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Abstract

We present Deep-n-Cheap – an open-source AutoML framework to search for deep learning
models. This search includes both architecture and training hyperparameters, and supports
convolutional neural networks and multilayer perceptrons. Our framework is targeted for
deployment on both benchmark and custom datasets, and as a result, offers a greater
degree of search space customizability as compared to a more limited search over only pre-
existing models from literature. We also introduce the technique of ‘search transfer’, which
demonstrates the generalization capabilities of our models to multiple datasets.

Deep-n-Cheap includes a user-customizable complexity penalty which trades off perfor-
mance with training time or number of parameters. Specifically, our framework results in
models offering performance comparable to state-of-the-art while taking 1-2 orders of mag-
nitude less time to train than models from other AutoML and model search frameworks.
Additionally, this work investigates and develops various insights regarding the search pro-
cess. In particular, we show the superiority of a greedy strategy and justify our choice of
Bayesian optimization as the primary search methodology over random / grid search.

Keywords: Automated Machine Learning, Complexity Reduction, Bayesian Optimiza-
tion, Neural Architecture Search

1. Introduction

Artificial neural networks (NNs) in deep learning systems are critical drivers of emerging
technologies such as computer vision, text classification, and autonomous applications. In
particular, convolutional neural networks (CNNs) are used for image related tasks while
multilayer perceptrons (MLPs) can be used for general purpose tasks. Designing NNs in-
volves decisions to be made regarding hyperparameters. As opposed to trainable parameters
like weights and biases, hyperparameters are not learned by the network. Therefore, the
challenging task of manually searching for, specifying and adjusting the values of large num-
bers of NN hyperparameters needs to be performed by an external entity, i.e., the designer.
Hyperparameters can be broadly grouped into two categories – a) architectural hyperpa-
rameters, such as the type of each layer and the number of nodes in it, and b) training
hyperparameters, such as the learning rate and batch size.
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1.1. Motivation and Related Work

The problem of manually designing good NNs has resulted in several efforts towards au-
tomating this process. These include AutoML frameworks such as Auto-Keras (Jin et al.
(2019)), AutoGluon (AWSLabs (2020)) and Auto-PyTorch (Mendoza et al. (2018)), which
are open source software packages applicable to a variety of tasks and NN types. AutoML
frameworks primarily focus on providing toolkits to search for good hyperparameter values.

Several other efforts place more emphasis on novel techniques for the hyperparameter
search process. These can be broadly grouped into architecture search efforts such as Pham
et al. (2018); Liu et al. (2019, 2018); Real et al. (2019); Xie and Yuille (2017); Tan and
Le (2019); Cai et al. (2019a); He et al. (2018), and efforts that place a larger emphasis
on training hyperparameters over architecture (Cai et al. (2019b); Snoek et al. (2012);
Bergstra et al. (2013)). An alternate grouping is on the basis of search methodology – a)
reinforcement learning (Pham et al. (2018); Zoph et al. (2018)), b) evolution (Real et al.
(2019); Xie and Yuille (2017)), and c) Bayesian Optimization (Kandasamy et al. (2018);
Snoek et al. (2012); Swersky et al. (2013)). Although the efforts described in this paragraph
often come with publicly available software, they are typically not intended for general
purpose use, e.g., the code release for Cai et al. (2019a) only allows reproducing NNs on
two datasets. This differentiates them from AutoML frameworks.

Deep NNs often suffer from complexity bottlenecks – either in storage, quantified by the
total number of trainable parameters Np, or computational, such as the number of FLOPs
or the time taken to perform training and/or inference. Prior efforts on NN search penalize
inference complexity in specific ways – latency in Cai et al. (2019a), FLOPs in Tan and Le
(2019), and both in He et al. (2018). However, inference complexity is significantly different
from training since the latter includes backpropagation and parameter updates every batch.
For example, the resulting network for CIFAR-10 in Cai et al. (2019a) takes a minute to
perform inference, but hours to train. Moreover, while there is considerable interest in
popular benchmark datasets, in most real-world applications deep learning models need
to be trained on custom datasets for which readymade, pre-trained models do not exist
(Baldi et al. (2014); Santana and Hotz (2016)). This leads to an increasing number of
resource-constrained devices needing to perform training on the fly, e.g., self-driving cars.

The computing platform is also important, e.g., changing batch size has a greater effect
on training time per epoch on GPU than CPU. Therefore, calculating the FLOP count is
not always an accurate measure of the time and resources expended in training a NN. Some
previous works have proposed pre-defined sparsity (Dey et al. (2019); Dey et al. (2017)) and
stochastic depth (Huang et al. (2016)) to reduce training time, while Page (2019) focuses
on finding the quickest training time to get to a certain level of performance. Note that
these are all manual methods, not automated search frameworks.

1.2. Overview and Contributions

This paper introduces Deep-n-Cheap (DnC) – an open-source AutoML framework to search
for deep learning models1. We specifically target the training complexity bottleneck by
including a penalty for training time per epoch ttr in our search objective. The penalty

1. Source code available at https://github.com/souryadey/deep-n-cheap.
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coefficient can be varied by the user to obtain a family of networks trading off performance
and complexity. Additionally, we also support storage complexity penalties for Np.

DnC searches for both architecture and training hyperparameters. While the architec-
ture search derives some ideas from literature, DnC offers the user considerable customiz-
ability in specifying the search space. This is important for training on custom datasets that
have significantly different requirements than those associated with benchmark datasets.

DnC primarily uses Bayesian Optimization (BO) and supports classification tasks using
CNNs and MLPs. A notable aspect is search transfer, where we found that the best NNs
obtained from searching over one dataset give good performance on a different dataset. This
helps to improve generalization in NNs – such as on custom datasets – instead of purely
optimizing for specific problems.

The following are the key contributions of this paper:

1. Complexity: To the best of our knowledge, DnC is the only AutoML framework
targeting training complexity reduction. We show results on several datasets on both
GPU and CPU. Our models achieve performance comparable to state-of-the-art, with
training times that are 1-2 orders of magnitude less than those for models obtained
from other AutoML frameworks and search efforts.

2. Usability: DnC offers a highly customizable three-stage search interface for both ar-
chitecture and training hyperparameters. As opposed to Auto-Keras and AutoGluon,
our search includes a) batch size that affects training times, and b) architectures
beyond pre-existing ones found in literature. As a result, our target users include
those who want to train quickly on custom datasets. As an example, our framework
achieves the highest performance and lowest training times on the custom Reuters
RCV1 dataset (Dey et al. (2019)). We also introduce search transfer to explore gen-
eralization capabilities of architectures to multiple datasets under different training
hyperparameter settings.

3. Insights: We conduct investigations into the search process and draw several insights
that will help guide a deeper understanding of NNs and search methodologies. We
introduce a new similarity measure for BO and a new distance function for NNs. We
empirically justify the value of our greedy three-stage search approach over less greedy
approaches, and the superiority of BO over random and grid search.

The paper is structured as follows –– Sec. 2 outlines our search methodology, Sec. 3 our
experimental results, Sec. 4 includes additional investigations and insights, Sec. 5 compares
with related work, and Sec. 6 concludes the paper.

2. Our Approach

Given a dataset, our framework searches for NN configurations (configs) through sequential
stages in multiple search spaces. Each config is trained for the same number of epochs,
e.g., 100. There have been works on extrapolating NN performance from limited training
(Baker et al. (2017); Liu et al. (2018)), however we train for a large number of epochs to
predict with significant confidence the final performance of a NN after convergence. Configs
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Figure 1: Three-stage search process for DnC.

are mapped to objective values using:

f(Config) = log (fp + wcfc) (1)

where wc controls the importance given to reducing complexity. The goal of the search is
to minimize f . Its components are:

Performance term: fp = 1− (Best Validation Accuracy) (2a)

Complexity term: fc =
c

c0
(2b)

where c is the complexity metric for the current config (either ttr or Np), and c0 is a
reference value for the same metric (typically obtained for a high complexity config in the
space). Lower values of wc focus more on performance, i.e., improving accuracy. One
key contribution of this work is characterizing higher values of wc that lead to reduced
complexity NNs that train fast – these also reduce the search cost by speeding up the
overall search process.

2.1. Three-stage search process

Stage 1 – Core architecture search: For CNNs, the combined search space consists
of the number of convolutional (conv) layers and number of channels in each, while for
MLPs, it is the number of hidden layers and number of nodes in each. Other architectural
hyperparameters such as batch normalization (BN) and dropout layers and all training
hyperparameters are fixed to presets that we found to work well across a variety of datasets
and network depths. BO is used to minimize f and produce the resulting best config.

Stage 2 – Advanced architecture search: This stage starts from the resulting archi-
tecture from Stage 1 and searches over the following CNN hyperparameters – 1) whether
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to use strides or max pooling layers for downsampling, 2) amount of BN layers, 3) amount
of dropout layers and drop probabilities, and 4) amount of shortcut/skip connections. We
use grid search instead of BO since the number of options in the search space is limited.
Moreover, using a combined space yielded inferior results, so we use sequential sub-stages,
i.e., grid search first picks the downsampling choice leading to the minimum f value, then
freezes that and searches over BN, and so on. This ordering yielded good empirical results,
however, reordering is supported by the framework. For MLPs, there is a single grid search
for dropout probabilities. As before, training hyperparameters are fixed to presets.

Stage 3 – Training hyperparameter search: The architecture is finalized after Stage
2. In Stage 3 – identical for CNNs and MLPs – we search over the combined space of initial
learning rate η, weight decay λ, and batch size, using BO to minimize f . The final config
after Stage 3 comprises both architecture and training hyperparameters. The complete
process is summarized in Fig. 1.

Insights: While BO is an excellent choice for our search problem, it is known to perform
poorly for highly multi-dimensional search spaces (Brochu et al. (2010)). This is why we
break up the search space into three stages in a way such that latter stage hyperparameters
depend on prior ones, e.g., weight decay from Stage 3 depends on the core architecture in
Stage 1. Note that the converse is also true, this is why the hyperparameters to be searched
in latter stages automatically adapt their values based on each config as it is sampled in
earlier stages. For example, sampled configs with more layers in Stage 1 automatically have
more shortcut connections (these presets are also customizable). Note that we explored
different orderings of the stages, however, these yielded inferior results.

2.2. Bayesian Optimization

Bayesian Optimization is useful for optimizing functions that are black-box and/or expen-
sive to evaluate such as f , which requires NN training. The initial step when performing BO
is to sample n1 configs from the search space, {x1, · · · ,xn1}, calculate their corresponding
objective values, {f (x1) , · · · , f (xn1)}, and form a Gaussian prior. The mean vector µ
comprises the mean of the f values, and covariance matrix Σ is such that Σij = σ (xi,xj),
where σ(·, ·) is a kernel function that takes a high value ∈ [0, 1] if xi and xj are similar.

Then the algorithm continues for n2 steps, each step consisting of sampling n3 configs,
picking the config with the maximum expected improvement, computing its f value, and
updating µ and Σ accordingly. The reader is referred to Brochu et al. (2010) for a complete
tutorial on BO – where eq. (4) in particular has details of expected improvement. Note that
BO explores a total of n1+n2n3 states in the search space, but the expensive f computation
only occurs for n1 + n2 states.

2.2.1. Similarity between NN configurations

We begin by defining the distance between values of a particular hyperparameter k for
two configs xi and xj . Larger distances denote dissimilarity. We have developed the ramp
distance function:

d (xik, xjk) = ωk

(
|xik − xjk|
uk − lk

)rk

(3a)
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where uk and lk are respectively the upper and lower bounds for k, ωk is a scaling coefficient,
and rk is a fractional power used for stretching differences. We experimented with similar
distance functions defined in Hutter and Osborne (2013) and found ramp distance to be
superior since it achieves similar performance with less functional hyperparameters to tune.

Note that d is 0 when xik = xjk, and reaches a maximum of ωk when they are the
furthest apart. xik and xjk are computed in different ways depending on k:

• If k is batch size or number of layers, xik and xjk are the actual values.

• If k is η or λ, xik and xjk are the logarithms of the actual values.

• When k is the hidden node configuration of a MLP, we sum the nodes together across
all hidden layers. We found that the sum has a greater impact on f than considering
hidden layers individually, e.g., a config with three 300-node layers has a closer f
value to a config with one 1000-node layer than a config with three 100-node layers.

• When k is the conv channel configuration of a CNN, we calculate individual distances
for each layer. If the number of layers is different, the distance is maximum for
each of the extra layers, i.e., ω. This idea is inspired from Hutter and Osborne
(2013), as compared to alternative similarity measures in Kandasamy et al. (2018); Jin
et al. (2019). We follow this layer-by-layer comparison because our prior experiments
showed that the representations learned by a certain conv layer in a CNN are similar
to those learned by layers at the same depth in different CNNs. Additionally, this
approach performed better than the summing across layers as in MLPs.

Each individual distance d (xik, xjk) is converted to its kernel value σ (xik, xjk) using
the squared exponential function, then we take their convex combination for all K hyper-
parameters using coefficients {sk} to finally get σ (xi,xj). Fig. 2 shows an example.

σ (xik, xjk) = exp

(
−
d2(xik, xjk)

2

)
(3b)

σ (xi,xj) =
K∑
k=1

skσ (xik, xjk) (3c)

3. Experimental Results

This section presents results of our search framework on different datasets for both CNN
and MLP classification problems, along with the search settings used. Note that most of
these settings can be customized by the user – this leads to one of our key contributions
of using limited knowledge from literature to enable wider exploration of NNs for various
custom problems. We used the Pytorch library on two platforms: a) GPU – an Amazon
Web Services p3.2xlarge instance that uses a single NVIDIA V100 GPU with 16 GB memory
and 8 vCPUs, and b) CPU – a mid-2014 Macbook Pro CPU with 2.2 GHz Intel Core i7
processor and 16GB 1.6 GHz DDR3 RAM.

The BO settings are n1 = n2 = 15 and n3 = 1000. We later show the effects of
varying these in Section 4.3. The hyperparameters not searched over include using the
Adam optimizer and ReLU activation function.
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Figure 2: Calculating Stage 1 similarity for two conv channel configs: xi = [50, 80] and xj =
[36, 61, 107]. Taking the 1st conv layer as an example, the pre-decided values are
u1 = 64, l1 = 16, ω1 = 3 and r1 = 1. Distance d1 = 3× [(50− 36)/(64− 16)]1 =
0.875, and kernel value σ1 = exp

(
−0.5× 0.8752

)
= 0.682. Similarly we get

σ2 = 0.466 and σ3 = 0.01 (note that d3 = ω3 due to the absence of a 3rd layer in
xi). Combining these using s1 = s2 = s3 = 1/3 yields σ (xi,xj) = 0.386.

3.1. CNNs

All CNN experiments are on GPU. The datasets used are CIFAR-10 and -100 with train-
validation-test splits of 40k-10k-10k, and Fashion MNIST (FMNIST) with 50k-10k-10k
splits. Standard augmentation is always used – channel-wise normalization, random crops
from 4 pixel padding on each side, and random horizontal flips. Augmentation requires
Pytorch data loaders that incur timing overheads, so we also show results on unaugmented
CIFAR-10 where the whole dataset is pre-loaded into memory and ttr reduces as a result.

Stage 1 searches over CNNs with 4–16 conv layers, the first of which has c1 ∈ {16,
17, · · · , 64} channels and each subsequent layer has ci+1 ∈ {ci, ci + 1, · · · ,min (2ci, 512)}
channels. We allow the number of channels in a layer to have arbitrary integer values, not
just fixed to multiples of 8. For Stage 2, the first grid search is over all possible combinations
of using either strides or max pooling for the downsampling layers. Second, we vary the
fraction of BN layers through [0, 1/4, 1/2, 3/4]. Third, we vary the fraction of dropout layers
in a manner similar to BN, and drop probabilities over [0.1, 0.2] for the input layer and
[0.15, 0.3, 0.45] for all other layers. Fourth, we search over shortcut connections – none,
every 4th layer, or every other layer. Finally in Stage 3, we usearch over a) η ∈ {10x} for
x ∈ [1, 5], b) λ ∈ {10x} for x ∈ [−6,−3], with λ converted to 0 when x < −5, and c) batch
sizes in [32, 33, · · · , 512]. We found that batch sizes that are not powers of 2 did not lead
to any slowdown on the platforms used.

The complexity term fc uses normalized ttr, since this is the major bottleneck in devel-
oping CNNs. Each config was trained for 100 epochs on the train set and evaluated on the
validation set to obtain fp. We ran experiments for 5 values of wc: [0, 0.01, 0.1, 1, 10]. The
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best network from each search was then trained on the combined training and validation
set, and evaluated on the test set for 300 epochs to get final test accuracies and ttr values.

As shown in Fig. 3, we obtain a family of networks by varying wc. Performance in the
form of test accuracy trades off with complexity in the form of ttr. The latter is correlated
with search cost and Np. The last row of figures directly plot the performance-complexity
tradeoff. These curves rise sharply on the left and flatten out on the right, indicating
diminishing performance returns as complexity is increased. This highlights one
of our key contributions – allowing the user to choose fast training NNs that perform well.

Taking augmented CIFAR-10 as an example, DnC found the following best config for
wc = 0: 14 conv layers with {c} = (50, 52, 53, 59, 95, 96, 97, 120, 193, 239, 351, 385, 488, 496),
the 4th layer has a stride of 2 while max pooling follows layers 8 and 10, BN follows all
conv layers, dropout with drop probability 0.3 follows every other conv block, and skip
connections are present for every other conv block. The best found η is 10−3, batch size
is 120 and λ is 3.35 × 10−5. We note that we achieve good performance with a NN that
has irregular {c} values and is also not very deep – this is consistent with the findings in
Zagoruyko and Komodakis (2016).

On the other hand, the best config found for wc = 10 only has 4 conv layers.

3.2. MLPs

While CNNs are useful for image-related tasks, MLPs are more generalized and can be
used for other tasks, or images in permutation-invariant format. We ran CPU experiments
on the MNIST and FMNIST datasets in this format without any augmentation, and GPU
experiments on the custom Reuters RCV1 dataset constructed as given in Dey et al. (2019).
Each dataset is loaded into memory in its entirety, eliminating data loader overheads.

For Stage 1, we search over 0–2 hidden layers for MNIST and FMNIST, number of nodes
in each being 20–400. These numbers change for RCV1 to 0–3 and 50–1000 since it is a larger
dataset. For Stage 2, we do a grid search over drop probabilities in [0, 0.1, 0.3, 0.4, 0.5],
and for Stage 3, the training hyperparameter search is identical to CNNs.

We ran separate searches for individual penalty functions – normalized ttr and normal-
ized Np. The latter is owing to the fact that MLPs often massively increase the number
of parameters and thereby storage complexity of NNs (Krizhevsky et al. (2012)). The
train-validation-test splits for MNIST and FMNIST are 50k-10k-10k, and 178k-50k-100k
for RCV1. Candidate networks were trained for 60 epochs and the final networks tested
after 180 epochs. As before, wc ∈ [0, 0.01, 0.1, 1, 10] for MNIST and FMNIST. For RCV1,
the results for wc = 10 were mostly similar to wc = 1, so we replace 10 with 0.03. Plots are
shown in Fig. 4, where pink dots and black crosses are respectively for ttr and Np penalties.

The trends in Fig. 4 are qualitatively similar to those in Fig. 3. When penalizing Np,
the two lowest complexity networks in each case have no hidden layers, so they both have
exactly the same Np (results differ due to different training hyperparameters). Of interest
is the subfigure on the bottom right, indicating much longer search times when penalizing
Np as compared to ttr. This is because time is not a factor when penalizing Np, so the
search picks smaller batch sizes that increase ttr with a view to improving performance.
Interestingly enough, this does not actually lead to performance benefit as shown in the
subfigure on the top-right, where the black crosses occupy similar locations as the pink dots.
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Figure 3: Characterizing a family of NNs for CIFAR-10 augmented (1st column), unaug-
mented (2nd column), CIFAR-100 augmented (3rd column) and FMNIST aug-
mented (4th column), obtained from DnC for different wc. We plot test accuracy
in 300 epochs (1st row), ttr on combined train and validation sets (2nd row),
search cost (3rd row) and Np (4th row), all against wc. The 5th row shows the
performance-complexity tradeoff, with dot size proportional to search cost.

281



Dey Kanala Chugg Beerel

Figure 4: Characterizing a family of NNs for MNIST (1st column) and FMNIST (2nd col-
umn) on CPU, and RCV1 (3rd column) on GPU, obtained from DnC for different
wc. We plot test accuracy in 180 epochs (1st row), ttr on combined train and val-
idation sets (2nd row), Np (3rd row), and search cost (4th row), all against wc.
The search penalty is ttr for the pink dots and Np for the black crosses.

4. Investigations and insights

4.1. Search transfer

One goal of our search framework is to find models that are applicable to a wide variety
of problems and datasets suited to different user requirements. To evaluate this aspect, we
experimented on whether a NN architecture found from searching through Stages 1 and 2
on dataset A can be applied to dataset B after searching for Stage 3 on it. In other words,
how does transferring an architecture compare to ‘native’ configs, i.e., those searched for
through all three stages on dataset B. This process is shown on the left in Fig. 5. Note
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Stage 3 on 
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Final
Config

Final
Config}
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Native

Figure 5: Left : Process of search transfer – comparing configs obtained from native search
with those where Stage 3 is done on a dataset different from Stages 1 and 2. Right :
Results of CNN search transfer to (a) CIFAR-10, (b) CIFAR-100, (c) FMNIST.
All datasets are augmented. Pink dots denote native search.

that we repeat Stage 3 of the search since it optimizes training hyperparameters such as
weight decay, which are related to the capacity of the network to learn a new dataset. This
is contrary to simply transferring the architecture as in Zoph et al. (2018).

We took the best CNN architectures found from searches on CIFAR-10, CIFAR-100 and
FMNIST (as depicted in Fig. 3) and transferred them to each other for Stage 3 searching.
The results for test accuracy and ttr are shown on the right in Fig. 5. We note that the
architectures generally transfer well. In particular, transferring from FMNIST (green crosses
in subfigures (a) and (b)) results in slight performance degradation since those architectures
have Np around 1M-2M, while some architectures found from native searches (pink dots)
on CIFAR have Np > 20M. However, architectures transferred between CIFAR-10 and -
100 often exceed native performance. Moreover, almost all the architectures transferred
from CIFAR-100 (green crosses in subfigure (c)) exceed native performance on FMNIST,
which again is likely due to bigger Np. We also note that ttr values remain very similar on
transferring, except for the wc = 0 case where there is absolutely no time penalty.

4.2. Greedy strategy

Our search methodology is greedy in the sense that it preserves only the best config resulting
in the minimum f value from each stage and sub-stage. We also experimented with a non-
greedy strategy. Instead of one, we picked the three best configs from Stage 1 – {x1,x2,x3},
then ran separate grid searches on each of them to get three corresponding configs at the
end of Stage 2, and finally picked the three best configs for each of their Stage 3 runs for
a total of nine different configs – {x11,x12,x13,x21, · · · ,x33}. Following a purely greedy
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Figure 6: Search objective values (lower the better) for three best configs from Stage 1 (blue,
red, black), optimized through Stages 2 and 3 and three best configs chosen for
each in Stage 3. Results shown for different wc on CIFAR-10 unaugmented.

Figure 7: Search objective values (lower the better) for purely random search (blue) vs
purely grid search via Sobol sequencing (green) vs balanced BO (red) vs extreme
BO (black). Results shown for different wc on CIFAR-10 unaugmented.

approach would have resulted in only x11, while following a greedy approach for Stages 1
and 2 but not Stage 3 would have resulted in {x11,x12,x13}. We plotted the losses for
each config for five different values of wc on CIFAR-10 unaugmented (Fig. 6 shows three of
these). In each case we found that following a purely greedy approach yielded best results,
which justifies our choice for DnC.

4.3. Bayesian optimization vs random and grid search

We use Sobol sequencing – a space-filling method that selects points similar to grid search –
to select initial points from the search space and construct the BO prior. We experimented
on the usefulness and properties of BO by comparing the final search loss f achieved by
performing the Stage 1 and 3 searches in four different ways. These are a) Random search
– pick 30 prior points randomly, then 0 optimization steps, b) Grid search – pick 30 prior
points via Sobol sequencing, then 0 optimization steps, c) Balanced BO (DnC default) –
pick 15 prior points via Sobol sequencing, then 15 optimization steps, and d) Extreme BO
– pick 1 initial point, then 29 optimization steps.
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Table 1: Comparison of features of AutoML frameworks

Framework Architecture search space
Training Adjust model

hyp search complexity

Auto-Keras Only pre-existing architectures No No

AutoGluon Only pre-existing architectures Yes No

Auto-PyTorch Customizable by user Yes No

Deep-n-Cheap Customizable by user Yes Penalize ttr, Np

The results in Fig. 7 are for different wc on CIFAR-10. A form of BO outperforms
random and grid search on each occasion. In particular, more optimization steps are ben-
eficial for low complexity models, while the advantages of BO are not significant for high
performing models. We believe that this is due to the fact that many deep nets are fairly
robust to training hyperparameter settings (Zagoruyko and Komodakis (2016)).

5. Comparison to related work

Table 1 compares features of different AutoML frameworks. To the best of our knowledge,
only DnC allows the user to specifically penalize complexity of the resulting models. This
allows our framework to find models with performance comparable to other state-of-the-art
methods, while significantly reducing the computational burden of training. This is shown
in Table 2, which compares the search process and metrics of the final model found for
CNNs on CIFAR-10, and Table 3, which does the same for MLPs on FMNIST and RCV1
for DnC and Auto-PyTorch only, since Auto-Keras and AutoGluon do not have explicit
support for MLPs at the time of writing.

Table Metrics: Auto-Keras and AutoGluon do not support explicitly obtaining the final
model from the search, which is needed to perform separate inference on the test set after
the search. As a result, in order to have a fair comparison, Tables 2 and 3 use metrics from
the search process – ttr is for the train set and the performance metric is best validation
accuracy. These are reported for the best model found from each search.

Note that ProxylessNAS (Cai et al. (2019a)) is not an AutoML framework, and hence out
of scope for DnC comparisons. The primary point of including ProxylessNAS is to compare
to a model with state-of-the-art accuracy that has been highly optimized for CIFAR-10.
This model was trained in the original paper using stochastic depth and additional cutout
augmentation, yielding 97.92% accuracy on their test set. We obtained this model from
the authors (Cai and Authors (2020)) and, in order to make a fair comparison in Table 2,
trained it without cutout and stochastic depth and report the best validation accuracy.

Auto-Keras and AutoGluon use fixed batch sizes across all models, while Auto-PyTorch
and DnC search over batch sizes. We have included batch size since it affects ttr. Each
config for each search is run for the same number of epochs, as described in Sec. 3. The
exception is Auto-PyTorch, where a key feature is variable number of epochs.

Analyzing Results: We note that for CNNs, DnC results in both the fastest ttr and
highest performance. The performance of ProxylessNAS is comparable, while taking 43X
more time to train. This highlights one of our key features – the ability to find models with
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Table 2: Comparing frameworks on CNNs for CIFAR-10 augmented on GPU

Framework
Additional Search cost Best model found from search

settings (GPU hrs) Architecture ttr (sec) Batch size Best val acc (%)

ProxylessNAS Proxyless-G 96 537 conv layers 429 64 93.22

Auto-Keras Default run 14.33 Resnet-20 v2 33 32 74.89

AutoGluon
Default run 3 Resnet-20 v1 37 64 88.6

Extended run 101 Resnet-56 v1 46 64 91.22

Auto-Pytorch
‘tiny cs’ 6.17 30 conv layers 39 64 87.81
‘full cs’ 6.13 41 conv layers 31 106 86.37

Deep-n-Cheap
wc = 0 29.17 14 conv layers 10 120 93.74
wc = 0.1 19.23 8 conv layers 4 459 91.89
wc = 10 16.23 4 conv layers 3 256 83.82

Table 3: Comparing AutoML frameworks on MLPs for FMNIST and RCV1 on GPU

Framework
Additional Search cost Best model found from search

settings (GPU hrs) MLP layers Np ttr (sec) Batch size Best val acc (%)

Fashion MNIST

Auto-Pytorch
‘tiny cs’ 6.76 50 27.8M 19.2 125 91

‘medium cs’ 5.53 20 3.5M 8.3 184 90.52
‘full cs’ 6.63 12 122k 5.4 173 90.61

Deep-n-Cheap wc = 0 0.52 3 263k 0.4 272 90.24
(penalize ttr) wc = 10 0.3 1 7.9k 0.1 511 84.39

Deep-n-Cheap wc = 0 0.44 2 317k 0.5 153 90.53
(penalize Np) wc = 10 0.4 1 7.9k 0.2 256 86.06

Reuters RCV1

Auto-Pytorch
‘tiny cs’ 7.22 38 19.7M 39.6 125 88.91

‘medium cs’ 6.47 11 11.2M 22.3 337 90.77

Deep-n-Cheap wc = 0 1.83 2 1.32M 0.7 503 91.36
(penalize ttr) wc = 1 1.25 1 100k 0.4 512 90.34

Deep-n-Cheap wc = 0 2.22 2 1.6M 0.6 512 91.36
(penalize Np) wc = 1 1.85 1 100k 5.54 33 90.4

performance comparable to state-of-the-art while massively reducing training complexity.
The search cost is lowest for the default AutoGluon run, which only runs 3 configs. We
also did an extended run for ∼ 100 models on AutoGluon to make it match with DnC and
Auto-Keras – this results in the longest search time without significant performance gain.

For MLPs, DnC has the fastest search times and lowest ttr and Np values – this is a result
of it searching over simpler models with few hidden layers. While Auto-PyTorch performs
slightly better for the benchmark FMNIST, our framework gives better performance for the
more customized Reuters RCV1 dataset.

6. Conclusion and Future Work

In this paper we introduced Deep-n-Cheap – the first AutoML framework that specifically
considers training complexity of the resulting models during searching. While our framework
can be customized to search over any number of layers, it is interesting that we obtained
competitive performance on various datasets using models significantly less deep than those
obtained from other efforts in literature. We also found that it is possible to transfer a family
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of architectures found using different wc values between different datasets. The framework
uses Bayesian optimization and a three-stage greedy search process – these were empirically
demonstrated to be superior to other search methods and less greedy approaches.

The first release of DnC supports classification using CNNs and MLPs. The ‘bleeding
edge’ version extends DnC to regression, while additional network types such as segmen-
tation and recurrent are currently under development. Our future plans and subsequent
releases will also expand the set of hyperparameters searched over. The framework is open
source and offers considerable customizability to the user. We hope that DnC becomes
widely used and provides efficient NN design solutions to many.
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