, 2014).

As we don’t need any additional access to the sensitive data for calculating confidence
intervals. Hence, calculating and providing differentially private confidence intervals with
the differentially private survival function estimates does not incur any additional privacy
cost. In other words, we get the differentially private confidence intervals for free.
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4.1.2. Hypothesis Tests

Hypothesis tests are often used to compare the distribution of survival function estimates
between groups. For example: To compare infection rates between two treatment arms of a
clinical trial. Most often used statistical test in such scenarios is the Logrank test (Mantel,
1966). Below we show that using our method (Algorithm 5), the hypothesis testing using
the Logrank test is differentially private.

Theorem 7 Hypothesis test for comparing two groups with the log-rank test for Ŝ′(t) is
ε-differentially private.

Proof For comparing two groups, the log–rank test statistic is formed using the sum of the
observed minus expected counts over all failure times for one of the two groups divided by
the variance of the summed observed minus expected score (Kleinbaum and Klein, 2010),
below we consider group 1.

Z =

∑k
j=1(O1j − E1j)√∑k

j=1 Vj

(9)

where O1j are observed number of failures (events) (d1j) and E1j are the expected number
of failures at time j in group 1, we have

E1j = dj
r1j
rj

(10)

and Vj is the variance, given as

Vj =
r1jr2jdj(rj − dj)

r2j (rj − 1)
(11)

Replacing the corresponding quantities by their differentially private counterparts using
Algorithm 1, we get

V ′j =
r′1jr

′
2jd
′
j(r
′
j − d′j)

r′2j (r′j − 1)
(12)

which makes V ′j differentially private as no other sensitive information is required for its
estimation.

Using it in conjunction with O1j and E1j , which can be made differentially private
following the same argument, makes the test statistic Z differentially private by the post-
processing theorem (Dwork and Roth, 2014).

Under the null hypothesis (there is no overall difference between the two survival curves),
the log–rank statistic (Z) is approximately chi-square with one degree of freedom. Inference
for group comparison can be made by using P-value determined from tables of the chi-square
distribution.

The calculation, again being the case of standard post-processing on differentially private
data does not add to our overall privacy budget. Hence, after using Algorithm 1, we can
output the related confidence intervals and the test statistic without spending any additional
privacy budget.
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4.2. Competing Risks Cumulative Incidence

In certain scenarios, we can have more than one type of event. Using our prior example
of HIV infection, we might have a scenario where patients die before progression to AIDS,
making the observation of progression impossible. Such events (death) that preclude any
possibility of our event of interest (progression) are known as competing events. Competing
events are a frequent occurrence in clinical data and require specialized estimates that
take this phenomenon into account, without which our estimates will be biased. One such
estimate is the competing risk cumulative incidence, which is also the most widely used and
reported estimate in the literature, akin to the KM estimate, but for competing events. For
complete understanding of competing risks and cumulative incidence, please see Kalbfleisch
and Prentice (2011).

Here we show that using Algorithm 1, we can easily extend differential privacy to the
competing risk scenarios. However, as our database D now involves an additional term
(indicator dk for event of type k, that is, whether it was the event of interest (of type k) or
not), we design D such that when there is “1” for event of interest (for dk), there is “0” for
d, that is, the event is captured either in d (when not of type k) or in dk (of type k), never in
both. We do so to preserve our sensitivity as we will show that we can easily derive complete
d using partial d and dk. For now, our sum queries for time tj , j ∈ [1, · · · , k] include dj , dk,
and r1. Same as earlier, we proceed to add noise to the queries with our sensitivity from
Lemma 4, which still holds as changing one individual can change the query output by at
most two (that is, being in at-risk group r1, or being in either d or dk). We then get our
complete d required for estimating the cumulative incidence by summing the noisy versions
of d and dk.

Theorem 8 Competing risk cumulative incidence using our method is ε-differentially pri-
vate.

Proof Cumulative incidence extends Kaplan-Meier estimator and is given by

Îk(t) =
∑
j:tj<t

Ŝ(tj)
djk
rj

(13)

where djk is the number of events of type k at time t(j) and Ŝ(tj) is the standard Kaplan-Meier
estimator to time t(j).

Replacing associated quantities with their differentially private counterparts (using same
reasoning as Algorithm 1).

Îk(t)
′ =

∑
j:tj<t

Ŝ(tj)
′d
′
jk

r′j
(14)

Its not hard to see that Îk(t)
′ is differentially private by the post-processing theorem.

Further statistics associated with the cumulative incidence such as the confidence intervals
and hypothesis tests, etc. that directly depend on the quantities made differentially private
using Algorithm 1 can be similarly argued to be differentially private.
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4.3. Nelson-Aalen’s Estimate of the Hazard Function

Analogous to the KM estimator of the survival function, another important non-parametric
estimator that is often used is the Nelson-Aalen estimator (Nelson, 1969; Aalen, 1978) of
the cumulative hazard. Nelson-Aalen estimator estimates the hazard at each time point
and has a nice interpretation as the expected number of deaths in (0, tj ] per unit at risk.
Although hazard function can be derived using it’s relationship with the survival function
(Ât = − log(Ŝt)), for which we can directly argue differential privacy using our estimate of
Ŝ′(t), there are certain scenarios where we explicitly need to use the Nelson-Aalen estimator
or require it for deriving “other” estimates, such as the Flemming-Harrington’s estimate
of the survival function, etc. Hence, below we prove that using Algorithm 1, we can easily
guarantee differential privacy of Nelson-Aalen’s estimator.

Theorem 9 Following Algorithm 1, Nelson-Aalen estimator of the hazard function is dif-
ferentially private.

Proof Nelson-Aalen’s estimator is given as

Ât =
∑
tj≤t

dj
rj

(15)

replacing dj and rj with their noisy counterparts from Algorithm 1

Â′t =
∑
tj≤t

d′j
r′j

(16)

where Â′t is now differentially private by the post-processing property of differential privacy.

Similar to the survival function, “other” statistics associated with the Nelson-Aalen
estimator can be argued to be differentially private following Algorithm 1.

5. Empirical Evaluation

Here we present the empirical evaluation of our method on eleven real-life clinical datasets
(nine for evaluating KM and two for competing risk) of varying properties. We start with
the dataset description for our main comparison.

5.1. Datasets

Nine real-life clinical datasets with time to event information are used to evaluate our
proposed method for the KM estimate4. Dataset summary is provided in Table 1 followed by
further dataset-specific details (dataset properties, pre-processing, group comparison details
for hypothesis tests, etc.).

4. We use two additional datasets for competing risk evaluation in Section 5.4
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Table 1: Datasets used for evaluation of our proposed method, observations are the number
of observations (rows) in the dataset and events are the number of events. Wide variety of
datasets are used to simulate real-world clinical scenarios.

Dataset Observations Events

Cancer 228 165
Gehan 42 30
Kidney 76 58
Leukemia 23 18
Mgus 1384 963
Myeloid 646 320
Ovarian 26 12
Stanford 184 113
Veteran 137 128

1. Cancer: It pertains to the data on survival in patients with advanced lung cancer from
the North Central Cancer Treatment Group (Loprinzi et al., 1994). Survival time
in days is converted into months. Groups compared are survival amongst males and
females.

2. Gehan: This is the dataset from a trial of 42 leukemia patients (Cox, 2018). Groups
compared are the control and treatment groups.

3. Kidney: This dataset is for the recurrence times to infection, at the point of insertion
of the catheter, for kidney patients using portable dialysis equipment (McGilchrist and
Aisbett, 1991). Time is converted into months and groups compared are males and
females.

4. Leukemia: The dataset pertains to survival in patients with Acute Myelogenous
Leukemia (Miller Jr, 2011). Time is converted into months and groups compared are
the patients receiving maintenance chemotherapy vs no maintenance chemotherapy.

5. Mgus: This dataset is about natural history of subjects with monoclonal gammopathy
of undetermined significance (MGUS) (Kyle, 1993). Time is converted into months
and groups compared are males and females.

6. Myeloid: Dataset is based on a trial in acute myeloid leukemia. Time is converted into
months and groups compared are the two treatment arms.

7. Ovarian: This dataset pertains to survival in a randomized trial comparing two
treatments for ovarian cancer (Edmonson et al., 1979). Time is converted into months
and groups compared are the different treatment groups.

8. Stanford: This dataset is the Stanford Heart Transplant data (Escobar and Meeker Jr,
1992). Time is converted into months and groups compared are the age groups (above
and below median).
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9. Veteran: This dataset has information from randomized trial of two treatment regimens
for lung cancer (Kalbfleisch and Prentice, 2011). Time is converted into months and
groups compared are the treatment arms.
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Figure 1: Differentially private estimation of the survival function: Followup time is on the
X-axis and the probability of survival is on the Y-axis. The black line is the original function
estimate, the green line is the differentially private estimate with ε = 3, the orange line is
the differentially private estimate with ε = 2, and the blue line is the differentially private
estimate with ε = 1. We observe that our method provides good utility while protecting an
individual’s privacy. Small sample sized datasets fare worse compared to larger datasets.

5.2. Setup and Comparison

To ensure thorough evaluation of our proposed method, we use varying settings for the
privacy budget ε (ε ∈ [3, 2, 1]). Being a “non-trainable” model, there are no train/test splits
and results are reported on the complete dataset. All experiments are performed in R (R
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Core Team, 2018) with the source code and the datasets made publicly available on GitHub
and as an R package5.

As there is no current method for producing differentially private estimates of the survival
function. We compare our approach to the original, gold-standard of the “non-private”
estimation. This provides us with a comparison to the upper bound (we cannot get better
than the non-noisy version). Good utility in comparison with the original non-perturbed
version provides credibility to our claim of high utility and will encourage practitioners to
adopt our method for practical use.

5.3. Main Results

Now we present the outcome of our evaluation of differentially private KM estimation on
nine real-life datasets. We start with the estimation of the differentially private survival
function and then move on to the evaluation of the extensions (confidence intervals, test
statistic, etc.).

5.3.1. Estimating Survival Function

For the differentially private estimation of the survival function (our primary goal), Figure 1
shows the results. We can see that our privacy-preserving estimation (green line) faithfully
estimates the survival function (black line), with little to no utility loss. As expected,
estimation deteriorates with decreased privacy budget (ε ∈ [2, 1], orange and blue lines
respectively). This is intuitive as when the privacy budget decreases, the noise scale required
to preserve differential privacy increases, leading to noisier estimates.

An observation worth making is that as the dataset size gets smaller (such as ovarian,
Leukemia, etc.), the utility of our differentially private estimation gets worse. Which is
because from the differential privacy point of view, to protect an individual’s privacy in a
small dataset, we need to add large noise (large perturbation). Whereas for moderate to
medium-sized datasets, our differentially private estimation provides good results, even for
the high privacy regime. When tested for statistical differences, we found that all privacy
preserving estimates (with ε ∈ [3, 2, 1]) were not statistically-significantly different from the
original, non-noisy estimate6.

5.3.2. Median Survival and Associated Confidence Intervals

An important estimate often reported with survival function is the median survival time and
its associated confidence intervals. Median survival time is defined as the time point when
the survival function attains the value of 0.5, confidence intervals for the survival function
at that time point serve as the confidence intervals of the median survival. Table 2 shows
the results. For “Median Survival (95% CI)”, we see that our method estimates the median
with high precision, even for the high privacy regime. For the performance of our method,
we see a similar trend as we saw with results in Figure 1, where our precision increases with
increasing dataset size, an acceptable trade-off for individual-level privacy protection.

5. Link removed to respect double blind review process.
6. Using the logrank test with statistical significance set at 0.05 level
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Table 2: Median Survival with associated confidence intervals. ε is the privacy budget for our
method and “No Privacy” are the results from the non-noisy model. Our method provides
“close” estimates to the original non-noisy values.

Median Survival(95% CI)

Dataset ε = 3 ε = 2 ε = 1
No

Privacy
Cancer 11.5 (9.5, 14.1) 11.4 (9.4, 12.2) 11.1 (9.4, 11.9) 11.5 (9.5, 14.1)
Gehan 12.0 (7.0, 16.0) 11.0 (7.0, 18.0) 11.0 (7.0, 22.0) 12.0 (8.0, 14.1)
Kidney 3.9 (1.9, 6.6) 4.9 (3.9, 8.0) 4.8 (3.5, 8.4) 4.3 (1.4, 6.2)
Leukemia 1.0 (0.3, 1.5) 0.8 (0.2, 1.0) 0.7 (0.1, 1.1) 0.9 (0.4, 1.4)
Mgus 3.3 (3.1, 3.5) 3.3 (3.0, 3.5) 3.2 (3.0, 3.5) 3.3 (3.1, 3.6)
Myeloid 12.6 (11.9, 13.5) 12.5 (11.7, 13.4) 13.4 (12.2, 13.8) 12.7 (11.9, 13.8)
Ovarian 12.0 (8.9, 15.6) 11.8 (8.8, 15.2) 11.6 (5.1, 15.2) 11.9 (8.8, 15.2)
Stanford 26.3 (15.8, 49.3) 24.7 (12.8, 47.3) 21.4 (18.7, 33.6) 30.5(12.5, 48.5)
Veteran 2.6 (1.7, 3.0) 1.7 (1.2, 2.8) 1.7 (1.1, 2.7) 2.6 (1.7, 3.4)

5.3.3. Test Statistic

For the test statistic (obtained from comparing the survival distribution of different groups
in the dataset, group details provided in the Section 5.1), in Table 3, we observe that our
differentially private estimation performs at par with the original “non-noisy” estimation,
even for the high privacy regime (ε ∈ [2, 1]). The test statistic (Z) follows the χ2 distribution
with one degree of freedom. Using it to derive the p-values, we observe that none of the
differentially private estimates change statistical significance threshold (at 0.05 level). That
is, none of the differentially private estimates make the “non-noisy” statistically significant
results non-significant or vice-versa.

Table 3: The test statistic for comparing two survival distributions. ε is the privacy budget
for our method and “No Privacy” are the results from the non-noisy model. Our method
provides good utility with strong privacy guarantees.

Test Statistic (Z)

Dataset ε = 3 ε = 2 ε = 1
No

Privacy
Cancer 11.1 11.8 11.9 10.3
Gehan 17.5 17.6 28.1 16.3
Kidney 7.4 8.4 21.9 6.9
Leukemia 2.9 2.4 2.5 3.4
Mgus 7.2 6.9 5.9 9.7
Myeloid 9.2 9.1 10.7 9.6
Ovarian 0.8 1.2 2.4 1.1
Stanford 6.2 6.9 8.0 6.6
Veteran 0.2 0.3 1.1 0.02
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5.4. Competing Risk Cumulative Incidence

For empirical evaluation in a competing risk scenario, we use two datasets that have more
than one type of event. First is from a clinical trial for primary biliary cirrhosis (PBC) of
the liver (Therneau and Grambsch, 2013). With the event variable being receipt of a liver
transplant, censor, or death; our event of interest is the transplant, and death here is a
competing event. The second dataset has the data on the subjects on a liver transplant
waiting list from 1990-1999, and their disposition: received a transplant (event of interest),
died while waiting (competing risk), or censored (Kim et al., 2006).
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Figure 2: Extending differentially private estimation to competing risk cumulative incidence
(cumulative incidence is the opposite of survival function, so the plots go upward). Black
is the original, unperturbed estimate. Green is with ε = 3, orange is with ε = 2, and blue
is with ε = 1. We can see that our method does a good job of estimating competing risk
cumulative incidence while providing strong privacy guarantees.

Figure 2 shows the results (cumulative incidence is the opposite of survival function, so
the plots go upward). We observe that our differentially private extension does an excellent
job of differentially private estimation of the competing risk cumulative incidence function
while providing strong privacy guarantees.

5.5. Nelson-Aalen Estimate

For evaluating the performance of our proposed differentially private Nelson-Aalen’s estimator
of the hazard function, we use the main nine datasets. Please note that similar to the
competing risk cumulative incidence, being a “risk” estimate, the value of the cumulative
hazard estimate increases over time, hence it has an “upward” curve compared to the
“downward” curve for the survival estimate.

Figure 3 shows the results for all nine datasets. Our differentially private estimate
performs extremely well, similar to our main comparison, where we can see that our
estimation provides good utility, even at high privacy regimes. Also, similar to our main
comparison, all differentially private estimates are not statistically-significantly different
from the original, non-noisy estimates.
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Figure 3: Differentially private estimation of the Nelson-Aalen estimator, followup time is on
the X-axis and the hazard estimate is on the Y-axis. The black line is the original function
estimate, the green line is the differentially private estimate with ε = 3, the orange line is
the differentially private estimate with ε = 2, and the blue line is the differentially private
estimate with ε = 1. We observe that our differentially private version provides good utility
while protecting an individual’s privacy.

6. Related Work

Much work has been done in the intersection of statistical modeling and differential privacy,
including many works proposing different differentially private methods for regression
modeling (Sheffet, 2017; Jain et al., 2012; Zhang et al., 2012; Yu et al., 2014; Chaudhuri
et al., 2011). Using the same principles, Nguyên and Hui (2017) further developed a
differentially private regression model for survival analysis. This approach is limited to
the “multivariate” regression models and cannot be used for direct differentially private
estimation of the survival function. Differentially private generative models such as the
differentially private generative adversarial networks (Xie et al., 2018; Zhang et al., 2018;
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Esteban et al., 2017; Triastcyn and Faltings, 2018; Beaulieu-Jones et al., 2017; Yoon et al.,
2019) have been recently proposed. But, as discussed in the introduction, they are not
suitable for generating data for survival function estimation.

7. Conclusion and Limitations

We have presented the first method for differentially private estimation of the survival function
and we have shown that our proposed method can be easily extended to differentially private
estimation of “other” often used and reported statistics such as the associated confidence
intervals, test statistics, and to other estimates such as the competing risk cumulative
incidence and the Nelson-Aalen estimate of the hazard function. With extensive empirical
evaluation on eleven real-life datasets, we have shown that our proposed method provides
a good privacy-utility trade-off. And to aid in rapid adaptation, we have made the source
code publicly available.

However, as with any new method, our method has some limitations. As observed
during empirical evaluation and as discussed in Section 3.1.1, for smaller datasets there
can be scenarios where we have to truncate the function estimation when our noisy at-risk
population reaches zero. The truncation may lead to biased estimates where the noisy
estimate is missing information from events at the tail-end. This is in addition to overall
noisier estimation due to small sample size. This phenomenon restricts the end-user to rely
on weaker privacy guarantees for small datasets (using larger ε). The limitations shape
our future work, where we would like to investigate the impact of considering different
privacy definitions, mechanisms, and noise distributions to minimize the utility gap when
transitioning from non-private to differentially private regime.
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