
Proceedings of Machine Learning Research 129:209–224, 2020 ACML 2020

Constrained Reinforcement Learning via Policy Splitting

Haoxian Chen hc3136@columbia.edu

Columbia University, New York, NY 10027

Henry Lam khl2114@columbia.edu

Columbia University, New York, NY 10027

Fengpei Li fl2412@columbia.edu

Columbia University, New York, NY 10027

Amirhossein Meisami meisami@adobe.com

Adobe Inc., San Jose, CA 95110

Editors: Sinno Jialin Pan and Masashi Sugiyama

Abstract

We develop a model-free reinforcement learning approach to solve constrained Markov
decision processes, where the objective and budget constraints are in the form of infinite-
horizon discounted expectations, and the rewards and costs are learned sequentially from
data. We propose a two-stage procedure where we first search over deterministic policies,
followed by an aggregation with a mixture parameter search, that generates policies with
simultaneous guarantees on near-optimality and feasibility. We also numerically illustrate
our approach by applying it to an online advertising problem.

Keywords: constrained Reinforcement Learning, online advertisement, policy splitting

1. Introduction

Applications of Reinforcement Learning (RL) in online advertising with recommendation
systems have been a topic of major research interests (Cai et al. (2018); Wang et al. (2018);
Wu et al. (2018)). However, despite their tremendous success, most RL-methods are not
designed to learn optimal policies under constraints, yet they appear ubiquitously when
facing budget or safety considerations. A standard framework for studying RL under con-
straints is the Constrained Markov Decision Process (CMDP), where the objective is to
maximize the long-run return, with constraints on one or several types of long-run costs.
In this paper, we consider the case where both the objective and the constraint are in the
form of an infinite-horizon cumulative discounted expectation, whereas the returns, costs
and transitions are revealed from sequential data. The goal is to design an efficient method-
ology for the constrained problem by assimilating classical optimality properties of CMDP
into RL, in order to efficiently use established RL approaches and obtain policies that enjoy
both near-optimality and feasibility.

The CMDP in the form described above is motivated from a range of important applica-
tions including online advertising. Sponsored search campaigns, for instance, are designed
based on predetermined budgets. Therefore, the marketer has to employ effective strategies
to accrue the maximum reward while observing certain monetary constraints throughout
the campaign. Similarly, in email campaigns, the marketer can only send out a limited

c© 2020 H. Chen, H. Lam, F. Li & A. Meisami.

Chen Lam Li Meisami

number of emails under different constraints due to user fatigue or limited available dis-
count offers. Thus, it is important to consider information beyond potential revenues, such
as the remaining budget or the likely outcomes of different offers. Direct applications of
most RL-algorithms do not, in general, consistently produce optimal solutions within these
budget constraint. Thus, several lines of work have been devoted to resolve this challenge.
In the model-based regime (i.e., parametric-based transition), Geibel (2006) and Lee et al.
consider linear programming, Geibel (2006) considers state-space extension, and Feinberg
and Rothblum (2012) considers policy iterations. However, model-based algorithms suffer
when the state or action space gets large as estimating the transition dynamics of the users
can be very challenging or even infeasible. In model-free settings, constrained policy opti-
mization (CPO) (Achiam et al. (2017)) is designed based on trust region policy optimization
(TRPO) and its variants (Schulman et al. (2015, 2017)). Through surrogate function ap-
proximations, CPO provides safe iterations in each policy update, preventing any constraint
violation in the agent’s learning process. However, the implementation requires a safe pol-
icy to start with and it may be over-conservative to require a safe update in each iteration,
especially for areas of advertising where the budget constraint is not as hard a constraint
as, say, in auto-driving. Thus, the extra effort and setup in the implementation of CPO
might not be as desirable in our setting. Another line of work in tacking constrained MDP
uses primal-dual, Lagrangian-based RL methods (Chow et al. (2018); Tessler et al. (2018)),
which involves stochastic updates for solving the KKT conditions. In particular, Chow et al.
(2018) investigates constraints arising from risk criteria such as conditional-value-at-risk or
chance constraints while the reward constrained policy optimization (RCPO) in Tessler
et al. (2018) uses an actor-critic updates in the policy space and a stochastic recursion
on the Lagrange multiplier updates in the dual space. However, although convergence is
guaranteed for primal-dual methods in theory, in practice significant efforts are required to
tune the hyper-parameters, especially the learning rates of the dual variable, as the updates
become noisy and unstable around convergence and the training process can easily become
too slow or overly greedy.

In this paper, we address these issues on the primal-dual formulation and explain the un-
stable convergence behavior of primal-dual methods around the optimal value. Furthermore,
we design a mixing method which aims to alleviate the tuning issues by both exploiting
the low-dimensional feature of dual variables (when the number of budget constraints is
negligible compared to the cardinality of the state/action space) and investigating a special
splitting property of CMDPs (Feinberg and Rothblum (2012)). In particular, for a single
budget constraint, the “splitting” property refers to a structure of the optimal randomized
policy in CMDP where two possible actions are assigned with a binary distribution to a
certain state and the policy stays deterministic elsewhere (Feinberg and Rothblum (2012)).
This splitting property contributes to the unstable behaviors of the dual convergence be-
cause the RL method is essentially searching for two different optimal policies around the
optimal dual value. This splitting property arises from the extreme points of a linear pro-
gram (LP) formulation of CMDP via the occupation measure (Altman (1999)). It reveals
the saddle point structure of the Lagrangian and allows us to confine our policy search in
a smaller solution space.

Leveraging the splitting property, our approach bypasses the need to search over large
spaces of randomized policies and, by solving a sequence of RL problems without restriction

210

Constrained Reinforcement Learning via Policy Splitting

under the Lagrangian relaxation, finds candidate deterministic policies with direct appli-
cation of classical RL-methods (e.g. Q-learning, TD-learning or TRPO). To improve on
the undesirable properties of primal-dual methods around convergence, we first propose
a discretization scheme which exploits the one-dimensional structure of dual variable and
allows for parallel computing. Then we propose a novel feasibility mixing procedure which
efficiently mixes the candidate policies and find an optimal randomized policy that would
achieve both optimality and feasibility. We provide theoretical justifications on our frame-
work, and also conduct experiments on an online advertisement problem to demonstrate its
performance.

The remainder of this paper is organized as follows. Section 2 presents our problem
setting and notations. Section 3 describes our Lagrangian formulation and its implications.
Section 4 presents our main dual Q-learning algorithm that harnesses the splitting property
of CMDP in the Lagrangian formulation. Section 5 discusses practical implementation, and
Section 6 illustrates our experimental results.

2. Problem Setting

A Constrained Markov Decision Process (CMDP) can be formulated as follows. Let S be
the finite set of states, A the finite set of actions, and p(s; a; s′) the probability measure
governing the stochastic transition between states, namely

P(st+1 = s′jst = s; at = a) = p(s; a; s′)

with non-negative entries and
P

s0 p(s; a; s′) = 1. Let rt = r(st; at) be the corresponding
expected reward. Denote Π to be the space of stationary randomized policies � where

P(at = ajs0; a0; r1; s1; a1; :::; rt; st = s) = P(at = ajst = s) = �(s; a);

and
P

a �(s; a) = 1; �(s; a) � 0 for all a; s. Notice the stationarity comes from the fact that
the policy at each state s does not change with t. Moreover, if over any state s, �(s; a) is zero
for all but one action a 2 A, then we say � 2 Π0 � Π is a stationary deterministic policy and
denote this a by �(s). Suppose at each step t, the agent interacting with the environment
not only receives random (immediate) reward rt but also incurs random (immediate) cost
denoted by ct = c(st; at). Let s0 � � be the distribution of the initial state and 2 [0; 1]
be the discounted factor. We consider the following CMDP:

max
�∈Π

Es0∼�;�

" ∞X
t=1

t−1rt

#

s.t. Es0∼�;�

" ∞X
t=1

t−1ct

#
� B;

(1)

where Es0∼�;� denotes the expectation under policy � and initial distribution s0 � �. We
confine our policy search in Π because it is well-known (see, e.g., Altman (1999)) that the
optimal policy �? for CMDP lies in the space Π. Also, we do not assume the distributions
of r(�; �) c(�; �), or p(�; �; �) are known.

211

Chen Lam Li Meisami

3. Lagrangian with Reduced Policy Space

A common way to solve CMDP (1) is to formulate it as the following LP (Altman (1999)):

max
x � 0

X

s;a

xsar (s; a)

s.t.
X

s;a

xsac(s; a) � B;

X

a

xsa �
X

s0;a

xs0ap(s0; a; s) = � (s) 8s;

(2)

wherexsa =
P 1

t=1 t � 1P(st = s; at = aj�; s 0 � �) is referred to as theoccupation measureof
policy � under initial distribution � . It can be interpreted as the total discounted expected
number of times state-action pair (s; a) is visited under policy � , so that E� [

P 1
t=1 t � 1r t] can

be seen to be expressible as
P

s;a xsar (s; a) and similarly E� [
P 1

t=1 t � 1ct] as
P

s;a xsac(s; a),
and the second constraint in (2) follows from a �rst-step Markovian analysis. Moreover, it
is shown in Altman (1999) that an optimal randomized policy � ? can be computed from an
optimal solution x? of (2) by letting

� ?(s; a) =
x?

saP
a x?

sa
: (3)

However, formulating the above optimization problem requires the knowledge ofr (s; a); c(s; a)
and p(s; a; s0) of the MDP which in our setting can only be learned implicitly. Also, the
number of state-action pair may get too large to use tabular methods. On the other hand,
the more e�cient, large-scale approximate RL methods such as TD-learning,Q-learning or
TRPO (Sutton and Barto (2018); Watkins and Dayan (1992)) cannot directly help us with
the search of an optimal randomized policy. To address this issue, we �rst consider the dual
optimization problem (Bertsimas and Tsitsiklis (1997)) of (2):

min
� � 0;v

X

s

vs� (s) + �B

s.t. vs � r (s; a) � �c (s; a) +
X

s0

p(s; a; s0)vs0 8s:
(4)

For �xed � � 0, the minimization in (4) is exactly the LP formulation for solving the
value function of an unconstrained MDP with adjusted reward r �

t = r t � �c t instead of r t

at each stept (plus the constant term �B), and the constraint follows from the Bellman
optimality equation (Puterman (2014)). This allows us to convert (1) into the form (5)
(shown below). Advantageously, for any �xed � , because of its unconstrained nature, the
inner maximization problem in (5) now su�ces to search for policy � in the deterministic
policy space � 0 instead of the randomized policy space �. Hence we can apply many suitable
approximation algorithms in RL to search for the optimal deterministic policy (Sutton and
Barto (2018)). We have the following theorem (Notice the reduction of policy space into
� 0 as a key transition in this dual):

Theorem 1 Problem (1) can be reformulated as

min
� � 0

max
� 2 � 0

R(�; �) � �
�
C(�; �) � B

�
(5)

212

Constrained Reinforcement Learning via Policy Splitting

where R(�; �) , Es0 � �;� [
P 1

t=1 t � 1r t] and C(�; �) , Es0 � �;� [
P 1

t=1 t � 1ct].

Proof Based on our discussion and the LP duality, we only have to show that for any �xed
� � 0,

min
v

X

s

vs� (s)

subject to vs � r (s; a) � �c (s; a) +
X

s0

p(s; a; s0)vs0 8s
(6)

is equivalent to
max
� 2 � 0

R(�; �) � � C(�; �): (7)

In particular, for �xed � � 0, problem (6) obtains the optimal expected total discounted
reward

P
s vs� (s) with adjusted reward r �

t = r t � �c t guaranteed by the Bellman optimality
constraint as well as the condition that � (s) > 0; 8s (Puterman (2014)). On the other hand,
given the discounted adjusted rewardr �

t , we know from classical MDP results that for any
unconstrained in�nite-horizon discounted MDP there exists a stationary and deterministic
optimal policy � ? 2 � 0 for any initial state distribution satisfying � (s) > 0; 8s. Moreover,
the optimal expected total discounted reward is max

� 2 � 0
R(�; �) � � C(�; �):

Theorem 1 suggests that the search for optimal policies can �rst proceed with a deterministic
policy search �xing some set of� . Then, we optimize with respect to � in (5) to �nd an
optimal � ? which closes the duality gap between (2) and (4) with optimal policies that
maximize the penalized expected rewardr t � � � ct plus the term � ?B .

4. Policy Mixing and Dual Q-Learning

The two steps discussed above recover the optimal value of the primal (2). However, to
recover the optimal, possibly randomized policy, we need to look more closely at the dual
problem (5). To begin, it is known that if an LP has an optimal solution, then it also has
an optimal basic feasible solution (Bertsimas and Tsitsiklis (1997)), meaning that we can
�nd optimal solution x? with at most s + 1 non-zeros entries. This leads to the following
proposition.

Proposition 1 If � (s) > 0 8s, then there is an optimal policy � ? for the primal problem
(1) with � ?(s) following a deterministic action for all but possibly one state.

Proof Given that we can �nd optimal solution x? for problem (2) with at most s+ 1 non-
zero entries, if we further assume that� (s) > 0 for all state s, then the second constraint
of (2) would force any feasible solutionx to satisfy

P
a xsa > 0 for any s. This condition

implies that for any s, we can �nd at least one a such that x?
sa > 0. Sincex? has at most

s + 1 non-zeros entries, we can have at most one positive entry among all entries ofx?
sa. It

then follows from (3) that the optimal policy � ? for (1) is deterministic at all states except
possibly one, where the optimal policy splits into two possible actions.

Following Proposition 1, we can characterize an important property regarding the optimal
policy for (5). In particular, we consider the dual function

D(�) , max
� 2 � 0

R(�; �) � �
�
C(�; �) � B

�
: (8)

213

Chen Lam Li Meisami

Theorem 2 Assume� (s) > 0 8s and the optimal policy � ? for problem (1) is unique. Then
the maximization in (8), at the optimal � � that solves (5), admits either a deterministic
optimal policy � ?, or a pair of optimal deterministic policies � 1; � 2 with actions di�erent in
one states and � ? = (1 � t)� 1 + t� 2 for some 0 < t < 1.

Proof Let � ? be the optimal, possibly randomized policy for the primal (1). By the LP
duality (Bertsimas and Tsitsiklis (1997)), we know the optimal values for (1) and (5) are
equal and we must have, for some� ? 2 argmin

� � 0
D(�) � 0, that

R(� ?; �) = min
� � 0

D(�) = D(� ?): (9)

If there exists � ? = 0 where (9) holds, then

min
� � 0

D(�) = D(0) = max
� 2 � 0

R(�; �): (10)

Combining (9) and (10), we haveR(� ?; �) = max
� 2 � 0

R(�; �) and by the uniqueness we have

� ? = argmax
� 2 � 0

R(�; �). The primal feasibility of (1) guarantees C(� ?; �) � B . In fact, notice

in this case, the optimal policy for the unconstrained MDP in (1) is actually feasible, and
thus CMDP (1) reduces to an unconstrained MDP.

On the other hand, if we have argmin
� � 0

D(�) > 0, then we observe thatD(�) = max
� 2 � 0

R(�; �)�

�
�
C(�; �) � B

�
is the maximum of a �nite number (i.e. the number of deterministic poli-

cies is �nite) of linear functions in � . Thus, D(�) is piece-wise linear and convex in� .
Since � ? > 0 is the global minimum of D(�) and D(�) is piece-wise linear, we must have
D+ (� ?) = lim t ! 0

D(� ? + t)�D (� ?)
t � 0 and D � (� ?) = lim t ! 0

D(� ?)�D (� ? � t)
t � 0.

Now if � ? = argmin
� � 0

D(�) > 0 is not unique, then by convexity we can �nd an interval of �

with the same optimal D(�), implying the optimal deterministic policy under this � is both
feasible (zero slope meansC(�; �) = B) and optimal. Thus, suppose� ? = argmin

� � 0
D(�) > 0

is unique, then we haveD � (� ?) < 0 < D+ (� ?), and there exists some� > 0 and policies
� 1; � 2 such that

D(�) = D(� ?) + D+ (� ?)(� � � ?) = R(� 1; �) � �
�
C(� 1; �) � B

�
(11)

for � ? � � � � ? + � and

D(�) = D(� ?) + D � (� ?)(� � � ?) = R(� 2; �) � �
�
C(� 2; �) � B

�
(12)

for � ? � � � � � � ?. In particular, at � ?, we have

R(� 1; �) � � ?�
C(� 1; �) � B

�
= R(� 2; �) � � ?�

C(� 2; �) � B
�

(13)

which implies
� 1 = � 2 = argmax

� 2 � 0

R(�; �) � � ?C(�; �): (14)

214

Constrained Reinforcement Learning via Policy Splitting

We know from Bellman (2013) that for a �nite unconstrained MDP problem, there exists
a unique optimal value function such that v?(s) � v� (s) for all state s. Thus, (14) and the
fact that � (s) > 0 8s implies that we must have

v?(s) = v� 1 (s) = v� 2 (s) 8s (15)

where v ? is the optimal value function for the MDP with adjusted reward r � ?

t = r t � � ?ct

and v � i is the value of policy � i under this adjusted reward. This implies v ?; v � 1 and v � 2

must satisfy all three forms of the Bellman equations:

v(s) = max
a

r � ?
(s; a) +

X

s0

p(s; a; s0)v(s0);

= r � ?
(s; � 1(s)) +

X

s0

p(s; � 1(s); s0)v(s0) = r � ?
(s; � 2(s)) +

X

s0

p(s; � 2(s); s0)v(s0);

(16)

for all s. Now, for any 0 � t � 1, let � t be the randomized policy� t = (1 � t)� 1 + t� 2. Then
the value of policy � t uniquely satis�es the following Bellman equation:

v� t (s) = (1 � t)r � ?
(s; � 1(s)) + t � r � ?

(s; � 2(s))

+
X

s0

�
(1 � t)p(s; � 1(s); s0) + tp(s; � 2(s); s0)

�
v� t (s0) (17)

It follows from (16) that v ? satis�es (17) and is thus the value function (i.e. �xed point)
of policy � t . Thus any policy � t ; 0 � t � 1 is optimal for the MDP with adjusted reward
r � ?

t = r t � � ?ct and achieves primal optimality in the sense that

R(� ?; �) = D(� ?) = R(� t ; �) � � ?�
C(� t ; �) � B

�
: (18)

Now, it follows from (11) and (12) that D+ (� ?) = B � C (� 1; �) > 0 and D � (� ?) =
B �C (� 2; �) < 0. Furthermore, C(� t ; �) can be shown to be a continous function oft. Thus,
we must have C(� t ; �) = B for some 0< t < 1. Then such � t satis�es not only primal
feasibility but also primal optimality due to (18):

R(� ?; �) = R(� t ; �) � � ?�
C(� t ; �) � B

�
= R(� t ; �): (19)

The claim that � 1 and � 2 di�er by one state now follows from (1) and the uniqueness
assumption. The other cases where one or both ofD+ (� ?) and D � (� ?) are 0 lead to either
t = 0 or 1, which further lead to deterministic policy. The analysis is similar so we omit it.

Theorem 2 postulates that the maximization of the Lagrangian or penalized objective
R(�; �) � � �

�
C(�; �) � B

�
generally leads to multiple (deterministic) optimal solutions, even

if the primal problem (1) has a unique optimal policy. Note that the maximization of
R(�; �) � � �

�
C(�; �) � B

�
is an unconstrained MDP, which allows us to use any classical RL

methods to learn its optimal policy. The key is that in order to retrieve the primal optimal
policy, we need to identify two optimal policies for this penalized objective, and mix them
together with a search for the optimal mixture parameter t.

215

Chen Lam Li Meisami

Before presenting practical algorithms for implementation, we �rst propose a straight-
forward theoretical procedure in Algorithm 1 that would demonstrate the asymptotic opti-
mality of our method. For demonstration, we would simply useQ-learning on the penalized
problem along with subsequent TD-learning for dual updates. However, we note that Al-
gorithm 1 can be replaced by any type of Actor-Critic updates as in Tessler et al. (2018).
Notation-wise, we use� � to denote the optimal deterministic policy for penalized reward
r �

t = r t � �c t . Given the simple dual Q-learning method described in Algorithm 1, we
have the following Theorem 3. Notice theN chosen large is �xed and does not grow with
iterations.

Algorithm 1 Dual Q-learning on Candidates for Mixture

Input: Dual range 0 � � min < � max , discretization parameter n, maximum episodeE1

and E2, maximum trajectory M 1 and M 2, learning rate � e, � greedy for the greedy policy
and discretized � min = � 1 < ::: < � n = � max .
for i = 1 to n do

Initialize : e 0, Q̂i
e, the Q-function array for storage (e.g. to 0), an estimate of

Qi (s; a) = E� � i [
P 1

t=0 t (r t � � i ct)js0 = s; a0 = a] and f v̂costgi
e cost value function array

for storage, an estimate ofE� � i [
P 1

t=0 t ct js0 = s].
repeat

e e+ 1, initialize t 0 and samples0 � �
while st is not terminal and t � M 1 do

Take action at at st derived from Q̂i
e� 1 using � greedy-greedy policy and ob-

serve r t+1 ; st+1 , then let Q̂i
e� 1(st ; at) Q̂i

e� 1(st ; at) + � e
�
r t+1 � � i ct+1 +

 max
a0

Q̂i
e� 1(st+1 ; a0) � Q̂i

e� 1(st ; at)
�

and update t t + 1

end while
Update Q̂i

e Q̂i
e� 1.

until e � E1 or changes inQ̂i are small
e 0.
repeat

e e+ 1, initialize t 0 and samples0 � �
while st is not terminal and t � M 2 do

f v̂costgi
e� 1(st) f v̂costgi

e� 1(st) + � e
�
ct+1 + f v̂costgi

e� 1(st+1) � f v̂costgi
e� 1(st)

�

Update t t + 1
end while
Update f v̂costgi

e f v̂costgi
e� 1.

until e � E2 or changes inV̂ i
cost are small

Compute D̂(� i) =
P

s(maxa Q̂i (s; a)) � (s) + � i B . Find � � i (s) = argmax aQ̂i (s; a)
end for
Output: � 1 = � � i and � 2 = � � i 0 where � i = argmin f D̂(� j)j

P
s v̂j

cost(s)� (s) � B g and
� i 0 = argmin f D̂(� j)j

P
s v̂j

cost� (s) � B; � � j 6= � 1g.

Theorem 3 Assume � (s) > 0 8s, the optimal policy � ? for problem (1) is unique and
there exists some� ? 2 argmin D(�) such that � min < � ? < � max . Fix n � 0, assume for
each Qi -learning problem and TD-learning problem for 1 � i � n, every state and every

216

Constrained Reinforcement Learning via Policy Splitting

state-action pair are visited in�nitely often. Furthermore, sequence � e satis�es
X

e

� e = 1 and
X

e

� 2
e < 1 : (20)

Then there existsN large enough and� g small enough such that if we �xn = N and � greedy �
� g, we will recover a pair of deterministic policies � 1; � 2 such that � ? = (1 � t)� 1 + t� 2 for
some0 � t � 1 with probability 1 as the number of episodeE1; E2 ! 1 .

Proof Following Theorem 2, �rst consider the case where� ? > 0 is unique andD � (� ?) <
0 < D+ (� ?). Then, as discussed in Theorem 2, (11) and (12), there exist some� > 0 and
policies � 0

1; � 0
2 which di�er by one state such that � ? = (1 � t)� 0

1 + t� 0
2 for some 0< t < 1,

D(�) = D(� ?) + D+ (� ?)(� � � ?) = R(� 0
1; �) � �

�
C(� 0

1; �) � B
�

(21)

for � ? � � � � ? + � and some deterministic� 0
1 while

D(�) = D(� ?) + D � (� ?)(� � � ?) = R(� 0
2; �) � �

�
C(� 0

2; �) � B
�

(22)

for � ? � � � � � � ? and some deterministic� 0
2. It is clear from the de�nition of D(�) and

our assumption on the uniqueness of� ? that � 0
1 = � � for � ? < � < � ? + � and � 0

2 = � � for
� ? � � < � < � ?. Then, for n = N large enough, where (� max � � min)=N � � , we must
have some� ? � � � � i � � ? � � i +1 � � ? + � for some 1� i � n and due to the strict
convexity of D(�) around [� ? � �; � ? + �], we must have D(� i) < D(� i � 1) < ::: < D(� 1)
and D(� i +1) < D(� i +2) < ::: < D(� n). Now, by the assumption on the Q-learning proce-
dure (in�nitely often visit for state-action pair under � -greedy policy, the Robbins-Monro
(Robbins and Monro (1985)) type condition (20)), it follows that the Qi -learning for ev-
ery 1 � i � n converges to the optimal Qi value (or � greedy-optimal assuming optimistic ,
large initialization for Q values (Even-Dar and Mansour (2002))) and we can recover the
optimal value (� -adjusted) function maxa Qi (s; a) with probability 1 as E ! 1 (Watkins
and Dayan (1992); Sutton and Barto (2018); Tsitsiklis (1994)). Thus, asE ! 1 , we will
have D̂(� i) < D̂(� i � 1) < ::: < D̂(� 1) and D̂(� i +1) < D̂(� i +2) < ::: < D̂(� n). On the
other hand, the assumption also guarantees that the TD learning on ^vj

cost will converge

to v� j
cost (or v

�
� j
� greedy

cost , where � � j
� greedy is the � greedy greedy policy from the optimal � � j). If

we pick � greedy > 0 small enough, we can make
P

s jv� � j

cost(s) � v
�

� j
� greedy

cost (s)j� (s) arbitrarily
small. However, we know from the piece-wise linearity and convexity ofD(�) that, for all
� j � � ?, the gradient B � C (� � ; �) > 0 which implies

P
s v� � j

cost(s)� (s) = C(� � j ; �) < B , and

we can �nd � greedy small enough such that
P

s v
�

� j
� greedy

cost (s)� (s) < B and thus (in both cases)
P

s v̂j
cost(s)� (s) < B with � i +1 = argmin f D̂(� j)j

P
s v̂j

cost(s)� (s) � B g implying � 1 = � 0
1 as

E1; E2 ! 1 . Similarly we can show � 2 = � 0
2. For other cases where� ? = 0 and one or

both of D+ (� ?) and D � (� ?) are 0, it can be shown that the unique deterministic policy � ?

can be recovered.

Theorem 3 guarantees that with suitable algorithmic parameter choices, Algorithm 1
can retrieve two candidate optimal policies such that their mixture gives rise to the optimal
randomized policy for the constrained problem (1). Next we will discuss in more detail the
implementation issues, including how to search for the mixture parameter.

217

Chen Lam Li Meisami

5. Discussion and Implementation

Theorem 3 not only gives us theoretical guarantees on recovering the candidates for optimal
mixtures, but also partially explains why the behavior of a direct primal dual method
becomes unstable around convergence. In particular, the splitting of action forces the primal
update to search for di�erent optimal polices around the � ? and makes the convergence
especially di�cult. To overcome such a di�culty, we use the mixing of policies which is to
be explained later in this section. The discretization of dual variable� is designed for this
purpose as well. Notice this special discretization also allows for e�cient parallel computing
on di�erent � . On the other hand, the conditions can be restrictive in practice and the
implementation for Algorithm 1 becomes ine�cient as the accuracy parameters increase.
In particular, there are several main issues concerning the implementation of Algorithm 1:

1. How to �nd the a reasonable set of� min ; � max ?

2. What if Algorithm 1 cannot converge to the correct pair of policies (e.g. � 1 and � 2

di�er by more than one state)?

3. Given two candidate policies� 1; � 2, and the results from Theorem 2 that � ? = (1 �
t)� 1 + t� 2 for some 0� t � 1, how do we �nd t?

The �rst point is not a major concern. As mentioned, the dual variable � is one-dimensional
and we can use many e�cient RL methods such asQ-learning. In fact, we can use RCPO
e�ciently before we run into convergence issues, at which point we can already observe
a good range of dual value� for which the optimal � ? is likely to be contained in. To
address the second and third issues, we note that in both minimizingD(�) and mixing
� t = (1 � t)� 1 + t� 2, it is critical to e�ciently estimate C(�; �) for a given policy � .

Cost Evaluation. Suppose we have found� � 2 argmax
� 2 � 0

R(�; �) � � C(�; �). Then an

estimate of C(� � ; �) can help evaluate a sub-gradient (Boyd and Vandenberghe (2004)) of
the piece-wise linear dual functionD(�), which is given by B � C (� � ; �). This in turn helps
decide a search direction for� ? based on �rst-order optimization methods. On the other
hand, when mixing the policies� t = (1 � t)� 1 + t� 2, we know from duality that

R(� ?) = D(� ?) = R(� t ; �) � � ?�
C(� t ; �) � B

�
: (23)

Thus, if we can �nd t such that C(� t ; �) = B , it then follows from (23) that policy � t satis�es
primal feasibility and optimality simultaneously and is the solution of (1).

There are many ways to estimateC(�; �), e.g., TD-learning
P

s vs� (s), or Monte Carlo
by Sutton and Barto (2018). Thus, from now on we assume an e�cient oracleEvalC (�; �)
which takes as input policy � and initial distribution � and outputs an estimate ofC(�; �).

Dual Variable Range. Given the oracle EvalC (�; �), we can construct algorithms
that e�ectively select a reasonable pair of � min and � max . In particular, given a � � 0, if
we have found� � by Q-learning on function D(�), then by the convexity of D(�), we know
if C(� � ; �) > B , it indicates � � � ? whereas ifC(� � ; �) < B , it indicates � � � ?. Thus, we
can make use of the oracleEvalC (�; �) to estimate C(�; �). However, the estimate would
inevitably be corrupted by noise so we want to ensure an empirically over-budget policy�
(i.e. C(�; �) > B) is indeed over-budgeted, by setting a \safety margin" � to account for

218

Constrained Reinforcement Learning via Policy Splitting

Algorithm 2 Dual Variable Range Selection

Input: A threshold 0 < � < 1 (e.g. � = 1=2), step size� step and a tolerance for budget
constraint � .
Initialization: � , � min ,� max (e.g. 0)
Find � � by Q-learning
if B � � � EvalC (� � ; �) � B + � , then

Break search and accept� � as optimal policy.
end if
if EvalC (� � ; �) < (1 � �)B then

Set � max = � , Break Search and restart algorithm with � � � � step. (Also Break if
� max = 0, suggesting the MDP is unconstrained.)

end if
if EvalC (� � ; �) > (1 + �)B then

Set � min = � . Break Search and restart algorithm with � � + � step.
end if

statistical signi�cance. For example, if EvalC (� � ; �) > (1 + �)B , then with high probability
we haveC(� � ; �) > B and we can set� min = � . On the other hand, if during the search we
have found a policy � � that is close to feasibility (i.e. C(� � ; �) � B), then we make use of
weak duality (Bertsimas and Tsitsiklis (1997)):

R(� � ; �) �R (� � ; �) � �
�
C(� � ; �) � B

�
= D(�) � R (� ?; �);

and accept� � as a near-optimal, near-feasible solution. Of course such cases will not occur
in general. Based on these discussion, we propose one possible Algorithm 2.

Feasibility Mixing. As we have discussed in (23), we need to build an oracle that given
two policies � 1; � 2 with C(� 1; �) � B and C(� 2; �) � B , we can �nd � t = (1 � t)� 1 + t� 2

satisfying C(� t ; �) = B . Here we make use of oracleEvalC again to present an approximate
algorithm that combines linear interpolation and bisection to quickly search for a feasible
policy. Speci�cally, for the interpolation part, we notice that, for L � B � U, (1� t)L + tU =
B where t = B � L

U� L . In practice, we may use a direct bisection. Feasibility mixing is
especially practical because we might only obtain approximately optimal candidate policies
� 0

1; � 0
2 (i.e. they might not be the optimal pair of polices) under two dual variables � 0

1 and � 0
2

(i.e. they might be di�erent from the desired � 1 and � 2 in Theorem 2) from Algorithm 1 that
in turn might only be approximately optimal for � 0

i (meaning that R(� 0
i :�) � � 0

i (C(� 0
i ; �) �

B) � D (� i)). However, based on the piecewise-linearity and the convexity ofD(�), as long
as feasibility mixing is performed, it is straight-forward to show that the reward function of
the mixing policy � t satis�es D(� ?) �R (� t ; �) = O(� 1 � � 2 � � 3) where � 1 = max 1� i � 2 j� i � � ?j,
� 2 = max 1� i � 2 jD (� i) � D (� ?)j and � 3 = max 1� i � 2 jR (� 0

i :�) � � 0
i (C(� 0

i ; �) � B)j.

6. Numerical Experiments

6.1. Environment Description and Setup

We evaluate the proposed algorithms on a real world dataset collected from [anonymized for
review purpose] during a sponsored search campaign portfolio which spans over six months

219

Chen Lam Li Meisami

Algorithm 3 Feasibility Mixing

Input: policies � 1; � 2 with EvalC (� 1; �) � B , EvalC (� 2; �) � B , a tolerance for the
budget �
Initialize: t B � Eval C (� 1 ;�)

Eval C (� 2 ;�)� Eval C (� 1 ;�) , (or i 1, t i 1=2 for direct bisection)
Set policy � t = (1 � t)� 1 + t� 2

if B � � � EvalC (� t ; �) � B + � , then
Break search and accept� t as optimal policy.

end if
if EvalC (� t ; �) < B � � then

Update � 1 � t and t B � Eval C (� 1 ;�)
Eval C (� 2 ;�)� Eval C (� 1 ;�) , (or i i + 1 t t + 1=2i)

end if
if EvalC (� t ; �) > B + � then

Update � 2 � t and t B � Eval C (� 1 ;�)
Eval C (� 2 ;�)� Eval C (� 1 ;�) , (or i i + 1 t t � 1=2i)

end if
Output: t (or � t).

and contains over a million distinct user search trajectories. The dataset provides ad click
records of anonymous users before conversion with their corresponding timestamps. The ad
click records are associated with a matching of the user's query with a keyword group. This
particular dataset has ten di�erent keyword groups each containing hundreds of keywords.
Similar to other advertiser-speci�c data, we do not directly observe the events in which the
users did not click on the ad. Similarly, the data does not record the searches for which
the ad was not shown to the user for any reason such as low bid values, budget constraint,
etc. On the other hand, a smaller version of the experiment allows a clear validation of our
key theorem on policy splitting, because the optimal policy and its two splitting policies
in a CMDP is di�cult to recover in complicated, large MDPs. However, we note that our
algorithm allows for larger experiments in a model-free algorithm setting.

For the experiment setup, we �rst retrieve the cost information for our sampled dataset
with CPC (cost per click) metric averaged at the keyword group level for the similar time
period as the collected data. The average cost for the ten keyword groups in our experiment
is estimated to be [0:2; 0:4; 0:25; 0:5; 0:3; 0:6; 0:5; 0:3; 0:3; 0:4] in dollars. Additionally, the
reward for converting a user is estimated to be worth $10 for this campaign. Then, we
follow the framework in Archak et al. (2012) to establish a CMDP. In particular, user
state represents the matching of the user's last query with any of the keyword groups that
translates to ten states in our experiment. Then, our action space is binary and includes
\advertise" and \do not advertise" actions and transition probabilities between states are
directly estimated from the data. In order to overcome the issue of estimating transition
probabilities for \do not advertise", we follow the remedy suggested by Archak et al. (2012).
That is, we assume the transitions between states are independent of the ad presented to the
user if the time period between two consecutive searches is longer than one day. Moreover,
we bundle all possible advertisement keywords in 10 keyword groups. Finally, we add 4
states, which contain a beginning state, a conversion state, a non-conversion state and
eventually the �nal state to incorporate the situation where users may convert temporarily
but eventually become disinterested in the ad push (see Figure 1). Consequently, we have

220

Constrained Reinforcement Learning via Policy Splitting

14 states in our environment in total with a transition probability matrix in R2×14×14. We
run Algorithm 1 with hyper-parameters �min = 0, �max = 2, M1 = 105, E1 = 3:5 � 105;
M2 = 104; E2 = 2� 105; �e = 9

9+0:2e , �greedy = 0:2, B = 0:45, = 0:6, � = 10−4 and early

stopping criterion requires k � k∞ norm within 10−4. The metrics here for reward and cost
are averaged accumulative rewards and averaged accumulative costs defined in (1), In order
to show the advantage of our method, we pick RCPO as a baseline. For the sake of fairness,
all experiments are implemented in Python 3.7 and executed on a standard 1.7 GHz
Dual-Core Intel Core i7.

Figure 1: MDP on advertisement (red node denotes a conversion/non-conversion state).

6.2. Algorithm Performances

Figure 2(a) demonstrates the averaged accumulative costs of the two candidate policies
(Policy 1 and Policy 2) selected by Algorithm 1. Moreover, for each �, D(�) can be computed
efficiently with RL-methods and its convexity is shown in Figure 2(b). After identifying two
candidate policies from Algorithm 1, we run Algorithm 3 which mixes the policies to satisfy
the budget constraint. As shown in Figure 2(c), we start with Policies 1 and 2 corresponding
to t = 0 and 1 and use a simple bisection to search for the target value of t. Figure 2(d)
shows the searching process stabilizes after a few iterations and the corresponding long-run
budget for different mixture policies gradually converges to the target budget value. As
we expect, in this case the optimal policy comes from the mixture, one policy going over
budget and the other under.

To show the robustness of the procedure, we perform a large number of experiments
to see the effectiveness of Algorithm 1 in recovering the correct pair of optimal policies.
Figure 3 (a)(b) shows that, in this example, the correct pair of policies can be recovered
in 78% of the experimental repetitions. More importantly, we plot the distribution of the
reward-budget pairs of the resulting mixture policy across all experiments and show that,
among the occasions Algorithm 1 does not pick the correct pair, the resulting mixture is
still approximately optimal and feasible, within a controllable error margin, showing the
stability of the procedure. In addition, we compare the performances between our method
and RCPO. As shown in Figure 3(c), the learning curve on rewards of RCPO is between
the learning curves of two candidate policies. However, as shown in Table 1 and 3(d), our
mixing method can find a randomized policy that has a higher average accumulative reward
in lesser time. As discussed, RCPO converges fast initially, yet the convergence slows down
and exhibits a zigzag motion when it is quite close to the optimal �. Advantageously, our
mixing method bypass this problem around convergence.

221

	Introduction
	Problem Setting
	Lagrangian with Reduced Policy Space
	Policy Mixing and Dual Q-Learning
	Discussion and Implementation
	Numerical Experiments
	Environment Description and Setup
	Algorithm Performances

	Conclusion

