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Abstract

In this paper, we introduce a new form of meta-feature that is based on a distance-weighted
class-homogeneous neighbourhood ratio to facilitate algorithm selection. We show that
these new meta-features, while exhibiting a cost advantage, achieve a comparable, and
in some cases, higher performance than conventional meta-features. These results were
obtained via experiments conducted over artificial datasets and real-world datasets from
the UCI repository. We further redefine the algorithm selection problem by advocating that
accuracy should be calculated based on the assumption that the population of datasets is
uniformly distributed. Finally, in this paper, we provide a new perspective on landmarkers,
such that a landmarker corresponds to a tuple (algorithm, metric), and propose the idea
of a new family of meta-features.
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1. Introduction

According to the No Free Lunch Theorems (Wolpert, 1996b,a), there is no single algorithm
that uniformly outperforms every other algorithm over all problems, thus necessitating al-
gorithm selection. However, given the plethora of new algorithms available, the task of
choosing an algorithm has become complicated and time-consuming. Consequently, the
need for algorithm selection mechanisms that do not require human intervention has in-
creased, shifting the attention to Automatic Machine Learning (AutoML). As a result,
several automated versions of popular machine learning platforms have been implemented,
including Auto-Weka (Thornton et al., 2012) and Hyperopt-sklearn (Komer et al., 2014).

Since the seminal work by Rice (1976), significant research has been done on algorithm
selection via meta-learning, which utilises various meta-features and learning algorithms
(Aha, 1992; Brazdil et al., 2008; Ali and Smith, 2006; Lee and Giraud-Carrier, 2013; Brazdil
and Giraud-Carrier, 2018). Moreover, it has inspired the expansion of meta-learning to solve
various types of problems (Smith-Miles, 2009; Vilalta and Drissi, 2002; Kalousis and Hilario,
2001; Ali and Smith, 2006).

In this paper, we propose and experiment on a new form of meta-feature that is based
on a distance-weighted class-homogeneous neighbourhood ratio. In our experiments, we
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compare the proposed meta-features against more conventional meta-features based on both
the typical notion of accuracy, and on one that assumes that the population of all datasets
(at least in terms of algorithm superiority) is uniform. FEssentially, we assume that most
real-world repositories would not be drawn i.i.d. from the population of all classification
problems, and as such, the datasets from such repositories would probably not represent
the unknown distribution governing the population of all possible classification problems.

Our results show that the proposed meta-features, while being more computationally
efficient, are comparable to conventional meta-features, especially when trained on imbal-
anced data.

This paper summarises related work that has been done in the field of meta-learning in
Section 2. In Section 3, we propose a new perspective on landmarkers, and suggest new
meta-features based on a distance-weighted class-homogeneous neighbourhood ratio. This
is then followed by Section 4, which describes the experiments conducted over artificial and
real-world datasets to compare the performance of our proposed meta-features to that of
conventionally used meta-features. Then, in Section 5, we analyse the results obtained from
the experiment, before concluding with a summary of the findings and future work.

2. Related Work

Adapted from Rice (1976), Figure 1 describes the prototypical algorithm selection frame-
work. A base-level dataset D is a sample classification problem drawn (assumedly i.i.d.)
from the population that governs classification problems in the problem space P. Each
base-level algorithm a in the algorithm space A is trained over D to produce a base-level
model, a(D) = m,. When the model is tested on unlabelled instances (i.e., from the test
set), the performance IT of each model can be computed with some evaluation method F,
ie., E(mg) =1I,,,. A meta-label generator T' takes each model’s performance as an input,
and computes the meta-label of the dataset, T'({Iln,|a € A}) = Yp. The meta-features
Xp are generated using a feature-extraction function G, i.e., G(D) = Xp.

Base-level dataset | Base-level algorithm a | Bage-level model | Evaluation method E Performance
D Mg Test set I,
Feature extractor Meta-label generator
G T
Meta-features Meta-label
Xp Yp

Meta-dataset
S

Meta-learner a'

Algorithm selection model
M

Figure 1: The algorithm selection framework.
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The meta-features Xp and meta-labels Yp of a base-level dataset D together form
one instance in the meta-dataset S = {(Xp,Yp)|D € P}. The algorithm selection model
M is produced by training a meta-learner a’ over the meta-dataset S, a/(S) = M. The
algorithm selection model M takes a new base-level dataset D’ as input and predicts a
suitable algorithm a* for it, such that the base-level model a*(D’) = mg+ has the highest
performance under the specified evaluation method E. That is, a* = arg max,¢ 4 IL,,, .

The chosen meta-features Xp should capture the complexity and other characteristics
of the base-level dataset D (Smith-Miles, 2009). The Statlog Project (Michie et al., 1994)
categorised 16 dataset characteristics into 3 groups: simple measures, statistical measures
and information theory measures. Further research contributed to the domain of meta-
features with the addition of landmarkers (Pfahringer et al., 2000) and meta-features based
on the structural properties of a model (Peng et al., 2002). A more comprehensive review
of meta-features can be found in a recent survey by Vanschoren (2018).

In a recent review (Lorena et al., 2019), complexity measures based on different struc-
tures were discussed. However, in that work different types of complexity were not defini-
tively categorised. Building on the factors of complexity for classification problems given
by Ho and Basu (2002), we define the following specific categories of complexity:

1. Complexity of decision boundary: The decision boundary estimates the difficulty in
separating the instances of different classes and assigning a class to a new instance.

2. Imbalance: Proportion of instances in each class.
3. Spatial distribution of the data

e (Class-wise coverage: the distribution of the instances within each class.

e Overall coverage of the space: the distribution of the instances in the whole
dataset.

While a significant proportion of the work done on algorithm selection has been focused
on meta-features, other variations in the prototypical framework include changes in the
meta-learner and the meta-label.

Any traditional algorithm used in base-level machine learning can be used as a meta-
learner. This includes decision trees (Pfahringer et al., 2000), support vector machines (Kim
et al., 2017) and neural networks (Mishra et al., 2017). Another conventional meta-learner,
which is also used in this paper, is k-Nearest Neighbours (Brazdil et al., 2008; Pfahringer
et al., 2000).

There are three different ways of generating meta-labels. The first returns a single
superior algorithm a* (such that a* = argmax,c 4 II,,,). The second selects a group of
algorithms, including the most superior one and others whose performance are not signifi-
cantly different. The third approach ranks all the algorithms (Brazdil and Soares, 2000) via
ranking-based systems such as predictive clustering trees (Todorovski et al., 2002). Other
methods introduce measures that combine accuracy and time (van Rijn et al., 2015; Soares
and Brazdil, 2000).
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3. A New Perspective on Landmarkers

3.1. Prototypical Landmarkers and a New Perspective

A prototypical landmarker has been described as a computationally cheap and efficient
algorithm a. A model m, is generated by training a using dataset D. Typically, the per-
formance II,,, serves as the meta-feature, with the evaluation method E corresponding to
prediction accuracy (Pfahringer et al., 2000). Such meta-features derived from the land-
markers provide a more direct characterisation of the dataset, as compared to conventional
meta-features, which tend to measure very specific characteristics that may not be relevant
to the chosen set of base-level algorithms.

The two criteria initially proposed for selecting an algorithm to be used as a landmarker
are efficiency and bias diversity (Pfahringer et al., 2000). Efficiency is a criterion since we
wish to reduce computational cost, while the bias diversity criterion is based on the desire
to provide a wider spectrum of dataset characteristics.

This definition of a landmarker assumes the use of a static performance metric 11,,, to
serve as a meta-feature. We extend the definition of the evaluation method E and propose a
new definition for landmarkers: a landmarker (a, E) consists of any single algorithm a that
is applicable to the dataset D being characterised, and any metric E that is measurable on
the model m,, where a(D) = m,. There are many potential metrics that may be used as
E, including, but not limited to: (i) the conventionally used performance metric I1,,,, e.g.
accuracy of the model m,, and (ii) the characteristics of m, itself, e.g. number of leaves
and nodes of mg, when m, is a decision tree model (Peng et al., 2002).

In this paper, we introduce a new metric: a distance-weighted class-homogeneous neigh-
bourhood ratio, to facilitate algorithm selection.

3.2. The Distance-Weighted Class-Homogeneous Neighbourhood Ratio

Consider a dataset D with n labelled instances, each having an m-dimensional feature
vector x. That is, D = {(x1,91),(X2,%2), ..., (Xn,Yn) }, where x; = {25 1,Zi2,...,Tim},
and y1,¥2,...,Yyy are the labels. The distance-weighted class-homogeneous neighbourhood
ratio (3, of instance (x;, yi), is defined as:

_ 2 (g, ) ENN (i, i), uy, iy 10D (X35 X5) ,
B<Xi,yi> - Z im}d(x- X‘) ( )
(x5, y;)€D\{{xi, vi)} iy Xj

where

uy, = {(xj,9;) € Dlyi = y;}[ -1 (2)

NN (x5 yi) s uy,) = {(x5, y5) € DNy wid | % = x5 < d(xiyuy, )} 3)

1
L[| = x|

(4)

and d(x;, uy,) is the Euclidean distance between the instance with feature vector x; and the
uy,-th nearest instance to it. In plain words, the -value of an instance (x;,y;) is defined as

invd (Xi7 Xj) =
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the ratio of: (i) the sum of the inverse-distances (Equation 4) over instances with label y;
among the w,, nearest neighbours of (x;,y;), where the value of w,, is the number of other
instances in the dataset with label y;, to (ii) the sum of the inverse-distances over all other
instances in the dataset. Our proposed landmarker is thus (a*, 5), where a* is an algorithm
that, when trained over D, produces the target labelling function f*.

The (-value of the instances in a labelled dataset reveal the distribution of instances
within a class (class-wise coverage) relative to the distribution in the whole dataset (overall
coverage of the space). This can be illustrated in the following example.

Consider the simple classification problem shown in Figure 2. The feature space is a
2-dimensional Euclidean plane and there are only two distinct clusters, each containing
instances of a different class. The diameter of the blue cluster, representing class 0, is
di, and that of the orange cluster, representing class 1, is ds. The separation between
the two clusters is d3. The figure illustrates high cohesion (compact clusters) and high
separation (d3 > max(dy,d2)). Under our definition of u,, in Equation 2, the “nearest
neighbours” (as produced by Equation 3) for each instance in the example, correspond to
all the instances in the same cluster (since those all of instances share the same class). This
maximises the numerator of Equation 1, and thus maximises the S-value of each instance.
As the separation increases, i.e., d3 tends to infinity, the proportion of weighted distances
to instances of the other class in the denominator of Equation 1 becomes smaller, and the
B-value of all instances tends to 1 (note: 5 can be equal to 1 in special cases where all the
instances in a dataset are of the same class).

A
Feature 2

L . L Y J
A dy dy

>
>

Feature 1

Figure 2: A simple classification problem.

Consider a slight variation of the above example, where an instance of class 1 (orange)
is added to the cluster of class 0 (blue). One should expect that this newly added instance
would be difficult to correctly classify. For this instance, all of its “nearest neighbours”,
as produced by Equation 3, are in the blue cluster — these are all of the opposite class as
compared to the instance in question. The numerator in Equation 1 of that added instance
is 0, as is its B-value.

We can see that the S-value of an instance considers both cluster cohesion and sepa-
ration, and suggests the complexity of classification at instance level. The range of 3 is
[0,1].

B is inspired from the silhouette score (Rousseeuw, 1987), s, such that:
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__pb=a (5)
max(p, q)
where p is the mean distance between an instance and all other instances in the same cluster,
and ¢ is the mean distance between an instance and all other instances in the neighbouring
cluster. s lies in the the interval [-1, 1].

The silhouette score measures how well an instance is positioned within its own cluster
(cohesion) relative to other clusters (separation). Typically, the mean silhouette score (over
all instances) is used to characterise a dataset, with higher values usually indicative of
datasets containing distinct clusters. In a similar fashion, 5 measures how well-positioned
an instance is in the dataset depending on its neighbourhood of instances with the same
class. However, instead of using mean distances, as is the case with the silhouette score
(Equation 5), 5 uses the sum of weighted distances to capture more information. Like the
silhouette score, higher values of 3 signify a simpler classification problem.

5 and the silhouette score have a comparable run-time complexity. The computational
complexity of § is largely bounded by: (i) the calculation of Euclidean distances between
each pairs of instances, and (ii) sorting these distances in order to find the “nearest neigh-
bours” (Equation 3). More precisely, this complexity is bounded by O(n?(m + logn)). In
comparison, the run-time complexity of the silhouette score is O(n?m) (Vendramin et al.,
2010). Essentially, the run-time complexity of 3 is slightly higher than that of the silhouette
score.

One key difference between B and the silhouette score is the consideration of class
information. Silhouette score is independent of class information and is based solely on
construction of distinct spherical clusters, whereas [ takes into account the class informa-
tion.

To form meta-features from [-values, we can use a k-bin histogram to aggregate the
B-value of all instances in a dataset D. This produces a k-dimensional vector, {biny, bina,
..., bing}, where the value of bin;,i € {1,...,k}, is the proportion of instances in D that
have [-value falling in the range of [%(z - 1), %z) Thus, this vector is independent of
the size of the dataset. This method of utilising k-bin [-frequencies thus facilitates an
adjustable granularity over the information captured — i.e., by increasing the number of
bins, more information can be captured. We hypothesise that this method of filtering (-
values into k bins of S-frequencies represents valuable information, which would be useful
in characterising base-level datasets for the purposes of performing algorithm selection.

It should be noted that conventional meta-features do not typically include the silhouette
score. Most complexity-based meta-features instead characterise datasets based on some
general structure (Lorena et al., 2019). Since  captures information at the instance-level,
we hypothesise that it may capture more information than the typical complexity-based
meta-feature.

3.3. Preliminary Experiment on S-frequencies

To establish that p-frequencies capture the information that other complexity measures
do, the following preliminary experimentation was conducted. We generated binary-classed
base-level artificial datasets of different configurations in a 2-D Euclidean plane as shown in
Figure 3, where each dataset D = {(x; = {xi1,zi2},y € {0,1})}. The blue clusters signify
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Figure 3: Configurations of artificial datasets.

class 0 and the orange clusters signify class 1. Each dataset had 1000 randomly generated
instances. All the clusters initially had a separation of 290 units from the centroid, and in
each iteration the separation was reduced by 10 units, causing the clusters to move towards
the centroid and eventually merging together. We generated 20 datasets in each iteration,
amounting to a total of 600 datasets for each configuration. The datasets generated had
their mean silhouette score distributed in the range [-0.0008,0.9].

After trying various sizes for the k-bin S-frequencies, we found that there was not
much improvement in the information captured for k£ > 10. Thus, we have used 10-bin
B-frequencies. For each dataset, we calculated the R? value for the linear regression model,
where the dependent variable is a complexity measure, and the independent variables cor-
responded to the 10-bin S-frequencies. The results are listed in Table 1.

The 10-bin S-frequencies capture much of the information that several feature-based
complexity measures (F'1, Flv, F2, F3 and F4) do. This is observed via the high R2-
values over most dataset configurations (i.e., all except 4-cluster datasets and some 2-ring
datasets). Since [ is based on the sum of weighted distances, it indirectly measures how
discriminating the features in the base-level dataset are (f is higher for instances with
neighbourhoods of mostly the same class — i.e., the feature values over instances with the
same class vary less). However, it is only able to represent part of the information. In more
complicated datasets, such as the 4-cluster and the 2-ring datasets, there is a huge overlap
between the class-specific feature-value ranges due to their topology, and consequently,
the p-frequencies are unable to capture the same information present in the feature-based
complexity measures.

Expectedly, the 10-bin S-frequencies are able to capture the information in neighbour-
hood and network measures (N1, N2, N3, N4, Density, ClsCoef and Hubs), as seen by
the high-levels of correlation, which indicates that S-frequencies represent the density of
same class in the neighbourhood of an instance.

The 10-bin S-frequencies also approximately capture the same information as the lin-
earity measures (L1, L2, and L3). This is the case for all dataset configurations apart
from the 4-cluster datasets. Since the 10-bin S-frequencies summarise how the data is dis-
tributed within a class relative to the whole dataset, it represents the complexity of the
decision boundary. However, as the linearity measures do not explicitly measure the deci-
sion boundary, they inadequately capture the information corresponding to small changes
in the pB-frequencies, as seen in the complex case of the 4-cluster datasets.
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Table 1: R? values of B-frequencies vs complexity measures.

Measure 2 Clusters | 3 Clusters | 4 Clusters | 2 Rings
Maximum Fisher’s discriminant ratio 0.9995 0.9996 0.4124 0.0075
(F1)

Directional vector maximum Fisher’s 0.9988 0.9969 0.4348 0.0819
discriminant ratio (F'1v)

Volume of overlapping region (F'2) 0.9933 0.9948 0.5489 0.9958
Maximum individual feature efficiency 0.9982 0.9992 0.0074 0.9952
(F3)

Collective feature efficiency (F'4) 0.9993 0.9992 0.0098 0.9904
Faction of borderline points (N1) 0.9993 0.9980 0.9977 0.9947
Ratio of intra/extra class NN distance 0.9988 0.9959 0.9876 0.9983
(V2)

Error rate of NN classifier (N3) 0.9976 0.9977 0.9959 0.9947
Non linearity of NN classifier (N4) 0.9947 0.9969 0.9927 0.9832
Fraction of hyperspheres covering data 0.9985 0.9981 0.9971 0.9965
(T1)

Local set average cardinality (LSC') 0.9946 0.9992 0.9993 0.9956
Sum of the error distance by linear pro- 0.9976 0.9986 0.6373 0.9630
gramming (L1)

Error rate of linear classifier (L2) 0.9989 0.9993 0.1961 0.9395
Non linearity of linear classifier (L3) 0.9945 0.9967 0.1917 0.8466
Average number of features per dimen-

sion (72)

Average number of PCA dimensions

per points (7'3)

Ratio of the PCA dimension to the orig- 0.0000 0.0000 0.0000 0.0000
inal dimension (7'4)

Entropy of classes proportions (C'1)

Imbalance ratio (C2)

Density 0.9978 0.9961 0.9984 0.9976
Clustering Coefficient (ClsCoef) 0.9730 0.9876 0.9857 0.9468
Hubs 0.5726 0.8621 0.4506 0.7202

Overall, the 10-bin g-frequencies have a high correlation with most complexity meta-
features. However, it is noteworthy that S-frequencies have an advantage in efficiency. (-
frequencies are computationally cheaper, requiring only O(n?(m+logn)) time, as compared
to the more expensive complexity meta-features, such as F'lv, which has complexity O(m -
n-ne+ms- ng), where n. is the number of classes in the dataset.

It should also be noted that our experiments did not address the dimensionality mea-
sures (72, T3 and T4) and class imbalance measures (C1 and C2) as dimensionality and
imbalances were constant in these experiments.

4. Experimental Setup

To test the applicability of the proposed meta-features, we conducted several experiments
that compare S-frequencies to conventional meta-features on both artificial and real-world
datasets.
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We chose three popular algorithms that do not require complex hyper-parameter tuning
to form the algorithm space A in our experiment: the k-Nearest Neighbours (kNN) (Cover
and Hart, 1967; Dudani, 1978), Naive Bayes (NB) (Maron, 1961; Yang and Webb, 2001),
and Decision Tree (DT) (Quinlan, 1993).

4.1. Meta-Labels

For each dataset, 10x10-fold cross-validation is used to evaluate the model generated by
each algorithm in A. We conduct t-tests to compare the performance of each pair of
models. The null hypothesis is that the prediction accuracies of the pair of models do not
significantly differ (i.e., we hypothesise that the difference in accuracies is 0). This is tested
at a 5% level of significance (o = 0.05). Meta-labels are assigned to each dataset based on
the results of the t-tests. Table 2 shows all possible meta-labels and their corresponding
algorithm superiority, as well as their corresponding pair-wise t-test results. Labels 0, 4, 5
and 6 indicate a draw between models generated by two or more algorithms. We discarded
other possible combinations of t-test results as they contain contradictions.

Table 2: Meta-labels, algorithm superiority, and the winning model in pair-wise t-tests.

Meta-Label Superior Algorithms mynn VS mNB  MiNN VS MpT  MNB VS MDT
Label 0 kNN, NB and DT Draw Draw Draw
Label 1 kNN MKNN MENN —
Label 2 NB MNB — MNB
Label 3 DT - mptT mprT
Label 4 kNN and NB Draw MKNN MNB
Label 5 kNN and DT TMEKNN Draw MNB
Label 6 NB and DT MNB mpT Draw

4.2. Meta-Features

Two sets of meta-features are used in our experiments. Set 1 contains the conventional
meta-features, which consists of the classical and decision tree-based meta-features listed in
Table 3, as well as the complexity meta-features listed in Table 1. Set 2 contains the 10-bin
[B-frequencies.

Table 3: Classical and decision tree-based meta-features.

Classical Decision Tree
ClassEnt MutInfoMax | SkewnessMean | treewidth | ShortBranch
AttrEntMin EquiAttr SkewnessMax | treeheight | meanBranch
AttrEntMean NoiseRatio KurtosisMin NumNode devBranch
AttrEntMax StdDevMin KurtosisMean | NumLeave maxAtt
JointEnt StdDevMean KurtosisMax maxLevel minAtt
MutInfoMin StdDevMax meanLevel meanAtt
MutInfoMean | SkewnessMin devLevel devAtt
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4.3. Preparation of Datasets
4.3.1. THE ARTIFICIAL DATASETS

Fach base-level dataset D that was generated consists of instances represented over two
features and two classes, D = {(x; = {x;1,xi2}, v € {0,1})}. Each dataset consists of 625
instances evenly distributed in a 2-dimensional Euclidean plane of size 25 x 25 — i.e., for
the i-th instance, z; 1 = [¢/25] and z; 2 = ¢ mod 25, where i € {1,2,...,625}.

To assign a class to each instance, we divided the feature space randomly into 2¢ sub-
sections of equal size, where ¢ € {1,...,9}. The instance at the centroid of each subsection
is assigned a class (0 or 1) randomly. These labelled instances are then used as training
instances, to build a model using each algorithm in the algorithm space A. Each model is
then used to predict and assign classes to the remaining unlabelled instances.

The above process is repeated over 10 iterations. Since |A| = 3 and |t| = 9, a total of
3 x 9 x 10 = 270 artificial datasets were produced. To ensure that the corpus of datasets is
balanced in terms of meta-label distribution, we over-sampled the datasets with minority
meta-labels, and eventually obtained 672 datasets in total. The frequencies of the base-level
datasets with each meta-label are shown in Table 4.

Table 4: Frequencies of base-level artificial datasets of each meta-label.

Meta-label, [ 0 1 2 3 4 5 6
Frequency, Ny/bortificial 98173 157 166 10 104 34

We randomly select the base-level datasets generated to form artificial meta-datasets, S.
Additionally, to provide sufficient support, we generate each S such that le , NQS , N?jq > 10
(where N} corresponds to the number of instances in S with meta-label 1), and |S| > 100.

We then calculate the imbalance ratio (C2) of each meta-dataset. The C2 values for
the meta-datasets generated fell in the range [0,0.7746]. We selected 25 meta-datasets in
each of the C2 intervals: [0.0, 0.1), [0.1, 0.2) ... [0.7, 0.8), producing a total number of 200
artificial meta-datasets.

4.3.2. DATASETS FROM THE UCI REPOSITORY

We pre-process the UCI datasets (Dua and Graff, 2017) by scaling all continuous attributes
to a range from 0 to 1, performing one-hot encoding on all discrete attributes, and removing
irrelevant attributes such as the index.

For datasets with missing values, one different dataset is generated with each method: (i)
removing all attributes with missing values, (ii) replacing the missing values in continuous
attributes with the mean and the missing values in discrete attributes with the mode, and
(iii) replacing the missing values in continuous attributes with the mean and treating the
missing values for discrete attributes as a new attribute value.

To have a more diverse corpus of real-world datasets that are easily comparable, we
utilise an error correcting output code (ECOC) mechanism (Dietterich and Bakiri, 1995) to
convert multi-class datasets into binary ones. With all the above mentioned methods, we

10
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were able to produce 7761 datasets from 190 original UCI datasets. The frequencies of the
UCI datasets for each meta-label are shown in Table 5. We consider these 7761 base-level
dataset as the UCI meta-dataset. The imbalance ratio (C2) of the UCI meta-dataset is
0.5662.

Table 5: Frequecies of base-level UCI datasets of each meta-label.

Meta-label, 0 1 2 3 4 5 6
Frequency, NAUWUCT 124 528 484 5457 47 279 842

4.4. Overall Evaluation

For the final evaluation, we used the allNN algorithm as the meta-learner, which is im-
plemented using the sklearn.neighbors.kNeighborsClassifier (Pedregosa et al., 2011)
with hyper-parameters weight = distance and n_neighbor = |S| — 1.

We then performed 10 x 10-fold cross-validation on each meta-dataset. Mo,y denotes the
algorithm selection model produced by training the meta-learner on the meta-dataset con-
taining conventional meta-features, and Mg denotes the algorithm selection model produced
by training the meta-learner on the meta-dataset containing p-frequencies. We compute
the accuracy in each iteration of cross-validation in the following two ways:

e Weighted accuracy:

LZ|{DGS|YD:Z/\M(D):l}|
L2 [{DesYp=1

where L is the set of meta-labels and M (D) is the prediction made by the model M.

e Unweighted accuracy:
{D € S|M(D) = Yp}|

5]

In meta-learning, it is unlikely that a sample of base-level datasets, i.e., the meta-dataset
S, is representative of the unknown distribution of the population of all base-level datasets.
Hence, we assume this distribution to be uniform. Consequently, we report both of the
above accuracies for each experiment.

5. Results and Analysis
5.1. The Artificial Meta-Datasets

Table 6 shows the average accuracies of Mg and Mo, for each meta-label, as well as
the overall weighted and unweighted accuracies, over artificial meta-datasets with different
levels of imbalance. Figure 4 shows the percentage of wins on the y-axis and the imbalance
intervals on the z-axis, based on t-tests. The proportion of M.y, wins is depicted in orange,

11



CHEN L1u AHUJA LER

Table 6: Accuracy of Mg and Moy over artificial meta-datasets.

Range of C2 Accuracy by Meta-Label Overall Accuracy

Model Label 0 Label 1 Label 2 Label3 Label4 Label5 Label 6 Weighted Unweighted
[0.0, 0.1)

Mg 14.42%  69.14% 57.78%  40.23% 0.00% 41.86% 11.92% 34.76% 52.58%

Meonv 3.07% 73.83% 74.98% 73.87% 0.00%  55.23%  10.88% 43.26% 66.31%
[0.1, 0.2)

Mg 14.30% 74.41% 61.91% 48.41% 0.00% 29.67% 2.75% 33.58% 59.57%

Meonv 0.00% 81.41% 75.86% 77.50% 0.00%  26.02% 0.98% 38.20% 71.33%
[0.2, 0.3)

Mg 14.27% 64.08% 36.43%  55.76% 0.00% 26.75% 3.96% 29.82% 62.75%

Meonv 0.74% 71.00% 52.39% 76.37% 0.00% 21.97% 1.74% 33.78% 72.43%
[0.3, 0.4)

Mg 14.97% 71.42% 33.70%  34.01% 0.00% 16.41% 4.55% 25.60% 63.50%

Meony 7.38% 72.85% 39.63% 62.13% 0.00% 6.95% 6.70% 28.56% 69.54%
[0.4, 0.5)

Mg 11.62% 65.26% 36.17%  36.48% 0.00% 17.94% 2.54% 25.00% 68.17%

Meonv 9.44% 61.76% 33.87%  59.09% 0.46% 8.58% 4.77% 26.28% 71.76%
[0.5, 0.6)

Mg 16.74% 52.42%  26.35%  43.23% 0.00% 9.15% 3.95% 22.08% 70.73%

Meonv 5.42% 44.61% 26.03% 58.61% 0.00% 3.15% 1.33% 20.43% 72.76%
[0.6, 0.7)

Mg 10.27%  53.67% 18.30%  54.42% 0.00% 5.16% 1.09% 22.25% 76.59%

Meonv 0.63% 44.08% 14.03% 70.17% 0.00% 3.41% 0.56% 20.87% 77.61%
[0.7, 0.8)

Mg 3.60% 56.34% 34.92%  30.00% 0.00% 0.80% 3.03% 21.15% 81.82%

Meonv 0.00% 48.03% 35.77%  41.35% 0.00% 0.00% 0.40% 21.13% 82.69%

the proportion of Mg wins is depicted in blue, and the proportion of draws is depicted in
grey.

Meta-labels 0, 5 and 6 are usually underrepresented because there are very few base-
level datasets with these meta-labels available. We observe that Mg generally makes better
predictions than Moy, for such base-level datasets. At high levels of imbalance (C2 > 0.5),
Mg also makes better predictions for base-level datasets with meta-labels 1 and 2. The
performance of both models on base-level datasets with meta-label 4 is extremely low,
because there are very few (< 10) training instances available with that meta-label.

As imbalance increases, the performance of Mg improves and becomes more comparable
to Mcony. Specifically, under high levels of imbalance (C2 > 0.5), the accuracy of Mpg
becomes higher than that of Mco,y. The numbers of meta-datasets over which Mg wins is
approximately equal to the number of meta-datasets over which Mcon, Wins.

The trend suggests that S-frequencies work better on more imbalanced meta-datasets —
i.e., as meta-datasets becomes more imbalanced, it is more likely that g-frequencies would
be of more value than conventional meta-features. Given that most real-world meta-datasets
are imbalanced, S-frequencies may work as a viable substitute to the conventional meta-
features.

The difference between the runtime for the generation of conventional meta-features
and S-frequencies is significant. Over the artificial datasets, the conventional meta-features
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Figure 4: Composition of artificial meta-datasets in terms of t-test results.

required approximately 35 minutes to process, whereas the S-frequencies were computed in
21 seconds.

5.2. The UCI Datasets

The UCI datasets form a highly imbalanced meta-dataset (Table 5). Table 7 shows both
the weighted and unweighted accuracy of Mg and Mo, over the UCI meta-dataset in each
iteration of cross-validation (CV), as well as their overall accuracy score. The t-test between
the weighted accuracy scores of Mg and Mo,y yields a t-statistic of 127.7 and a p-value of
4.48 x 10728, indicating that Mg is a significantly superior algorithm selection model.

Table 7: Accuracy of Mg and Mcony over the UCI datasets.

Model CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10  Average

‘Weighted
Mpg 29.07% 28.72% 28.61% 28.62% 28.49% 28.64% 28.37% 28.97% 28.70% 28.79%  28.70%
Meony  17.01% 17.00% 17.05% 17.08% 16.96% 16.91% 17.08% 16.51% 17.24% 17.19%  17.00%
Unweighted
Mg 69.97% 69.73% 69.85% 69.97% 70.03% 69.95% 69.98% 70.00% 70.18% 69.91%  69.96%
Meony  69.31%  69.32%  69.26% 69.35% 69.23% 69.36% 69.28% 69.22% 69.42% 69.30%  69.30%

The results suggest that g-frequencies, as meta-features, offer a viable and more efficient
alternative to the conventional meta-features. In our experiments, M ony uses over 50 pieces
of information provided by all the conventional meta-features, while Mg achieves the same
degree of accuracy using only 10 values based on the S-frequencies. The results further
suggest that algorithm selection models based on S-frequencies may out-perform models
based on conventional meta-features in terms of accuracy.
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As expected, there was a significant difference between the runtime for the generation
of conventional meta-features and S-frequencies. Over the UCI datasets, the conventional
meta-features required approximately 2 weeks to process, whereas the p-frequencies were
computed in 77 minutes.

6. Conclusion

In this paper, we provided a new perspective of landmarkers that consists of an algorithm
and a metric that is measurable on the model generated by the algorithm. We then in-
troduced a new metric, the distance-weighted class-homogeneous neighbourhood ratio, 5.
We have shown that the meta-features derived from [S-values capture similar information
to existing complexity measures, but at a lower computational cost. We then performed
experiments over artificial and real-world datasets to test the applicability of g-frequencies.
Our experimental results suggest two points: (i) when real-world repositories are utilised to
build algorithm selection models, it is likely that an imbalanced meta-dataset is produced,
in which case, the proposed meta-features have been shown to be significantly better; and
(ii) should a balanced meta-dataset be produced, the results still suggest that the proposed
meta-features are comparable to conventional meta-features, but at significantly lower com-
putational cost. Considering the significantly lower cost of generation, S-frequencies may
serve as viable meta-features for algorithm selection.

7. Future Work

We have provided evidence to show that S-frequencies are comparable to conventional meta-
features. However, in order to further prove their viability, more base-level algorithms, meta-
datasets, and meta-learners would be evaluated. Further, besides the 10-bin S-frequencies
we proposed, more ways to utilise S-values as meta-features may be developed. Finally, in
our current definition, 5 uses the target function f* produced by a*. However, we may also
extend this landmarker, (a*, ), to (a, ), where a is an algorithm in the known algorithm
space. In future work, we would like to examine the difference between (a*,3) and (a, §)
to provide insights for algorithm selection.
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