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Abstract

In this study we focus on the application of Conformal Prediction (CP) interval estimations
to provide financial Market Makers (MMs) with some “meaningful” forecasts relating to
their future short-term position in a given financial market. The idea is that using these
market position forecasts, MMs can deploy proactive risk management strategies with a
given degree of confidence. We make use of a novel financial time series dataset that
comprises the net positions of a given MM over a three year period for trades pertaining
to the top-traded Foreign Exchange (FX) symbols. This dataset - NetPositionTimeSeries
- is noisy and complex. The net positions within it are generated from the trades of tens
of thousands of clients trading in different directions (buy or sell) and over many different
time horizons. We approached the problem of predicting future net position not as one
that required an accurate point estimate as this is impossible. Rather we sought to gain a
meaningful range of possible position bounds which would nonetheless be invaluable. In this
study we tested a range of predictive Machine Learning (ML) techniques. We compared the
CP framework to benchmark methods like moving average (MA) and quantile regression
(QR). We demonstrate how application of the CP framework gives well calibrated region
bounds on the MM net position forecasts.

Keywords: Prediction Intervals, Conformal Predictors, Time Series, Uncertainty, Net
Position Forecast, Market Makers, Finance, Risk Management, Foreign Exchange

1. Introduction

Financial market makers (or MMs), are a collective term describing companies that quote
both buy (bid) and sell (ask) prices in financial instruments, such as Foreign Exchange
(FX). MMs quote prices to many different market participants, from individuals trading
at home or on their mobile devices, to brokerages who forward the prices onto thousands
of their clients, to larger professional financial institutions such as investment banks and
hedge funds.
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When a market participant accepts a quoted buy or sell price from the MM, the MM
immediately places a corresponding sell or buy order from its own inventory or net position
to fulfil the order.

The MM has two linked objectives: 1) to make some profit from the bid-ask spread,
which is the difference between the price the MM quotes and the price it pays from its own
inventory, the former of which is always higher, and 2) to manage its market exposure or risk
by maintaining its position within some predefined bounds. Ideally the MM would prefer to
hold a neutral (or flat) position for most of the time. This is because whilst the MM holds
some amount of inventory, it remains at the mercy of any unfavourable price movements
in the wider market to the extent that unloading its inventory is no longer profitable and
may incur a significant loss. To help achieve the objectives of making profit and reducing
risk, MMs would benefit from being informed about what their market positions might be
at some point in the future. To the best of our knowledge, predictive models that provide
insight into future net position movements with a high degree of confidence are a relatively
uncharted area of research. This is the focus of the study presented here.

In this paper we apply the conformal prediction framework to predict a MM’s net posi-
tion within the next hour. Conformal prediction (see Vovk et al. (2005), Gammerman et al.
(1998)) is a technique with rigorous performance guarantees and has been used successfully
for classification and regression problems. Applying it to time series data is problematic
since it violates the main assumption of exchangeability. The latter states that the join
distribution of a sequence does not change under any permutation which is clearly not the
case for time series data such as the MM position dataset tested in this study.

To deal with this problem, modifications to the conformal framework were proposed by
Balasubramanian et al. (2014, pp. 183–184), where one assumes that a sample only depends
on time window W. Other applications can be found as below (note this is a non-exhaustive
list):

• Dashevskiy and Luo (2011) where Prediction with Expert Advice and Conformal
Predictors (CP) is performed and despite the violation of exchangeability, empirically
valid intervals were obtained.

• Chernozhukov et al. (2019) where an extension of the applicability of conformal infer-
ence to time series data is performed within the framework of randomisation inference.
The authors provide approximate validity under weak assumptions on the conformity
score when the exchangeability condition is violated (ex. i.i.d residuals will suffice).

• Kath and Ziel (2019) applied CP framework to short-term electricity price forecasting
in different markets. They found CP framework to give reliable results, moreover they
a path dependent evaluation study of key aspects of CP was conducted.

In this study we will use an Inductive conformal prediction (Johansson et al. (2014)) using
the window approach which is also recently proposed in Kath and Ziel (2019). Moreover we
will compare a number of machine learning algorithms combined with CP to the respective
quantile regression models and a simple benchmark, a moving average where the confidence
bounds are proportional to moving standard deviation.

We also make use of several performance measures and interval forecast statistical tests
in order to assess efficiency and validity of the prediction intervals.
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2. Conformal Prediction

For our task the Inductive version of CP (ICP) is used and what follows is a brief description
of the main principles and assumptions of ICP. Conformal prediction yields valid prediction
intervals that meet the designated confidence level 1−α. We assume that there is no long-
range dependence between the observations in order to fit CP to a time series framework.
Conformal Prediction is very versatile with applications in regression, classification or an
online or batch setting. It adds an interval estimate to an existing point forecasting model
with the help of a non-conformity score λ which determines how uncommon an observation
is in comparison to the real value. A fuller discussion of this is provided in Vovk et al.
(2005).

Suppose we have:

• The out of rolling sample prediction scheme (see Figure 1) on dataset D, where a
model is re-trained, re-calibrated and re-tested on rolling dataset Dh, where the entire
dataset is defined as D := ∪hDh .

• A dataset Dh = {(x1,h, y1,h) , ..., (xL,h, yL,h) , (xL+1,h, yL+1,h)} that we split into:

1. A training set
Dtrain,h= {(x1,h, y1,h) , ..., (xM,h, yM,h)}

2. A calibration set
Dcalib,h = {(xM+1,h, yM+1,h) , ..., (xL,h, yL,h)} .

3. A test set
Dtest,h = {(xL+1,h, yL+1,h)} .

• A model that exploits Dtrain,h for training and yields estimate ŷi. We train on Dtrain,h

and supply it with the data of Dcalib,h to obtain unbiased out-of-sample alike estimates
ŷM+1,h, ..., ŷL,h,

• The simplest non-conformity score λi,h = |yi,h − ŷi,h|, only applied on the estimates
in Dcalib,h.

Figure 1: Out-of-sample rolling estimation scheme. The windows slides and new Dtrain,h,
Dcalib,h and Dtest,h are constructed and fed to the conformal prediction algorithm.
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The division into training and calibration is essential since we explicitly fit a model on
Dtrain and exploit Dcalib in an out-of-sample context. The point forecast model is trained
to minimize the error made for Dtrain. For the determination of non conformity scores the
threshold value λαL+1,h is identified by the equation (based on Johansson et al. (2014))

λαL+1,h := min
x∈{λM+1,h,...,λL,h}

{
x :
|{i = M + 1, .., L : λi,h < x}|+ 1

|Dcalib,h|+ 1
≥ 1− α

}
. (1)

The following symmetric interval comprises the true net positions with confidence 1−α
under exchangeability in the underlying dataset

ŷL+1,h ± λαL+1,h. (2)

It is worth mentionning that this approach does not take into account the possible issue
of heteroscedasticity. Since net position manifests volatility clustering we also use the
approach referred to as Normalized Conformal Prediction that overcomes this issue. The
non-conformity score now becomes

λi,h =
|yi,h − ŷi,h|

ε̂i,h
, (3)

with ε̂i,h is the estimation of accuracy/error or the corresponding prediction. A separate
model is used that predicts those errors in parallel. The interval forecast is now given by

ŷL+1,h ± (λαL+1,hε̂L+1,h). (4)

3. Proposed Approach

In this section we briefly present an overview of the dataset used in this study. We then
describe pre-prossessing and feature engineering of the data and then move onto presenting
the machine learning models that were applied.

3.1. The NetPositionTimeSeries Dataset

The publicly available NetPositionTimeSeries dataset (Lindsay (2020)) comprises the his-
toric net positions accumulated from a sample of a MM’s client flow during January 2014
to January 2017. Positions are based on the MM’s 5 most liquid currency pairs during
that time (e.g. EUR/USD). Net positions are measured hourly and in US dollars (USD).
Figure 2 illustrates how the MM’s position changes in size and direction over time and ac-
cording to the type (buy or sell), size (amount) and sequence of orders made by the MM’s
clients. Essentially the MM position changes are equal and opposite to those of its client
order fills.

Figure 3 provides three perspectives of the NetPositionTimeSeries dataset. Assessing
each plot in turn (from left to right), we can ascertain that in this dataset:

1. Net position across the three years is volatile and fluctuates between 40 mio1 USD
short and 120 mio USD long. In 2014 net positions are mostly long, whereas from

1. mio: an abbreviation of million(s) .
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Figure 2: How a market maker’s net position changes over time. The MM’s position is
categorised as being FLAT, LONG or SHORT if the position size is on, above or
below the horizontal axis, respectively.

mid 2014 onwards they tend to be short and of smaller magnitude (+ 20 to - 40
mio USD);

2. The volatility of the position changes each hour varies through time too, for
example in early 2014 we observe jumps of +/- 70 mio USD, which then settle
down thereafter typically +/- 15 mio USD;

3. The autocorrelation of the time series is significant up until a window of approx-
imately 60 days perhaps due to that being the maximum holding period of most
of the MM’s clients.

It is important to remember that this complexity in the data arises from the fact that the
net positions are an aggregation of thousands of different clients trading many different
markets with different amounts of capital, over different time horizons and with different
motivations.

In this study we attempt to apply various regression models to this NetPosition time
series data, however the effective usage of these algorithms require stable variance within
the data, to combat this we apply the following so called Yeo and Johnson transformation
to standardised Net position data. (see Yeo and Johnson (2000)).

Y eoJohnsonTransform(β, yh,t) =


((1+yh,t)

β−1)
β if β 6= 0, yh,t ≥ 0

log(1 + yh,t) if β = 0, yh,t ≥ 0
((1−yh,t)2−β−1)

(β−2) if β 6= 2, yh,t < 0

−log(1− yh,t) if β = 2, yh,t < 0.

(5)

Note that β is estimated and yh,t is standardised net position data.

3.2. Feature engineering and estimation scheme

As previously stated, this study will apply several machine learning (ML) techniques to
the NetPositionTimeSeries dataset. This requires us to consider the features used by the
ML algorithms in order to augment their performance. The dataset is relatively noisy as
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Figure 3: Visualisation of the NetPositionTimeSeries dataset. The left plot shows the net
position time series that we are trying to forecast in this study. The first order
difference in the time series is shown in the middle plot. The right plot shows the
auto-correlation of the time series to itself given window sizes up to 120 days.

described above, therefore we chose to generate a few features for the ML’s to work with. For
instance, analysis of the average net position by hour over the course of a week (Figure 4)
shows obvious seasonality with respect to variance. One can ascertain that changes in
position are linked to time of day and day of week. In the currency markets worldwide,
there are three main trading sessions which are reflected in the weekday plots in Figure 4.
We can observe:

• a gradual increase in activity as Asia trading hours commence (22:00 previous day to
06:00 next day UTC);

• a noticeable accumulation in activity as the trading day in London / Europe com-
mences (06:00 - 16:00 UTC);

• activity becomes busier still as trading in the USA commences (16:00 - 22:00).

Taking into account the nature of NetPositionTimeSeries discussed above, we included
the following extra derived features (which are also supplied in Lindsay (2020)):

• Hour;

• Weekday;

• Four binary variables denoting if a given market is open or closed;

• Time until opening and closure of every market, and

• Lagged net position for the last 24 hours.

Note that the latter features are discarded for the LSTM model (which is introduced later),
since it can learn dependencies ranging over long time intervals.
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Figure 4: Average Net Position in millions of USD on the hourly basis for every day of the
week. The vertical bars accounts for one standard deviation which is an evidence
of presence of important noise in the dataset.

We split the resulting dataset into training and testing with a ratio of 80/20. We apply
the out of rolling sample prediction scheme (see Figure 1) where a model is re-trained and
re-calibrated every 5 days. On each epoch the training dataset spans over 14k hours and is
used for prediction every hour for the next 5 days. Moreover we tuned the hyper-parameters
using walk forward cross-validation with random grid search method. Parameters which
minimised so called Quality-Driven Loss Function (Pearce et al. (2018)) for each p-value α
were chosen:

LossQD = MPIWcapt +
n

α(1− α)
max(0, (1− α)− PICP )2

where:

MPIWcapt = 1
c

∑
t∈Dtrain(Ût,h(α)− L̂t,h(α)) · ki

PICP = c
|(Dtrain|

c =
∑

t∈Dtrain kt

ki = 1{L̂t,h(α)≤yt,h≤Ût,h(α)}
L̂t,h(α) : predicted lower confidence interval

Ût,h(α) : predicted upper confidence interval

This loss was designed to minimise the width of the confidence intervals subject to capturing
a desired proportion of observations (i.e. 1− α).

3.3. Prediction models

This section gives a brief overview of the diverse ML models tested in our study. Implemen-
tations were carried out in Python using scipy and keras libraries, applying the Conformal
Prediction (CP), Normalised Conformal Prediction (NCP) and Quantile Regression (Q)
versions of the following ML models:

• K-nearest neighbours: simply outputs the average of the values of k nearest neighbors
with respect to a given distance metric.
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• Lasso linear regression: is a regularised version of a regression model. It can reduce
model complexity and prevent over-fitting by adding a constraint (l1 loss) on the
weights therefore penalising it. It is known feature is that it regularises and performs
variable selection.

• Gradient Boosting: is an ensemble technique in which the predictors are trained
sequentially (the error of one stage is passed as input into the next stage).

• Random forest: another ensemble technique where the prediction in the average out-
put of many regression trees.

• LSTM (Long Term Short Term Memory): is a Recurrent Neural Networks (RNN)
designed to handle sequence dependencies, therefore it a popular choice for time series
prediction. A LSTM network enables learning long term dependencies thanks to its
so called “gates” that decide which information to remember and which to forget.
A bidirectional LSTM (BiLSTM) is an extention where two LSTMs are applied in
each direction, i.e. the algorithm learns on the input sequence and its reverse. In our
experiments we use a one layer BiLSTM with tanh activation functions followed up
by a dropout and dense layer.

3.4. Benchmark

Moving averages (MA) are widely used in financial forecasting (more commonly to predict
prices) with the full understanding of their limitations of being a crude lagging indicator of
movement. The prediction for the next time epoch is the rolling mean and the confidence
interval is constructed by adding and subtracting the respective rolling standard deviation
multiplied by a constant. We assume that these forecasts are normal α quantiles i.e. 95% is
2 standard deviations (stdev) away from the mean, 99.7% is 3 stdev etc. We can expect that
the position in the very distant past is less relevant than the position one hour ago. Moreover
as demonstrated earlier in Figure 3 there are regime shifts in volatility therefore a well chosen
window size is key for the moving average. A badly chosen window would negatively impact
the interval estimates and one would expect a trade-off between mean/width and desired
coverage rate of estimated intervals. Figure 8 provides an illustration of this trade-off where
the performance of MA with respect to various window sizes is tested. We see that, at some
point, width and standard deviation become too significant hence for benchmark purposes
a window of 100 hours was selected.

Figure 5 shows the net position confidence predictions (upper and lower bound predic-
tions at a 95% confidence level) from May 2016 to Dec 2016 for Linear Regression along
with its meta-learning overlays: Q (shown in red), CP (grey) and NCP (green). Also shown
is the best benchmark 100-hour MA (blue). As expected it is apparent that the MA pre-
dictions lag behind the actual net position (indicated by the thick black line). Briefly we
also observe variability in the various implementations of the Linear Regression model. CP
predictions (grey) are wider than the Q predictions (red), the latter being a little too tight
to the true position (black) which deviates outside of this.
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Figure 5: Example of both Linear Regression (with Q, CP and NCP meta-learning overlays)
and the benchmark 100 hour Moving Average upper- and lower-bound predictions
at a 95% confidence level, for the period May 2016 to Dec 2016. The black line
represents the actual net position. For readability, a magnified portion of the plot
is shown inset for predictions for late May 2016

3.5. Performance measures

In this section we will present the measures, statistical tests and losses which were used to
assess forecasting performance. Losses are commonly used in interval forecasting or in back-
testing Value-At-Risk models. Intuitively, one would consider width histogram or coverage
rate as appropriate measures of performance. We define coverage rate as follows:

Coverage =

∑
t∈Dtest 1{L̂t,h(α)≤yt,h≤Ût,h(α)}

|Dtest|

where the true value yt,h ∈ Dtest , L̂t,h(α) is the lower limit and Ût,h(α) is the upper limit
of a forecasting interval. The higher the coverage rate, the more desirable the prediction
model.

The width of an interval forecast Wt,h is defined as follows:

Wt,h = Ût,h(α)− L̂t,h(α)

In practice, the coverage rate and width interval measures may lead to controversial
evaluations since a good coverage rate does not indicate if the width of confidence intervals
is optimised. Therefore the Winkler score (Winkler (1994)) is preferred. For (1 − α)100%
prediction interval, it is defined as follows:
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WinklerScore =


Wt,h if L̂t,h(α) ≤ yt,h ≤ Ût,h(α)

Wt,h + 2 · L̂t,h(α)−yt,hα , if L̂t,h(α) ≥ yt,h
Wt,h + 2 · yt,h−Ût,h(α)α , if Ût,h(α) ≤ yt,h

.

The Winkler score gives a penalty if yt,h is outside the prediction interval and a lower
score indicates a better prediction interval.

A wide variety of tests have been proposed to evaluate the performance of VaR models,
which will be useful in our case. These VaR performance tests can be classified into two
groups, those based on any statistical test and those based on the loss function. The former
only show whether VaR estimates are accurate hence are limited in use because they do not
allow for comparison of models.

A well-known tool, that estimates the conditional quantile, is the so-called pinball loss.
It is usually used in quantile regression and is quantile specific. We average pinball losses
together (for quantiles α

2 and 1− α
2 and taking the average of the latter as the final result)

in order to calculate the loss for a prediction interval. The pinball loss is defined as follows:

Lossαpinball(q̂yt,h(α), yt,h) =

{
(1− α)(q̂yt,h(α)− yt,h) for yt,h < q̂yt,h(α)

α(yt,h − q̂yt,h(α)) for yt,h ≥ q̂yt,h(α),

where q̂yt,h(α) is the α-th estimated quantile of the hourly net position time series yt,h. Note
to optimise the pinball loss, the actual value series needs to be less than quantile prediction
100α percent of the time.

The unconditional coverage test, the conditional coverage test and the independence
test of Christoffersen (1998) are the most common backtesting procedures for VaR model
evaluation. In order to implement these statistical tests a so-called exception binary variable
has to be defined:

I(L̂t,h(α), Ût,h(α), yt,h) =

{
0 for L̂t,h(α) ≤ yt,h ≤ Ût,h(α)

1 otherwise

We have an exception when the observation is outside the predicted interval.
The unconditional coverage test assumes that an accurate interval provides an uncon-

ditional coverage (UC), i.e.

P[I(L̂t,h(α), Ût,h(α), yt,h) = 1] = α

The conditional coverage(CC) test proposed by Christoffersen (1998) jointly examines whether
the model generates a correct proportion of failures and whether the exceptions are statis-
tically independent of one another i.e.

P[I(L̂t,h(α), Ût,h(α), yt,h) = 1|Ft−1)] = α

where Ft−1 denotes the set of information available at time t−1. The independence property
means that past exceptions should not be informative about current and future exceptions.
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4. Experiments and Results

4.1. Calibration of prediction intervals

As previously stated, the CP framework provides guarantees for a given error rate α under
the exchangeability assumption. These calibration charts in Figure 6 give a good overview of
whether the models tested are well calibrated as well as the effectiveness of their predictions.
We not only want the predictions to be well calibrated but as tight as possible (i.e. the
upper and lower bounds of the prediction intervals as small as possible). For each of the
models, we evaluated their prediction intervals using 19 different confidence levels (5% to
95%). Unsurprisingly, MA (top left of Figure 6) was not calibrated for any confidence level,
and had the widest prediction intervals with 15mio USD at 95% confidence. As shown
earlier in Figure 5, the Linear Regression models tended to predict very tight prediction
intervals < 2.5% at 95% confidence for the Q implementation, this results in the error rate
deviating above the calibration line. Application of CP does make Linear Regression results
calibrated yet at the cost of widening the prediction intervals to 10mio USD.

With the K-Nearest Neighbours and Decision Tree results we see the best calibration
with Q overlay, with CP/NCP showing slight deviation above the diagonal line of calibra-
tion. Interestingly the region widths are wider than that of the benchmark MA model,
however the Decision Tree predictions are reasonably tight apart from the NCP Decision
Tree result of 19mio USD at 95% confidence. The best results are demonstrated with the
more sophisticated ML techniques - Gradient Boosting and LSTM - both of which show
good calibration for all meta learning overlays as well as tight region widths < 10mio USD
up to 95% confidence.

Further insight into the comparison of the prediction intervals of each ML method is
provided by the box plots in Figure 7. These offer us a view of the standard deviation of the
prediction intervals, rather than just the means as shown in Figure 6. With few exceptions
the benchmark 100 hour MA under-performs and most algorithms have significantly better
average and standard deviation of forecast interval widths. We notice that for all ML models
except for K-Nearest Neighbours, the NCP overlay gives the largest standard deviation. We
can see most of the box plots for NCP and Q meta learners show outliers on the larger region
widths blowing out to 40mio USD.

4.2. Reliability of prediction intervals

Table 1 captures all considered performance measures at significance level α = 0.05. The
table is sorted with respect to the average width of prediction intervals. The top three
models for each performance measure are highlighted in bold. It appears that the two
models that come up on top are Q Gradient Boosting and CP Linear Regression (as seen in
Figure 5). The CP Linear Regression manifests the lowest standard deviation which suggests
that the other models are over-fitting. We believe this is due to the high noise level in the
data therefore it makes sense that the model with the lowest complexity generalises the
best. Moreover the CP framework yields narrower prediction interval which is probably
why the NCP normalisation models overestimate the uncertainty of the prediction error.
For comparison between all algorithms with respect to the Winkler score and pinball loss
for each ML model at different confidence levels, see Figure 11 and Figure 10.
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Figure 6: Plots charting the error rate (left vertical) and mean region prediction width
(right vertical) for various confidence levels (horizontal axes) for each of the ML
models (with different meta-learning overlays) tested. The dashed diagonal line
shows the ideal level of calibration: the goal is for the actual error rate (green
lines) to be below this. The orange lines show the average width of the region
predictions at each confidence level; intuitively higher confidence requires larger
confidence regions. The 100 hour MA benchmark is shown in the top left.
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Figure 7: Box plots of the prediction interval width distributions for the various ML tech-
niques tests. The 100 hour MA benchmark is shown in blue (leftmost), with
all ML models, CP, NCP and Q versions are coloured orange, green and red
respectively.

Table 1: Table summarising the experimental results for 95% theoretical confidence level
for all ML models and their meta-learning overlays. Coverage scores marked in red
denotes predictors with empirical coverage lower than 95% (i.e. not calibrated).
Scores in bold font indicate top three predictors for a given performance measure.

Predictor Coverage Mean width Std width Winkler Pinball Type

Linear Regression 74% 2.30·106 8.25·105 1.58·107 1.97·105 Q
RandomForest 93% 7.57·106 4.20·106 1.22·107 1.52·105 Q
GradientBoosting 95% 8.00·106 3.45·106 1.13·107 1.41·105 Q
Linear Regression 97% 8.20·106 6.58·105 1.13·107 1.42·105 CP
RandomForest 96% 8.72·106 6.76·105 1.21·107 1.51·105 CP
LSTM 97% 8.89·106 2.59·106 1.19·107 1.49·105 CP
LSTM 97% 9.12·106 4.26·106 1.18·107 1.48·105 Q
GradientBoosting 94% 9.93·106 1.27·106 1.44·107 1.80·105 CP
Linear Regression 97% 1.02·107 3.94·106 1.23·107 1.54·105 NCP
GradientBoosting 96% 1.06·107 5.22·106 1.30·107 1.63·105 NCP
LSTM 96% 1.21·107 7.39·106 1.46·107 1.83·105 NCP
MA 84% 1.46·107 7.66·106 2.64·107 3.29·105 Benchmark
K-NearestNeighbours 95% 1.60·107 4.33·106 1.93·107 2.42·105 Q
RandomForest 97% 1.83·107 7.56·106 1.96·107 2.45·105 NCP
K-NearestNeighbours 93% 2.14·107 3.47·106 2.81·107 3.52·105 CP
K-NearestNeighbours 93% 2.43·107 3.18·106 3.07·107 3.83·105 NCP
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4.3. Statistical evaluation of interval forecasts

We apply Christoffersen (1998) tests in order to examine unconditional coverage (UC), and
conditional coverage (CC). The results are reported in the Table 2. UC tests for the true
coverage while CC takes clustering effect into account. It is worth mentioning that CC is a
joined unconditional coverage test and independence test that simultaneously checks if the
percentage of exceptions is correct and if the exceptions are independent.

We remark that across all significance levels, CP, LSTM and Gradient Boosting have
a high pass rate ( > 70% ) of the UC test, which suggests their exact calibration (see
Figure 9 to inspect deviation from the significance levels). For NCP the pass rates are
significantly lower i.e. in the 10 − 20% range. For Q, only Gradient Boosting has a high
pass rate. On the other hand, CC tests are widely rejected across all significance levels.
This suggests the presence of clustering of errors. This could be explained by high volatility
and unpredictability of the net position caused by periodic high client trading activity as
previously described.

Table 2: Statistical coverage test results. The percentage score is the average success rate
of passed tests across all considered significance levels (19 levels from 0.05 to 0.95).

Predictor Type UC CC

Gradient Boosting CP 79% 0%
Gradient Boosting NCP 21% 5%
Gradient Boosting Q 68% 0%
K-Nearest Neighbours CP 0% 0%
K-Nearest Neighbours NCP 0% 0%
K-Nearest Neighbours Q 5% 0%
LSTM CP 74% 0%
LSTM NCP 11% 0%
LSTM Q 0% 0%
Linear Regression CP 11% 0%
Linear Regression NCP 11% 0%
Linear Regression Q 11% 0%
MA Benchmark 0% 0%
RandomForest CP 11% 0%
RandomForest NCP 21% 0%
RandomForest Q 11% 0%

5. Conclusion and perspectives

In this paper we applied Conformal Prediction (CP) to a financial time series problem.
We explained the practical rationale underpinning our study which is the value that a
market maker (MM) places in being able to estimate its future net position with some
degree of confidence. Forecasting net positions has significant implications for a MM being
able to both maximise its profit and mitigate risk. We used a novel time series dataset
(NetPositionTimeSeries - Lindsay (2020)) which consists of hour-by-hour net positions of a
MM over a three-year period starting from Jan 2014. To forecast net positions, we tested
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a range of ML algorithms where CP works like a secondary layer and outputs confidence
intervals to the forecast. Through comparison with a basic benchmark (rolling mean) and
quantile regression we showed that CP, in most cases, is well calibrated throughout all
significance levels and lives up to the expectations of delivering valid prediction intervals.
In terms of performance measures such as mean and standard deviation of the width of
prediction intervals, Winkler score and pinball loss, CP yields comparable or slightly better
results than quantile regression.

It is worth pointing out that on average quantile regression yielded narrower prediction
intervals than NCP (see Figure 7) hence ideally one would investigate combining quantile
prediction with CP framework. A recent study by Romano et al. (2019) proposed this
idea, however when we carried out preliminary implementation of this so called confor-
malised quantile regression with our data we did not observe any significant improvement
in predictive performance.

In carrying out this work we have along the way identified several relevant questions
which future research could help in answering:

• What is the impact of altering the size of the training and calibration set on predictive
performance?

• How does the performance of the ML forecasts compare to those of classical time
series models?

• What would be the effect of drilling down into the problem, e.g. can we consider
prediction of long and short positions separately?

• Can we add relevant exogenous data in order to improve the accuracy of prediction
intervals and therefore detect big jumps of the net position more precisely?
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Figure 9: Difference between theoretical and empirical coverage across all confidence levels
for all interval prediction methods.

Figure 10: Pinball loss

Figure 11: Winkler score
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