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Abstract

In this paper we apply the aggregating algorithm, an on-line prediction with expert advice
algorithm, to real-world foreign exchange trading data with the aim of finding investment
strategies with optimal returns. We consider the Long-Short game first introduced in Vovk
and Watkins (1998) and it’s implementation, including the derivation of expert predictions
from model trading data. Furthermore, we propose modifications to improve the practical
performance of the game with respect to well-known portfolio performance indicators.
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1. Introduction

Since modern portfolio theory was first introduced in Markowitz (1952) the problem of
portfolio selection has become increasingly prominent. We approach this problem using the
framework of on-line learning, where an investor makes investment decisions based on the
observations of a pool of investors’ portfolios.

A well-known formalisation of this is Cover’s game (section 2.2), where an investor
partitions the available money between the assets. In Cover and Ordentlich (1996), a
universal investment strategy is constructed for Cover’s game: it performs nearly as well
as any constant rebalanced portfolio. This strategy is a special case of the more general
aggregating algorithm, which is capable of combining a finite or infinite pool of on-line
portfolios.

The aggregating algorithm can be applied to a general problem of prediction with expert
advice and is an evolution of the weighted majority algorithm first introduced by Littlestone
et al. (1989). The aggregating algorithm was later developed in Vovk (1990) and Vovk (1998)
to include the more general concept of a loss function and prediction and outcome spaces.
The intuitive idea of the aggregating algorithm is that given a series of predictions from a
pool of experts, a learner observing the loss of each experts’ prediction over time can adjust
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their trust in each expert to make future predictions. The problem of portfolio selection is
a natural special case of a prediction with expert advice problem.

Vovk and Watkins (1998) took steps to consider more realistic trading scenarios. A
trader does not partition their money between the assets as in Cover’s game. Instead they
open positions, long and short, within some limits set by the exchange or the intermediary
providing market access. In Vovk and Watkins (1998) a modification of Cover’s game,
namely, the Long-Short game (see Section 2.3 of this paper) was introduced. It admits
long positions exceeding the trader’s capital (within specified limits) and short positions.
The major downside of this is the possibility of bankruptcy. While in Cover’s game the
investor may lose all their capital only in a totally unlikely event of all stocks simultaneously
plunging to zero, with the Long-Short game losing all the money is a much more realistic
prospect.

In this paper, we apply the aggregating algorithm to the Long-Short game in the case of
the currency exchange market. The experts are based on the trading activity of 100 clients
who used demo trading accounts to trade so-called basket orders of 55 of the most liquid
currency pairs during September 2019 to January 2020. We describe a method of deriving
predictions from raw trade data using the data staging algorithm DAPRA (Al-baghdadi
et al., 2019). We evaluate the performance of the aggregating algorithm at the Long-
Short game and in Section 4 we propose modifications aimed at improving the practical
performance of the resulting portfolio.

Substantial literature exists on applications of prediction with expert advice to invest-
ment, but it usually concentrates on Cover’s game with no short positions or uses different
techniques and approaches. Helmbold et al. (1998) and Györfi et al. (2008) carry out
extensive computational experiments with universal strategies competitive with constant
rebalanced portfolios (no short positions are allowed). Zhang and Yang (2017); Yang et al.
(2020) consider portfolio selection methods based on weak aggregating algorithm merging
finite and infinite pools of experts. In their computational experiments real stock market
data is used but without short positions.

V’yugin and Trunov (2012) consider universal investment strategies involving short posi-
tions and carry out computational experiments. The methods used by V’yugin and Trunov
(2012) to construct universal strategies are based on calibration and defensive forecast-
ing. V’yugin et al. (2017) apply a different class of prediction with expert advice methods,
namely, AdaHedge-type algorithms, to stock trading in a different context. The algorithms
are used to predict stock values and then predictions are fed to other automated trading
algorithms.

The organisation of the paper is as follows. Section 2 reviews the key definitions and
aggregating algorithm. Section 3 introduces a novel data set based on the currency market
trades of 100 clients over a 4-month period. We then describe the application of the aggre-
gating algorithm on the Long-Short game, resulting in a portfolio with unimpressive results
and motivates us to propose modifications to the loss function which are detailed in Sec-
tion 4. In Section 5 we apply the modified method to the data and discuss the improvements
made.
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2. Preliminaries

In this section we will introduce the framework of the aggregating algorithm and the games
of investment with expert advice, as discussed by Vovk and Watkins (1998).

2.1. Aggregating Algorithm

In this section we introduce the aggregating algorithm following Vovk and Watkins (1998).
A game a G is a triple 〈Ω,Γ, λ〉 consisting of an outcome space Ω, a prediction space Γ,

and a loss function λ : Ω× Γ→ (−∞,+∞].
The outcomes ω1, ω2, . . . occur in succession. A prediction strategy S outputs a pre-

diction γt before seeing each outcome ωt and suffers loss λ(ωt, γt) after the outcome ωt
is revealed. The performance of the strategy over T steps is measured by the cumulative
loss LossT (S) =

∑T
t=1 λ(ωt, γt). In the investment scenarios, the semantics is slightly dif-

ferent. The value γt represents the decision taken on step t and λ(ωt, γt) quantifies the
consequences of γt facing the developments represented by ωt. An investor is not aiming to
make γt “close” to the values of ωt in any sense, but still wants to minimise the cumulative
loss. We will retain the prediction terminology though.

The aggregating algorithm (AA) provides a learner with a strategy to make a prediction
of some future outcome based on the predictions provided by a pool of experts (prediction
strategies) Θ, where γt(θ) ∈ Γ denotes the prediction of expert θ ∈ Θ at trial t. The AA
takes the following parameters: a learning rate η > 0 and an initial distribution on experts
P0(dθ), which quantifies the initial trust in each expert. We will denote the prediction
strategy using AA with parameters η and P0 by AA(η, P0).

AA maintains weights Pt on experts Θ. After each trial t the experts weights are updated
as follows:

Pt(dθ) = e−ηλ(ωt,γt(θ))Pt−1(dθ) .

Therefore the larger the expert’s loss the greater the reduction of its weight. To define
the AA we first will introduce the Aggregating Pseudo-Algorithm (APA), which at trial t
produces a generalised prediction (a function g : Ω→ (−∞,+∞]) based on the normalised
weights as follows:

gt(ω) = −1

η
ln

∫
Θ
e−ηλ(ωt,γt(θ))P ∗t−1(dθ) ,

where P ∗t−1 denotes the normalised weights P ∗t−1 = Pt−1(dθ)/Pt−1(dΘ). One can define the

cumulative loss of APA as Loss(APA(η, P0)) =
∑T

t=1 gt(ωt). The following lemma can be
proven by induction.

Lemma 1 For any learning rate η > 0, initial distribution P0, and T = 1, 2, ... we get

LossT (APA(η, P0)) = −1

η
ln

∫
Θ
e−ηLossT (θ)P0(dθ).

for all ω1, ω2, . . . , ωT .
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To obtain the AA from the APA, we need to find a permitted action Σ(gt), where the
substitution function Σ maps a generalised prediction g : Ω → (−∞,∞] to a prediction
Σ(g) ∈ Γ while keeping the loss as low as possible. Let GA(η) be the set of all generalised
actions that can be produced by the APA with learning rate η:

GA(η) = {g : Ω→ R | ∃P ∀ω : g(ω) = −1

η
ln

∫
Γ
e−ηλ(ω,γ)P (dγ)} ,

where P ranges over all distributions on Γ. For a generalised action g, let

C(g) = inf
γ∈Γ

sup
ω∈Ω

λ(γ, ω)/g(ω) .

The mixability constant Cη is defined as

Cη = sup
g∈GA(η)

C(g) .

We can then find a substitution function Σ mapping generalised predictions g to Γ satisfying:

∀g ∈ GA(η) ∀ω ∈ Ω : λ(ω,Σ(g)) ≤ Cηg(ω) . (1)

Substitution functions satisfying condition (1) are the ones allowed to be used in the AA.
Condition (1) and Lemma 1 imply

LossT (AA(η, P0) ≤ −Cη
η

ln

∫
Θ
e−ηLossT (θ)P0(dθ) .

A game is said to be η-mixable if Cη = 1 and mixable if it is η-mixable for some η > 0. For
mixable games the learner following the AA can perform almost as well as any expert from
a finite pool, as the following lemma shows.

Lemma 2 For a finite pool of experts Θ,

LossT (AA(η, P0)) ≤ CηLossT (θ) +
Cη
η

ln
1

P0(θ)
. (2)

Moreover, if the game is η-mixable, then

LossT (AA(η, P0)) ≤ LossT (θ) +
1

η
ln

1

P0(θ)
. (3)

Taking η such that Cη = 1 minimises the first term on the right-hand side of (2); this is
important because this term may be growing with T . Thus ηs making the game mixable
are good choice for practice as long as they exist. Out of such ηs the maximum value should
be chosen because in minimises the second term on the right-hand side of (3).

Let us formulate the AA for the case of finitely many experts, which is the main case
for this paper. Let N be the number of experts. We take Θ = {1, 2, . . . , n}.

In this context, one can think of Σ as a function ΓN × PN−1 → Γ (where PN−1 is the
N − 1-simplex) mapping arrays of predictions and distributions on them to predictions.
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Parameters: Learning rate η > 0 and initial experts’ weights p0(n), n = 1, 2, . . . , N
for t = 1, 2, . . . do

read experts’ predictions γt(n) ∈ Γ, n = 1, 2, . . . , N
normalise the weights: p∗t−1(n) = pt−1(n)/

∑N
n=1 pt−1(n)

produce the generalised prediction gt(ω) = − 1
η ln

∑N
n=1 pt−1(n)e−ηλ(ω,γt(n))

calculate and output γt = Σ(gt)
read γt ∈ Γ
update the weights pt(n) = pt−1(n)e−ηλ(ωt,γt)

end
Algorithm 1: On-line learning protocol

2.2. Cover’s Game

Cover’s game describes investment into a market of M assets. The outcome space Ω
describes the behaviour of the market with the non-negative price relative vector ω =
(ω[0], ..., ω[M − 1]) ∈ Ω = [0,∞)M , where ωt[m] represents the ratio of the value of asset
m at trial t to the value at trial t− 1. If St[m] denotes the price of asset m at time t, then
ωt[m] = St+1[m]/St[m]. An investment in this market is represented by the m-dimensional
portfolio vector γ, where γ[m] denotes the proportion of the investor’s wealth invested in
asset m. In Cover’s game we assume that all wealth is invested on every step and no short
positions or trading on credit is allowed; in other terms, γ[m] ≥ 0 for m = 0, 1, . . . ,M − 1,
and

∑M−1
m=0 γ[m] = 1. The prediction space Γ is the (M − 1)-simplex PM−1. One can say

that the investor partitions the wealth between M assets.
If an investor makes an investment γ and then outcome ω occurs, the investor’s wealth

changes by a factor of 〈ω, γ〉 =
∑M−1

m=1 ω[m]γ[m]. In order to link this with the additive
framework of prediction games, we define the loss function by λ(ω, γ) := − ln〈ω, γ〉).

If the investor starts from wealth of W0 = 1 and follows an investment strategy S, then
the wealth after step T equals

WT =
T∏
t=1

〈ωt, γt〉 = e−LossT (S) .

Cover’s game is mixable.

Lemma 3 (Vovk and Watkins (1998)) For every η ≤ 1, Cη = 1. Moreover, for every
η ≤ 1 and every g ∈ GA(η), C(g) = 1. The only prediction attaining C(g) = 1 is the
average

γ∗ :=

∫
Γ
γP (dγ) , (4)

where P is a probability distribution in Γ generating g:

g(ω) = −1

η
ln

∫
Γ
e−ηλ(ω,γ)P (dγ) .

Lemma 4 (Vovk and Watkins (1998)) When η > 1, Cη = η.
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We see that η = 1 is the optimal choice of the parameter and the substitution rule

γt =

N∑
n=1

p∗t−1(n)γt(n) (5)

should be used with Cover’s game in the finite case.

2.3. Long-Short Game

The Long-Short game is a modification of Cover’s game aimed at a more general and more
realistic trading scenario. A trader is usually allowed to open positions, both long and short,
within certain limits based on their deposit and money they had earned previously. The
limits are aimed to minimise the chances of bankruptcy so that the intermediary providing
access to the market could avoid handling the consequences of the trader’s default.

In a bounded Long-Short game with the prudence parameter a > 0 an investment decision
is represented by a vector γ ∈ RM such that

‖γ‖1 := |γ[0]|+ ...+ |γ[M − 1]| ≤ a ; (6)

in other terms, Γ ⊆ RM is a ball w.r.t. the ‖ · ‖1-norm. The intuitive interpretation of γ
is as follows. Suppose that before t the trader has wealth Wt−1 > 0. Then on step t the
trader opens positions of size Wt−1γt[m], m = 0, 1, 2, . . . ,M − 1 (long or short depending
on the sign of γt[m]) in assets 0, 1, . . . ,M − 1.

It is more convenient to represent outcomes by a vector of returns here, so ωt[m] =
(St[m]−St−1[m])/St−1[m] = St[m]/St−1[m]− 1 ≥ −1. Thus on the position in asset m the
trader gets the profit of Wt−1ωt[m]γt[m] and the overall trader’s wealth changes according
to

Wt = Wt−1(1 + 〈ωt, γt〉) .

We let
λ(ω, γ) = − ln(1 + 〈ω, γ〉) .

Note that for some values of ω the expression 1 + 〈ω, γ〉 can go below zero; the trader then
goes bankrupt and the expression − ln(1 + 〈ω, γ〉) is undefined. In a bounded game we
assume this never happens because all ωs satisfy

‖ω‖∞ = max
m=0,1,...,M−1

|ωm| ≤
1

a
. (7)

Thus the outcome space in the a-bounded game is the intersection of [−1,+∞)M with the
‖ · ‖∞ ball.

The following lemma holds for every a-bounded game:

Lemma 5 (Vovk and Watkins (1998)) For any a-bounded game, a > 0, and for every
η ≤ 1, Cη = 1. Moreover, for every η ≤ 1 and every g ∈ GA(η), C(g) = 1. The
only prediction attaining C(g) = 1 is the average (4), where as before P is a probability
distribution in Γ generating g. When η > 1, Cη > 1.
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Substitution rule (4) (or (5) in the case of finitely many experts) should be used.
For practical applications it is inconvenient to use the a-bounded game because the

condition (7) is not guaranteed. One would rather be talking of the general Long-Short
game with Γ = Rm, Ω = [−1,+∞)M and the loss function given by

λLS(ω, γ) =

{
− ln(1 + 〈ω, γ〉), if 1 + 〈ω, γ〉 > 0

+∞ otherwise
.

However, this game does not have good mixability properties.

Lemma 6 For every η > 0, there is no finite Cη > 0 such that (1) holds for the general
Long-Short game.

Proof We will construct a generalised prediction in the form

g(ω) = −1

η
ln

N∑
n=1

pne
−ηλLS(ω,γn) ,

where N = M (the number of experts equals the number of assets),
∑

n pn = 1 and pn > 0
(one may take pn = 1/N for the sake of being definite), and γn = −en−1, i.e., γn[n−1] = −1
for n = 1, 2, . . . , N − 1 and γn[m] = 0 for m 6= n− 1.

We need to show that no γ satisfies λLS(ω, γ) ≤ Cg(ω) for a finite C > 0 and all ω. First,
take a γ such that γ[n0] < 0 for some n0. Let ω[n0] = −2/γ[n0] (or a larger positive number)
and ω[n] = 0 for n 6= n0. Then 1+〈ω, γ〉 < 0 and λLS(ω, γ) = +∞. However, λLS(ω, γn) = 0
for n 6= n0 so that

∑N
n=1 pne

−ηλLS(ω,γn) ≥ 1− pn0 > 0 and therefore g(ω) < +∞ is a finite
number.

Now let γ[n] ≥ 0 for all n. Let ω[n] = −1 for all n. Then 1+〈ω, γ〉 ≤ 1 and λLS(ω, γ) ≥ 0.
But for every n we have 1 + 〈ω, γn〉 = 2, so that g(ω) = − 1

η ln e−η(− ln 2) = − ln 2 < 0.

Still in practice one can apply the aggregating algorithm with η = 1, Cη = 1 and
the substitution rule given by (5) to the general long-short game. If 1 + 〈γt, ωt〉 > 0 for
t = 1, 2, . . . , T , i.e., the learner does not get bankrupt along the way, the bounds of Lemma 2
will hold. This can be checked by retracing the proof.

3. Application of Long-Short Game

In this section we apply the aggregating algorithm to the Long-Short game, merging the
investment strategies of 100 unique clients.

3.1. Data Set

The data we are using is derived from the basket orders of 100 clients using demo trading
accounts over a period of 4 months, during September 2019 to January 2020. The data is
representative of the behaviour of investors trading in the currency exchange market over
a relatively calm period. A basket order allows a group of financial market instruments to
be traded simultaneously. Different weighting criteria for different instruments can be used
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Table 1: 55 FX (currency) pairs, the symbol format is a pair of currency codes delimited
by a “/”, where the currency code is in the ISO 4217 format.

AUD/CAD EUR/AUD EUR/SGD HKD/JPY USD/DKK CAD/CHF EUR/JPY GBP/JPY NZD/USD USD/RUB AUD/USD

AUD/CHF EUR/CAD EUR/USD MXN/JPY USD/HKD CAD/JPY EUR/MXN GBP/NZD SGD/JPY USD/SEK EUR/HKD

AUD/JPY EUR/CHF GBP/AUD NZD/CAD USD/JPY CAD/SGD EUR/NZD GBP/SEK USD/CAD USD/SGD GBP/HKD

AUD/NZD EUR/DKK GBP/CAD NZD/CHF USD/MXN CHF/JPY EUR/PLN GBP/SGD USD/CHF USD/TRY NZD/SGD

AUD/SGD EUR/GBP GBP/CHF NZD/JPY USD/NOK CHF/SGD EUR/SEK GBP/USD USD/CNH USD/ZAR USD/PLN

to tailor the basket according to the client’s needs. Clients can either trade their baskets
manually or use automated models. In this data the clients construct their baskets from
the 55 most liquid Foreign Exchange (FX) pairs, as shown in Table 1.

Table 2 illustrates raw trade data from the basket orders of four different clients, B1, B2,
B3 and B10. We see client B1 has a basket trading 4 different currency pairs (NZD/SGD,
GBP/SGD, NZD/CAD and CHF/JPY) where each block of trades all have the same open-
ing timestamp, for example, 24th Oct 2019 at 07:08 and holds that position for 3 days.
Later that same day at 19:45 we see client B1 trades the same basket again, so building
on their position. “Position” is the summation of the client’s trades and at a given point
in time is described as being long, flat or short. At 19:45, client B1’s position goes long in
NZD/SGD by 27,000, and short in NZD/CAD by 41,000. Table 2 further demonstrates that
clients have the freedom to trade any combination of currency pairs and with any notional
weightings they desire for their baskets (these can be derived manually or using proprietary
algorithms). For example, client B3 trades a basket of 5 different currency pairs, whereas
client B2 trades larger notional preferring GBP currency crosses. Client B10 solely trades
3 symbols which are all USD crosses.

Before we can apply the AA to this data we must first:

• Normalise client positions into a common currency, in our case we use USD. We do
this because clients trade many different currencies, all whose notional values differ
through time. Therefore, to compare the positions and derive a price vector they must
be normalised.

• Sample the data at regular time intervals (for this data we chose a resolution of 1
minute) across all clients and currency pairs. This is because whilst clients are at
liberty to trade and hold positions for however long they wish, the AA must make a
prediction regarding the future behaviour of the market at regular time intervals.

Al-baghdadi et al. (2019) introduced the data staging technique DAPRA (Data Aggre-
gation Partition Reduction Algorithm) which, when applied to data streams pertaining to
client trades and trade prices, allows one to normalise and sample the data as required for
this study.

Fig. 1 compares the net positions of the first 10 clients in the data set, following DAPRA
transformation over the trial period. The positions in Fig. 1 show step changes when
trades of basket orders are placed. Returning to our earlier example, we can see the shifts
in position related to the trades in Table 2 on the 24th Oct 2019. Hence, we see that
client B10’s basket order comprises a sell USD/DKK trade which means a position change
from flat to short. Importantly we can see great variability in the notional sizes, basket
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Table 2: Raw trade data taken from basket orders of four different clients (B1, B2, B3
and B10) on the 24th Oct 2019. Each trade has an open and close timestamp,
and corresponding open and close price. Whether the trade was a buy or sell is
denoted by a 1 or −1 sign, respectively.

Open Time Open Client Amount Sign Symbol Order Close Time Close Mins In
Price Id Price Trade

2019.10.24T07:08:00.000 0.87236 B1 27,000 1 NZD/SGD B1 87 2019.10.27T22:12:00.000 0.86643 5,224

2019.10.24T07:08:00.000 1.76210 B1 6,000 -1 GBP/SGD B1 267 2019.10.30T00:20:00.000 1.75285 8,232

2019.10.24T07:08:00.000 0.83763 B1 41,000 -1 NZD/CAD B1 447 2019.10.30T00:20:00.000 0.83112 8,232

2019.10.24T07:08:00.000 109.76200 B1 8,000 1 CHF/JPY B1 634 2019.10.27T22:12:00.000 109.30400 5,224

2019.10.24T13:36:00.000 9.61360 B3 7,000 -1 USD/SEK B3 64 2019.11.04T10:38:00.000 9.64949 15,662

2019.10.24T13:36:00.000 0.93133 B3 30,000 -1 AUD/SGD B3 230 2019.11.03T22:12:00.000 0.93782 14,916

2019.10.24T13:36:00.000 2.01415 B3 2,000 -1 GBP/NZD B3 397 2019.10.27T22:27:00.000 2.01888 4,851

2019.10.24T13:36:00.000 1.74062 B3 9,000 -1 EUR/NZD B3 573 2019.10.28T03:50:00.000 1.74552 5,174

2019.10.24T13:36:00.000 19.08875 B3 1,000 -1 USD/MXN B3 746 2019.11.05T07:47:00.000 19.13142 16,931

2019.10.24T14:58:00.000 10.07130 B2 451,000 1 GBP/HKD B2 25 2019.11.01T09:23:00.000 10.09472 11,185

2019.10.24T14:58:00.000 8.70289 B2 59,000 -1 EUR/HKD B2 84 2019.10.25T11:04:00.000 8.71086 1,206

2019.10.24T14:58:00.000 1.27429 B2 338,000 -1 GBP/CHF B2 144 2019.10.25T14:54:00.000 1.27440 1,436

2019.10.24T14:58:00.000 12.38930 B2 19,000 -1 GBP/SEK B2 202 2019.10.25T11:19:00.000 12.40480 1,221

2019.10.24T15:03:00.000 0.99168 B10 167,000 -1 USD/CHF B10 22 2019.10.27T22:12:00.000 0.99454 4,749

2019.10.24T15:03:00.000 3.85160 B10 95,000 -1 USD/PLN B10 91 2019.10.27T22:12:00.000 3.85830 4,749

2019.10.24T15:03:00.000 6.72958 B10 749,000 1 USD/DKK B10 161 2019.10.28T08:11:00.000 6.73906 5,348

2019.10.24T19:45:00.000 0.86990 B1 27,000 1 NZD/SGD B1 88 2019.10.27T22:12:00.000 0.86643 4,467

2019.10.24T19:45:00.000 1.75211 B1 5,000 -1 GBP/SGD B1 269 2019.10.30T00:20:00.000 1.75285 7,475

2019.10.24T19:45:00.000 0.83419 B1 41,000 -1 NZD/CAD B1 449 2019.10.30T00:20:00.000 0.83112 7,475

2019.10.24T19:45:00.000 109.47500 B1 9,000 1 CHF/JPY B1 636 2019.10.27T22:12:00.000 109.30400 4,467

symbol composition and holding periods of the different clients, producing are varied rage
of investment strategies.

Until now we have assumed the existence of the portfolio vector γ, describing an expert’s
investment decisions. However, as we can see from the example trading data presented in
Table 2, it is not clear how to define a clients prediction with that on the Long-Short game.
We must therefore define a method of calculating an investor’s portfolio vector from raw
trade data that describes their investment decision over each time interval. The portfolio
vector γ describes the sizes of investors’ positions in relation to their wealth. This requires
knowledge of the investors wealth however, as is common we do not have access to the total
funds available to an investor. Instead, we can make the assumption that at each trial the
investor has invested their total funds across each of the available assets. The DAPRA data
set provides us with the normalised positions an investor held in each asset at the start of
each interval where we will use Posθt [n] to denote the position of investor θ in asset n at time
t. Therefore, a natural method of approximation is to define the portfolio vector γθt ∈ RM
as γθt [m] = Posθt [m]/

∑M−1
m=0 |Posθt [m]|

The data set is available online (Al-baghdadi and Lindsay, 2020).

3.2. Empirical Results

Here we will compare the portfolio performance of an investor following the investment
protocol of the Long-Short game applied to the 100 clients to giving each client a fixed equal
weight. We will make the assumption all assets within are market are arbitrarily indivisible
and no transactions costs are present. Naturally, as we are using historical market data it is
implicit our trading behaviour has no effect on the market. A practical performance measure
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Figure 1: Net positions of first 10 clients in data set from Sept 2019 to Jan 2020.

of a portfolio is the return on investment (ROI), assuming no transaction cost we can
calculate from the wealth of the investor using ROI = (WT−W0)/W0×100 = (WT−1)×100.
This is equal to e−LossT (AA(η,P0)) × 100 where LossT (AA(η, P0)) is the total loss w.r.t the
Long-Short game loss following the AA with learning rate η and initial distribution P0.

After partitioning our data into 1 minute intervals the result is 123596 trials. The per-
centage return on investment (ROI) to the portfolio of the Long-Short game is 1.0857%
whereas the percentage ROI to the portfolio assigning equal weights to each model is
1.0825%. In Fig. 2 we plot the excess ROI to the Long-Short game compared to equal
weights, whilst the difference is small we do see a clear indication the AA has the potential
superior predictions than simply following each expert equally.

Whilst the Long-Short game appears to be an improvement over using equal weights
the gains are small with the difference in ROI after 123596 trials being 0.003%.

The resulting ROI close to 1% is disconcerting compared to the results of the experts.
The returns of the experts range from −2.0235% to 8.8201% with the mean of 1.0908%.
Clearly, AA fails to align itself with the best experts.

In terms of Lemma 2 this may be explained as follows. The total losses of the experts
range from −0.0845 to 0.0204. The extra term in (3) with η = 1 and uniform initial weights
of P0(θ) = 1/100 equals 4.6052. The guarantees of Lemma 2 are thus very loose.

In Fig. 2 we can see the weight the AA assigns to each client in the Long-Short game,
at each trial. As clients weights are updated using their loss at each trail, the weight
is a reflection of the ROI. Therefore, showing their are clients in the pool with returns

10
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Figure 2: Long-Short Game ROI - Equal weights ROI

Figure 3: Long-Short Game ROI - Equal Weights ROI

far greater that the achieved by the AA. We see the game does differentiate between the
various strategies however, there appears to be insufficient discrimination of weights to
allow above average strategies to influence the overall investment decisions of the AA.
In this case the models final weighs have a mean of 1.01 with a standard deviation of
0.02 and with maximum and minimum weights of 1.09 and 0.98, this may explain for the
limited performance improvements of the Long-Short game. Therefore, it seems logical the
performance of the Long-Short game may be increased by modifications to the game that
increase the discrimination between the weights of each investment strategy.
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4. Long-Short Game Modifications

In this section we introduce several modifications in order to improve the practical perfor-
mance.

The ideas developed here stem from the following intuition. While Cover’s game has a
natural scaling (the components of γ sum to 1), the Long-Short game does not. In the exam-
ple we considered above, AA produces vectors γt that lead to very small but positive profit.
One can multiply these vectors by a factor of A > 1 and the profit will increase. Where the
investor earned the profit of Wt−1〈ωt, γt〉, they will earn Wt−1〈ωt, Aγt〉 = AWt−1〈ωt, γt〉.

The downside of this is risk. Larger positions can potentially lead to bankruptcy. In the
spirit of prediction with expert advice, we can analyse the possibility w.r.t. the bankruptcy
of experts.

We will call a prediction γ satisfying (6) a-bounded.

Definition 7 A method of merging experts’ predictions is a-conservative if for all experts’
predictions γ(θ) if γ(θ) is a-bounded for all θ ∈ θ, then the prediction γ produced by the
method is a-bounded.

Note that in practice being a-bounded is neither necessary nor sufficient for avoiding
bankruptcy. An investor may take calculated risk and get away with it.

Definition 8 A method of merging experts’ predictions is conservative if for all experts’
predictions γ(θ) the prediction γ produced by the method is such that for all ω ∈ Ω if
the values − ln(1 + 〈ω, γ(θ)〉) are uniformly bounded from above by a finite number, i.e.,
− ln(1 + 〈ω, γ(θ)〉) ≤ C < +∞ for all θ ∈ Θ, then the value − ln(1 + 〈ω, γ〉) is finite, i.e.,
− ln(1 + 〈ω, γ〉) < +∞.

Theorem 9 Any merging algorithm outputting an average of experts’ predictions w.r.t.
some distribution, i.e., γ =

∫
Θ γ(θ)P (dθ), where P is some distribution, is conservative and

a-conservative for all a > 0.

Proof If − ln(1 + 〈ω, γ(θ)〉 ≤ C < +∞ for all θ ∈ Θ, then 1 + 〈ω, γ(θ)〉 ≥ 2−C > 0 and

1 + 〈ω, γ〉 = 1 +

〈
ω,

∫
Θ
γ(θ)P (dθ)

〉
=

∫
Θ

(1 + 〈ω, γ(θ)〉)P (dθ) ≥
∫

Θ
2−CP (dθ) > 0

if ‖γ(θ)‖1 ≤ a, then∥∥∥∥∫
Θ
γ(θ)P (dθ)

∥∥∥∥
1

=

M−1∑
m=0

∣∣∣∣∫
Θ
γ(θ)[m]P (dθ)

∣∣∣∣ ≤ M−1∑
m=0

∫
Θ
|γt(θ)[m]|P (dθ) ≤

∫
Θ
aP (dθ) = a

We can see that whenever the experts’ predictions satisfy a broker’s safety requirements,
so do the AA predictions and whenever the experts’ predictions do not lead to bankruptcy,
neither does the AA.

In this section we will introduce modification of the Long-Short game keeping this prop-
erty w.r.t. the original λLS and improving on the practical performance of the AA.
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4.1. Return Scaling

Take a number ρ > 0 and consider the loss function

λLS,ρ =

{
− ln(1 + ρ〈ω, γ〉) if 1 + ρ〈ω, γ〉 > 0

+∞ otherwise
.

One can define the a-bounded and general versions of the game with the same Γ and Ω as
the original Long-short games.

Theorem 10 For any ρ > 0, for any a-bounded game, a > 0, with loss λLS,ρ, and for every
η ≤ 1 we have Cη = 1. Moreover, for every η ≤ 1 and every g ∈ GA(η), C(g) = 1. The
only prediction attaining C(g) = 1 is the average (4), where as before P is a probability
distribution in Γ generating g. When η > 1, Cη > 1.

The proof is the same as for Lemma 5, which is proven by Vovk and Watkins (1998).
The general unbounded game with the loss λLS,ρ remains non-mixable as an analogue of
Lemma 6 holds.

We will apply the AA in the following fashion. We will use λLS,ρ in the algorithm for
calculating weights and working out the predictions γt. Then we will evaluate w.r.t. the
original λLS.

Of course, the λLS-loss of the resulting algorithm will not satisfy Lemma 2. However,
Lemma 2 will hold for the loss λLS,ρ. Note that the λLS,ρ-loss of a strategy is the same as
the loss of the strategy with all predictions multiplied by ρ. This strategy suffers larger loss
and the term 1

η ln 1
P0(θ) will be small in comparison. Thus the algorithm will allow better

differentiation of the weights, which may result in a better λLS-loss.
As discussed above, there is danger that the strategy with predictions multiplied by ρ

goes bankrupt. However, this will not propagate to the mixture.

Corollary 11 The aggregating algorithm applied w.r.t. the loss λLS,ρ and is conservative
and a-conservative for every a > 0.

Proof We still average experts predictions with some weights. While the weights may be
different to AA, the argument of Theorem 9 stays.

We may be affected by bankruptcy in the following way. If a ρ-multiple of an original
expert goes bankrupt, its weights in the algorithm drop to zero. Its future predictions
disappear from the mixture and the losses do not appear in the comparison. Still we do not
go bankrupt as per Corollary 11.

4.2. Downside Loss

The developments of this section are based on the following intuition.
From the practical perspective, the ability of a strategy not to lose money may be more

important than the ability to earn money. Consider a strategy that earns little money, but
does so very consistently and never looses much. This strategy can then be scaled up and
earn more money.

13
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Thus one often wants to minimise the drawdown of a trading strategy. There are
various indicators quantifying it; they are discussed in the next section. One cannot apply
AA directly to this problem because the notion of a drawdown is not local in time. Still
one can try and modify the loss function to penalise financial losses stronger.

Consider the downside loss function modifying the scaled Long-Short loss:

λLS,down,ρ(ω, γ) = max(− ln(1 + ρ〈ω, γ〉), 0) = − ln(1 + ρmin(〈ω, γ〉, 0))

This function penalises financial losses but does not reward gains.
The following statement can be made about its mixability properties.

Theorem 12 For λLS,ρ with a-bounded predictions and outcomes the average (4) attains
C = 1 for every g, where as before P is a probability distribution in Γ generating g.

Proof Consider a distribution P on Θ, and predictions γ(θ). One has

e−λLS,down,ρ(ω,γ) = 1 + ρmin(〈ω, γ〉, 0)

and therefore it is sufficient to prove that

1 + ρmin(〈ω,
∫

Θ
γ(θ)P (dθ)〉, 0) ≥

∫
Θ

(1 + ρmin(〈ω, γ(θ)〉, 0)P (dθ) .

This follows from the concavity of min(x, 0) in x and Jensen’s inequality.

It is important to point out that this loss function is really special. There is γ0 = 0 such
that 0 = λLS,down,ρ(ω, γ0) ≤ λLS,down,ρ(ω, γ) for any ω and any other γ. Technically C = 0
and the problem of prediction with expert advice is trivial for this loss function: the learner
only needs to predict 0.

Still applying the AA with λLS,down,ρ and the substitution (4) in meaningful and the
losses will satisfy Lemma 2.

4.3. Combined Loss Function

One can consider the combined loss function parameterised by scalings ρ1 ≥ 0 and ρ2 ≥ 0
and coefficients u ≥ 0 and v ≥ 0 (we assume that ρ1 + ρ2 > 0 and u+ v > 0):

λ(ω, γ) = − ln(ue−λLS,ρ(ω,γ) + ve−λLS,down,ρ(ω,γ))

= − ln((u+ v) + uρ1〈ω, γ〉+ vρ2 min(〈ω, γ〉, 0))

= − ln(u+ v)− ln

(
1 +

uρ1

u+ v
〈ω, γ〉+

vρ2

u+ v
min(〈ω, γ〉, 0)

)
Since this loss function is mixable (as we will see in a moment) the additive term − ln(u+v)
makes no difference and can be ignored. One may think of the combined function as having
only two parameters, uρ1/(u+ v) and vρ2/(u+ v), but speaking of four parameters may be
more convenient.
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Theorem 13 For any ρ1, ρ2, u, v ≥ 0 such that that ρ1 + ρ2 > 0 and u + v > 0, for
any a-bounded game, a > 0, with combined loss λLS,ρ and for η = 1 we have Cη = 1.
This is attained by the average substitution function (4), where as before P is a probability
distribution in Γ generating g.

Corollary 14 For any ρ1, ρ2, u, v ≥ 0 such that ρ1 + ρ2 > 0 and u+ v > 0, the aggregating
algorithm with the combined loss function in conservative and a-conservative for every a >
0.

5. Experiments

In this section we will provide empirical results to compare the performance of the Long-
Short game to the modifications proposed in section 4 on the same data as used in section
3.

5.1. Portfolio Performance Evaluation

To evaluate the performance we will be using well established portfolio risk measures. As
the games we are studying use returns over each trial to update the weight assigned to each
expert investor we will naturally use ROI of each learner’s portfolio as a measure of success.
However, it is typical to not only evaluate a portfolio base on return alone but rather the
risk-reward of the portfolio. The Sharpe ratio (Sharpe, 1966) of a portfolio P is a measure
of the amount of return an investor receives per unit of risk defined as:

Sharpe(P ) =
RP −Rf
σ(RP )

, (8)

where Rp denotes the return to the portfolio p and Rf the return of the risk-free asset. This
allows us to compare the risk of each of the learners portfolios, using the standard deviation
of the returns to the portfolio as a measure of volatility.

As we discuses in Section 4.2, one may be specifically interested in reducing the financial
losses. The Sortino ratio (Sortino and Price, 1994) is a measure of return per unit of
downside risk defined as

Sortino(p) =
RP −Rf
σ(Rd)

, (9)

where Rd denotes the downside returns to the portfolio P being the returns recorded less
than some target return. In the following we will assume the a return to the risk-free asset
of 0% and a target return of 0%, for the propose of performance comparison.

5.2. Empirical Results

Here we evaluate the performance of the proposed modifications the Long-Short game and
discuss the advantageous of the various investment strategies. As before we are using the
data introduced in Section 3 and making the same set of assumptions.

Fig. 4 shows us the ROI of an investor following the Long-Short (LS) game and Downside
Long-Short (DLS) game without combining loss functions, using a scaling constant ρ from
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Figure 4: ROI for increasing ρ Figure 5: ROI for increasing ρ1 = ρ2

0 to 100. In the standard games, without the use of scaling we can see the DLS strategy
outperforms the LS strategy with a return of 1.2% compared to 1.09%. The DLS portfolio
continues to outperform the LS game, with the initial difference between the two games
increasing, until a ρ value of 57, where the ROI of the two games meet. In Fig. 5, we extend
this to combined loss functions setting ρ1 = ρ2 from 0 to 1000 (sampling every 10 steps).
We see the ROI of the standard LS game continue to rise to a maximum of 4.96% at a
scaling constant of 330 and this is the highest ROI of any AA strategy tested.
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Figure 6: Number of bankrupt clients as return scaling constant increases.

We see that the performance of the algorithms at first improves with the growth of ρ
and then starts falling. According to Section 3 and 4 the improvement in performance is
caused by better differentiation in the experts’ weights and increase in the significance of
(3). This is offset the growth of the number of bankrupt experts. In Fig. 6 we plot the
number of clients with bankrupt trading strategies as the return scaling constant applied
to the experts loss increases. We see the number of bankruptcies steadily grows as ρ→∞
as we would expect as larger losses force client weights to zero. This may account for the
sharp drop in portfolio performance as ρ1 = ρ2 reach 1000. This is a clear representation
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of why we must increase the return scaling constant with caution as too large a value will
grantee a portfolio less than optimal performance.

However, evaluating a portfolio solely based on ROI dose not provide us with complete
understanding of the risk associated with the investment strategy. In Fig. 7 we have the
daily Sharpe ratio of the standard games of ρ values up to 100. Again, we observe in the
standard games the DLS produces a better result with a Sharpe ratio of 0.32 compared
to 0.25, suggesting an investor following the DLS trading strategy takes less risk per unit
of return. Both the LS and DLS games Sharpe ratio increased with an increasing ρ with
maximum values of 0.41 and 0.52 respectively; however, both games converge to a ratio of
around 0.4 as ρ → 100. In Fig. 8 looking at the Sharpe ratio for combined loss we see a
maximum Sharpe ratio of 0.55 at ρ1 = ρ2 = 40, where u = 2 and v = 1.

Figure 7: Sharpe ratio for increasing ρ Figure 8: Sharpe ratio increasing ρ1 = ρ2

The picture of the daily Sortino ratio on the other hand is noticeably different between
games, with the standard LS achieving a ratio of 0.45 and the standard DLS 0.61, suggesting
an investor following the DLS investment strategy earns a higher reward per unit of downside
risk. Here we see in games without combined loss the LS Sortino Ration fails to compete
with the DLS Sortino ratio. However, we can clearly see the benefit of combined loss in
Fig. 10 where all game with v > 0 far outperform those with v = 0.

In Fig. 11–14 we compare the ROI between the LS and DLS games (without combined
loss) skipping some initial training time where the weight of each client are adjusted. In
Fig. 11 we can see what appears to be a relatively steady growth over time suggesting after
an initial training period the performance of a strategy following the DLS steadily improves
upon that of the LS.

In Fig. 12 we see a similar pattern repeated with a ρ of 30 but with the difference in
ROI being less. However, again referring to Fig. 7 and Fig. 9 we see that the Sharpe and
Sortino ratio of the DLS portfolio far exceed that of the LS suggesting that whilst the ROI
is converging the DLS portfolio is preferable due to the fact the investor receives a greater
return per unit of risk. In Fig. 13 and Fig. 14 we see the pattern change with the ROI
of the LS game showing periods of greater ROI than the DLS. However, it is noteworthy
the increased ROI does not appear to be stable growth; this is reflected in the Sharpe and
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Figure 9: Sortino ratio for increasing ρ Figure 10: Sortino ratio increasing ρ1 = ρ2

Figure 11: DLS ROI - LS ROI, ρ = 1 Figure 12: DLS ROI - LS ROI, ρ = 30

Sortino ratios for increasing scaling constants failing to outperform the DLS portfolios in
the games without combined loss.

It is clear from these results there is no one set of parameters that is clearly optimal,
but that the introduction of the DLS game, return scaling and combined loss allows for
investment strategies that outperform the LS game. We observe that investor looking to
maximise returns will favour aggregating strategies where u > v and returns are scaled
far above their true value. Whereas, for more risk averse investors return scaling is still
effective however they may look to AA with higher v values especially where looking to
reduce downside risk.

6. Conclusion

We have shown the practical limitations of the Long-Short game and have introduced mod-
ifications with clear performance benefits in our experimental results.
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Figure 13: DLS ROI - LS ROI, ρ = 60 Figure 14: DLS ROI - LS ROI, ρ = 90

This study has presented a novel time series data set that describes client trades in
the Foreign Exchange market (Al-baghdadi and Lindsay (2020)), and has used this data to
introduce a method of deriving expert predictions from client positions. Return scaling of
the Long-short game has been introduced, aimed to address the practical issue of insufficient
discrimination of expert weights and has been shown to provide significant performance
improvements. We have also presented the Downside Long-Short game with the motivation
of reducing the downside risk of the investment strategy of the AA, which has proven to
be effective using the Sortino ratio as a measure of downside risk. Finally, we have used
combined loss functions to produce optimal performance of AA portfolios both maximising
returns and reducing risk.
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