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Abstract

Despite their great success in various fields, modern convolutional neural networks (CNNs)
require huge amount of computation in inference due to their deeper network structure,
which prevents them from being used in resource-limited devices such as mobile phones
and embedded sensors. Recently, filter pruning had been introduced as a promising model
compression method to reduce computation cost and storage overhead. However, existing
filter pruning approaches are mainly model-based, which rely on empirical model to evaluate
the importance of filters and set parameters manually to guide model compression. In this
paper, we observe that CNNs commonly consist of large amount of inactive filters, and
introduce Filter Inactive RatE (FIRE), a novel metric to evaluate the importance of filters
in a neural network. Based on FIRE, we develop a learning based filter pruning strategy
called FIREPruning for fast model compression. It adopts a regression model to predict the
FIRE value and uses a three stage pipeline (FIRE prediction, pruning, and fine-tuning) to
compress the neural network efficiently. Extensive experiments based on widely-used CNN
models and well-known datasets show that FIREPruning reduces overall computation cost
up to 86.9% without sacrificing too much accuracy, which significantly outperforms the
state-of-the-art model compression methods.

1. Introduction

Recent years have witnessed an explosive development of convolutional neural networks
(CNNs). Nowadays, CNNs have been widely used in various fields such as facial recognition,
object detection, autonomous vehicle, and so on. However, nearly all stat-of-the-art CNNs
require huge amount of computation in inference due to their deeper network structure,
which forms a barrier in their applications in light-weight devices like mobile phones and
embedded sensors. Thus, there is a growing demand in community to find an efficient
solution to compress deep CNNs without harming model accuracy.

Numerous of efforts had been done on neural network model compression (Han et al.
(2016); Guo et al. (2016); Liu et al. (2015)). Han et al. proposed a three stage (pruning,
trained quantization, and Huffman coding) parameter compression method (Han et al.
(2016)) that can reduce the storage requirement of neural networks by 35x to 49x without
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affecting their accuracy. Louizos et al. further proposed to learn sparse networks through
lo-norm regularization based on stochastic gate (Louizos et al. (2018)). However, parameter
compression mainly focused on removing parameters from fully connected layers to reduce
storage requirement, which does not necessarily reduce the computation time since fully
connected layers occupy majority number of the total parameters but only contribute less
than 1% of the overall computations in modern CNNs (Li et al. (2017)).

Recently, filter-wise network pruning had been introduced as a promising model com-
pression method to reduce computation cost (Lebedev and Lempitsky (2016); Li et al.
(2017)). The key idea of filter pruning is to measure the importance of filters and dis-
card the unimportant ones. Most existing works adopted ¢1-norm and fe-norm to select
unimportant filters (Li et al. (2017); Zhong et al. (2018); Singh et al. (2019)). However,
there is lack of theoretical basis to conjecture that small norm contributes less in model
inference. Besides, norm-based pruning results in the difficulty of cross-layer comparisons
for filters due to their different sizes. Some works used uniqueness as metric to remove
redundant /similar filters (Xavier et al. (2018); Wang et al. (2019)). Yet such method didn’t
take the effect of filters into account: a filter can be unique but has little effect on model
inference.

Modern convolutional neural networks typically use Rectified Linear Unit (ReLU) as
the activation function of neurons (He et al. (2016); Szegedy et al. (2015)). It can not
only reduce likelihood of so-called gradient vanishing but also bring the benefit of sparsity
due to its constant output of zero in the negative axis. Despite the goodness of ReLLU
in model training and inference, it was reported to cause the “dying ReLU problem” (He
et al. (2015)). Dying ReLU problem refers to the state where neurons remain inactive for
essentially all inputs. And since the derivative of ReLLU is zero in negative axis, the weights
of these neurons can hardly be updated afterwards, leading to stuck in a position where
they can hardly output useful information.

Dying ReLLU problem is very common in CNNs, and we speculate that there exist
large amount of “inactive neurons” due to dying ReLU. For example, Fig. 1(a) shows our
observations to the neuron activation rates of some CNN models on different datasets. It
is observed that neuron activation rates are concentrated on the left part of the axis: up to
20% neurons are activated by 5% samples, up to 15% neurons are activated by 15% samples,
up to 20% neurons are activated by 25% samples, and only very few neurons are activated
by more than 35% samples. Such inactive neurons are rarely activated by the input, and
they have very limited effect on neural networks.

In CNNs, a filter consists of a set of neurons sharing the same weights. We further
observe the average neuron activation rates in filter-wise, whose results are illustrated in
Fig.1(b). It is shown that most filters (up to 75%) are activated by less than 25% input
samples. We call them “inactive filters”, which mainly consist of inactive neurons and will
produce very sparse feature maps with little useful information for CNN inference.

Inspired by the observation of inactive filters, we develop a novel measurement to guide
filter pruning. Specifically, we propose Filter Inactive RatE (FIRE), a novel metric to
evaluate the importance of filters in a neural network. Based on FIRE, we develop a
general filter pruning framework with three stage pipeline: FIRE measurement, pruning,
and fine-tuning. The three stages run repeatedly to remove unimportant filters from the
CNN model, until the accuracy drop exceeds a predefined tolerance threshold.
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Figure 1: Illustration of inactive neurons and filters.

To improve the efficiency of model compression, we further propose a learning based
FIREPruning strategy which adopts regression models to predict FIRE values without ex-
haustive measurements. It uses input samples to compute the FIRE value of filters in the
original neural network to form a training dataset. Then, it extracts features from individ-
ual filter, and trains a FIRE detector to predict the FIRE value. It uses the predicted FIRE
to prune the filters, and fine-tunes the CNN model round by round. We develop extensive
experiments on widely-used deep CNN models (VGG and ResNet) based on a number of
well-known datasets (CIFAR-10, CIFAR-100, and ImageNet). It shows that FIRE detector
achieves mean absolute error (MAE) as low as 0.1, and predicts the FIRE ranking with
high accuracy. The proposed FIREPruning reduces the overall floating point operations
(FLOPs) by 86.9% for VGG-16 and 57.3% for ResNet on CIFAR-10 dataset with accuracy
drop less than 1%. And it can reduce the FLOPs up to 62.89% with tolerable accuracy
drop for ResNet-50 on ImageNet. These results significantly outperform the state-of-the-art
model compression methods.

The contributions of this paper are summarized as follows:

e We propose a novel metric called FIRE to measure the importance of filters in a neural
network. We empirically observed that inactive neurons/filters are very common in
deep CNN models, and show that discarding inactive filters from CNN leads to great
reduction in computation cost without sacrificing too much accuracy. To the best
of our knowledge, we are the first one to introduce dying ReLLU problem into CNN
model compression to guide filter pruning.

e We propose an efficient learning based filter pruning strategy called FIREPruning
for fast model compression. It extracts features from individual filter and trains a
regression model to predict the its importance without exhaustive measurements,
which substantially reduces the computation cost of FIRE measurement for large
dataset. The idea of adopting a learning-based method to choose specific filters to
prune is novel and its efficiency is verified in our work.

387



FANG L1 ZeENG Lu

e We conduct extensive experiments on cross combinations of widely-used CNN models
and well-known datasets. Numerical results show that FIREPruning reduces over-
all FLOPs computation up to 86.9% without sacrificing too much accuracy, which
significantly outperforms the state-of-the-art model compression methods.

2. Related Work

We summarize the related work of CNN model compression as two categories: parameter
pruning methods and filter pruning methods.

2.1. Parameter Pruning Methods

Early efforts on neural network compression mainly focused on pruning parameters from
fully connected layers to reduce the model size. For example, the Optimal Brain Surgeon
method (Hassibi and Stork (1993)) calculated the importance of parameters by second-order
Taylor expansion, which is time-consuming. The Deep Compression method (Han et al.
(2016)) regarded parameters with small absolute value to be less important and pruned the
network by setting the unimportant parameters to zero to build a sparse network.
However, parameter compression methods mainly reduced the storage requirement of
CNNs, and it did not necessarily reduce the computation time since the computation cost for
fully connected layers only occupies a small proportion of the overall computation in modern
CNNs. What’s more, specially designed hardware may be needed for their implementation.

2.2. Filter Pruning Methods

Filter pruning is the most popular model compression method in the recent years. The
main idea of filter-pruning is to prune “unimportant” filters in convolutional layers. Li et
al. argued that filters with small norm are less important and pruned filters layer-wise
iteratively with a given pruning rate (Li et al. (2017)). Luo et al. proposed to use a subset
of channels in the next layer’s input to approximate the original output, and remove the
other channels safely (Luo et al. (2017)). Yang et al. proposed a Soft Filter Pruning method
to enable the pruned filters being updated in fine-tuning stage (Yang et al. (2018)). Zhong
et al. argued that the pruning order is very significant for model pruning and trained
an LSTM model to generate a pruning decision (Zhong et al. (2018)). Singh et al. used
an adaptive filter pruning module to minimize the number of filters and a pruning rate
controller module to maximize the accuracy during pruning (Singh et al. (2019)). Wang et
al. proposed correlation-based pruning method which can find redundancies among filters
and prune the filters in a cross-layer manner (Wang et al. (2019)).

Different from their works, we introduce a novel metric called FIRE to measure the
importance of filters in a neural network and extracts features from individual filter and
trains a regression model to predict its FIRE value without exhaustive measurements. To
the best of our knowledge, we are the first one to introduce dying ReLLU problem into CNN
model compression and train a learning-based model to choose filters to prune and guide
model compression.

388



FIREPRUNING

3. FIREPruning Approach

In this section, we introduce the FIREPruning approach in detail.

3.1. Notations and Definitions

We first introduce the notations and definitions that will be used for analysis throughout
the paper.

We use N to denote a convolutional neural network (CNN) model. Assume it contains
L convolutional layers, and the ¢-th convolutional layer in the model is denoted by L;. We
use F; = {f(i1), f(i,2), fi,3), - } to represent the set of filters (i.e., convolutional kernels) in
L;, where f(; 5y (j = 1,2,---) is the j-th filter in L;. Each filter consists of a set of neurons
represented by fi; 5y = {€@j1):€3ij2)s€a,j3),  * }, where ey (k= 1,2,---) is the k-th
neuron of the filter.

A CNN model N can be represented by sets of filters N' = {Fy, F, - -+, F1.}. Noted that
a CNN model may contains other type of layers, but this paper only focuses on pruning
filters in the convolutional layers.

The CNN model compression problem can be described as: given a CNN model N' =
{F1, Fy,--- ,Fr}, we want to find an algorithm to prune filters in each layer and return a
neural network N/ = {F|, F},--- ,F}}, where F/ C F; (i = 1,2,---,L), and the pruned
CNN model N’ has comparable accuracy against N.

In a CNN model, ReLU? function is commonly used as the activation function of neurons.
If a neuron is activated by an input sample, it will output the original value, otherwise it
outputs 0. If a neuron output 0 for most input samples, it is called an inactive neuron.
An inactive neuron can be the result of an aggressive update when the learning rate is too
large. Yet, what makes matter worse is that once a neuron steps into this state, it can
hardly be recovered. Because the derivative of ReLLU is also 0 in negative axis and the
gradient flow will be cut down and can’t reach the inactive neuron. This means gradient
descent learning will not alter the neuron’s weight and the weight can hardly be updated
afterwards. Since inactive neurons contribute very tiny to model inference, they can be
removed from the CNN model without harming the accuracy of the model. Based on such
intuition, we design a filter pruning strategy based on evaluating the inactive degree of
filters.

Firstly, we formulate the Neuron Inactive Rate (NIRE) for individual neuron, which is
defined as follows.

Definition 1 (Neuron Inactive Rate (NIRE)) Given a neuron e in a deep neural net-
work N, a dataset X, the NIRE of e is defined as the percentage of samples in X that
could not activate e, which is written as

NIRE, — 22wexdlees) (1)

| X|
where g is an indicator function defined as

[ 1, if ReLU(eoxz) = 0
gleow) = { 0, otherwise (2)

2. https://en.wikipedia.org/wiki/Activation_function
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In the above definition, z is a sample of the dataset X, and e o x means matrix multipli-
cation between neuron e and sample x. In convolutional neural networks, x represents the
specific part of the input feature map that e is in charge of. The function g(e o x) will be
1 if the result of ReLU is 0, which means that the neuron e is not activated by the input
sample x. NIRE is used to measure the inactiveness of the neuron. The larger NIRE is,
the more inactive the neuron will be. If a neuron’s NIRE equals to 1, then it is dead and
completely useless in the neural network.

A filter consists of a set of neurons. These neurons share the same weights all over the
input space. A filter will be inactive if it contains a large portion of inactive neurons. In
that case, the filter will only produce a very sparse feature map which includes a lot of zeros.
And it can hardly be updated due to the inactive neurons it contains. It has little effect on
the forward and back propagation. Thus pruning an inactive filter will only result in little
performance drop for neural network. We use Filter Inactive Rate (FIRE) to measure the
inactive degree of a filter, which is defined as follows.

Definition 2 (Filter Inactive Rate (FIRE)) Given a filter f in a deep neural network
N, a dataset X, the FIRE of f is defined as the mean NIRE of all its neurons, which is

computed by
Y Vec s NIRE,

/]

The value of FIRE ranges in [0,1]. The larger FIRE is, the more inactive the filter will
be. FIRE not only measures the activeness of filters but more importantly quantifies the
proportion of useless outputs in the feature map. A CNN model typically consists of a
number of inactive filters as illustrated in the introduction. Pruning these filters can be
beneficial to get a slimmer and computational-efficient neural network.

FIRE; = (3)

3.2. General FIREPruning Framework

Based on the definition of FIRE, we can design a general filter pruning framework, which
is illustrated in Fig. 2. It works as follows. (1) Given a trained deep neural network model
(e.g., VGG) and a dataset (e.g., CIFAR-10), it takes the dataset as input to test the model
and compute the FIRE value of each filter. (2) It prunes the model by removing the top p%
filters with highest FIRE values, where p is a predefined pruning ratio in the framework.
(3) After pruning, it updates the deep neural network parameters by using the dataset
to fine-tune the model. (4) If the accuracy of the updated model is within a predefined
accuracy drop tolerance r% compared to the original model, it keeps pruning the model by
repeating step (1)-(3); otherwise it outputs the updated model as the compression result.

In the proposed framework, the deep neural network model is compressed by removing
a small proportion of filters (p%) round by round. It does not adopt large pruning ratio
for single round due to the following reason. If large amount of filters are removed, it will
cause dramatic change in the structure of neural network, which makes it hard to fine-tune
the pruned model to recover its performance to the original level.
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3.3. Learning based FIREPruning Strategy

The major drawback of the general FIREPruning framework is that it needs to compute the
FIRE value for each filter in every round. If the input dataset size is large (e.g., CIFAR-
10 dataset contains 50000 training samples with size 32x32), the computation could be
highly time-consuming. To achieve efficient model compression, we propose an improved
FIREPruning strategy based on machine learning. The intuition is that FIRE values may
correlated to a number of filter’s features, which can be exploited to build a regression
model to predict the FIRE value for individual filter without the need of input samples.

The learning based FIREPruning strategy is illustrated in Fig. 3. It also compresses
the model round by round. In the first round, it works similar to the general FIREPruning
framework that takes the dataset as input to compute the FIRE values of filters, which
forms a training set for machine learning. Based on the training set, we extract features
from individual filter, and train a FIRE Detector to map from features to FIRE values.
Next, it runs round by round. In each round, it adopts the FIRE detector to estimate the
FIRE value of each filter, removes the top p% inactive filters, and fine-tunes the model.
The pruning process stops if the accuracy of the fine-tuned model exceeds the predefined
accuracy drop tolerance r%.

The details of learning based FIREPruning strategy are discussed as follows.
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No. Feature Meaning
1 Channel Num number of channels in the filter
2 Layer layer of the filter
3 Sum sum of filter weights
4 {1-norm f1-norm of the filter
5-6 Max/Min maximun and minimum of filter weights
7-8 Mean/Median mean and median of filter weights
9 Midrange (Max+Min) / 2
10 Range Max - Min
11 Standard Deviation standard deviation of filter weights
12-13  First/Third Quartile  lowest 25% and 75% of filter weights
14 Quartile Deviation Third Quartile - First Quartile

Table 1: Extracted features for individual filter.

3.3.1. FIRE DETECTOR

The FIRE detector extracts features from filters, and trains a regression model to predict
the FIRE value of individual filter. For each filter, we extract 14 features as listed in Table
1. The extracted features are simple statistics of the raw data which are commonly used in
the machine learning literature.

With the extracted features and the FIRE values computed by the input samples, we
can build a regression model for FIRE prediction. Common machine learning regressors
such as Linear Regressor (LR) and Support Vector Regressor (SVR) can be adopted to
fulfill this task.

3.3.2. PRUNING STRATEGY

The output of FIRE detector is used to guide the pruning process. The model is pruned
round by round. In the first round, it uses the FIRE values computed from the input
samples to rank the filters and form a training set for FIRE detector. In the next rounds,
it uses the trained FIRE detector to predict the FIRE value of each filter. Based on the
prediction, the top p% filters are removed in each round, and the parameters of the model
is fine-tuned. The pruning process is repeated for several rounds, until the accuracy drop
of the fine-tuned model is below the predefined accuracy drop tolerance r%.

In the learning based FIREPruning strategy, neural network compression is based on
the prediction from FIRE detector. Compared to the general FIREPruning framework,
learning based FIREPruning does not need to use the dataset to calculate FIRE values in
every round, which saves a lot of computation cost. Besides, learning based FIREPruning
is more flexible and even independent of dataset: we can use random samples or synthetic
input to train the FIRE detector for pruning guidance.

Since FIRE detector directly weighs the importance of filters among all layers, the
algorithm can automatically discover the structure of the network and decide which filters
to be pruned in each layer. A minor concern is that some layers may be pruned more
aggressively than the others. With slight modification, we can manually choose the preferred
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structure. For example, if we prefer the structure of neural network to be more balanced,
we can set up a threshold p;, % for each layer to guarantee that at most p;, % filters are
pruned in that layer.

The efficiency of learning based FIREPruning strategy is verified by empirical experi-
ments in the following section.

4. Performance Evaluation

In this section, we conduct extensive experiments to evaluate the performance of the pro-
posed neural network compression method.

4.1. Experimental Environment

We implement the proposed pruning strategy in PyTorch v1.0. The experiments are con-
ducted on a GPU-equipped server (NVIDIA Tesla V-100). The default pruning ratio for
each round is set to p% = 5%, and the default accuracy drop tolerance is set to r% = 1%.
We use 20% of the datasets to calculate FIRE values in the first round and train the detector.

We apply the proposed compression method on two widely used deep neural networks:
VGG (Simonyan and Zisserman (2015)) and ResNet (He et al. (2016)). VGG was proposed
by the Visual Geometry Group at Oxford University and ranked 2nd in the classification task
and 1st in the localization task of ImageNet Large Scale Visual Recognition Competition
(ILSVRC) 2014. ResNet introduced a new neural network layer (the residual block) to
the CNN architecture, and became the winner of ILSVRC 2015 in image classification,
detection, and localization, as well as the winner of MS COCO 2015 in detection, and
segmentation.

The performance are evaluated based on three datasets:

e CIFAR-10 (Krizhevsky et al. (2009)): a dataset with 10 categories. Each category
has 5000 training images and 1000 validation images. All images’ resolution is 32x32.

e CIFAR-100 (Krizhevsky et al. (2009)): a dataset with 100 categories. Each category
has 500 training images and 100 validation images. All images are of size 32x32.

e ImageNet (Russakovsky et al. (2015)): a large-scale image classification dataset with
1.27M training images and 50K validating images in 1000 classes. All images are of
size 224 x 224.

4.2. Performance of FIRE Detector

We first study the performance of FIRE detector. We implement the detector with different
regression models including Multilayer Perceptron (MLP), Support Vector Regressor (SVR),
Random Forest (RF), and Gradient Boosting (GB).

We use four metrics to evaluate the performance of FIRE detector: Precision, Mean
Absolute Error (MAE), and Normalized Discounted Cumulative Gain (NDCG), which are
well-known in ranking systems (Buckley and Voorhees (2004)). The NDCG metric measures
how well the predicted value preserves the top-k neurons and their ranking orders. The more
NDCG close to 1, the better the prediction performance.
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CNN model | Algorithm MAE NDCG Prec.@Ql0% Prec.Q40%

MLP 0.0625 0.8265 0.422 0.84

SVR 0.0631 0.8448 0.452 0.864
VGG-16 RF 0.0638  0.8435 0.43 0.866
GB 0.0639  0.8372 0.412 0.832

MLP 0.1831  0.8583 0.3 0.89

SVR 0.1464  0.8932 0.43 0.95

ResNet-56 RF 0.1226  0.9231 0.47 0.99
GB 0.1078 0.9334 0.45 0.99

Table 2: Performance of FIRE Detector on CIFAR-10 for different CNN models.

The results are listed in Table 2. According to the table, the MAE of the detector is as
low as 0.1 for most cases. The NDCG of both models are higher than 0.8, some of them
approaches to 0.99, which means the detector can preserve the ranking of FIRE values very
well. The precision @10% and @40% show that about 45% of the predicted top 10% filters
are lain in the actual top 10%, and more than 86% predicted filters are lain in the actual
top 40%, which means the top filters are well predicted if the model is pruned more than
40%.

Random forest achieves the best comprehensive performance among all regression mod-
els, which is used in our experiments thereafter.

Method | FLOPs (x107) Pruned FLOPs (%) Accuracy (%)
Li-pruned (Li et al. (2017)) 20.6 34 93.4
AFP (Ding et al. (2018)) 5.83 81.39 92.87
COP (Wang et al. (2019)) 8.31 73.5 93.31
RBP (Zhou et al. (2019)) 8.96 71.43 91.0
FIREPruning 4.11 86.90 93.37

Table 3: Performance of different model compression methods for VGG-16 on CIFAR-10.

4.3. Comparison with State-of-the-Arts

Next, we compare the proposed approach with the state-of-the-art neural network com-
pression methods. Similar to the literatures, we use the following metrics to evaluate the
performance of different methods: (1) Accuracy: the accuracy of the CNN model after
pruned and fine-tuned. (2) Floating Point Operations (FLOPs): a widely used metric
to measure the computation cost of convolutional operations (Li et al. (2017)). For a CNN,
its FLOPs is calculated by Dg X Dg x M x N x Dp x D, where M and N are number
of input and output channels; D x Dy is kernel size; and Dp x Dp is the size of feature
map. (3) Pruned FLOPs: the percentage of FLOPs being pruned by the algorithm.

We compare the results of our method against the reported results in other literatures.
The numerical results are discussed in the following.

394



FIREPRUNING

Method | FLOPs (x107) Pruned FLOPs (%) Accuracy (%)
Li-pruned (Li et al. (2017)) 9.09 27.6 93.06
SFP (Yang et al. (2018)) 5.94 52.6 93.35
AMC (He et al. (2018)) 6.27 50 91.9
WtP (Zhong et al. (2018)) 6.56 47.5 92.93
Rethinking (Liu et al. (2019)) 6.27 50 93.05
FIREPruning 5.36 57.30 93.36

Table 4: Performance of different model compression methods for ResNet-56 on CIFAR-10.

4.3.1. VGG on CIFAR-10

VGG-16 contains 13 convolutional layers with a total number of 4224 filters. We train it
from scratch following the same parameter settings and training schedule in Li et al. (2017).
In the fine-tuning stage, we use SGD as the optimizer with 0.01 as initial learning rate.
Learning rate will descend by a factor of 0.5 at epoches 50, 100, 150, and 250 accordingly.

The comparison of different compression methods is illustrated in Table 3. As shown in
the figure, the proposed FIREPruning strategy achieves the lowest FLOPs, which is only
1/5 of the Li-pruned method. It reduces 86.90% FLOPs computation cost, which is much
better than the other methods. For accuracy, FIREPruning is comparable to other methods.
It shows that FIREPruning achieves highest compression rate and lowest computation cost,
which significantly outperforms the other methods.

4.3.2. RESNET oN CIFAR-10

ResNet-56 for CIFAR-10 has 3 stages of residual blocks, each of which contains 8 basic
blocks. There are 2 convolutional layers in every basic block, and the last convolutional
layer needs to produce the same number of feature maps as the input of the basic block
due to the projection mapping. The whole model contains 55 convolutional layers and 2032
filters in total. We train the network from scratch following the same parameter settings
and training schedule in Li et al. (2017). The learning parameters such as optimizer and
learning rate are configured as same as those in the experiment of VGG on CIFAR-10.
The results of model compression are listed in Table 4. The proposed FIREPruning
achieves 5.36 x 107 FLOPs with an accuracy of 93.36%. Both figures are the best among 6
methods, which means we are able to get a compact model with the best performance.

4.3.3. VGG on CIFAR-100

The CIFAR-100 dataset is similar to CIFAR-10 that has 500 training images for each class.
Compared to CIFAR-10, which has 5000 images per class, CIFAR-100 is much more difficult
to be used to train the model due to its fewer training data and more categories. The results
of pruning VGG-16 on CIFAR-100 are compared in Table 5.

As can be seen from the table, with more categories and less training data in the dataset,
the accuracy of all models is lower than that on other datasets both before and after pruning.
The compression ratio is not as high as that on CIFAR-10 dataset. But compared with other
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Method | FLOPs (x10%) Pruned FLOPs (%) Accuracy (%)
SFP (Yang et al. (2018)) 1.92 42.2 71.52
PFA (Xavier et al. (2018)) 1.90 42.9 71.19
COP (Wang et al. (2019)) 1.89 43.1 7177
FIREPruning 1.78 46.6 71.89

Table 5: Performance of different model compression methods for VGG-16 on CIFAR-100.

pruning methods, as illustrated in Table 5, the proposed FIREPruning method is still able
to get a smaller model with higher accuracy.

4.3.4. RESNET ON IMAGENET

We further develop experiments on a large-scale dataset ImageNet using the ResNet-50, a
less redundant CNN model. We use the pretrained ResNet-50 from PyTorch which has a
Top-5 accuracy of 92.86%. In the fine-tune stage, we use SGD as optimizer and fine tune
the pruned model up to 60 epochs. The learning rate starting from 0.01 will be divided by
10 every 15 epochs. The results are illustrated in Table 6. It is shown that FIREPruning is
able to get a compressed model with highest accuracy: 91.19%. Besides, the FLOPs of the
pruned network is 1.534x10?, which dramatically declines compared with other methods.
These all confirm the efficiency of the proposed learning-based approach on real-world large-
scale dataset.

Table 6: Performance of different model compression methods for ResNet-50 on ImageNet

Method | FLOPs (x10%) Pruned FLOPs (%) Accuracy (%)
CP (He et al. (2017)) 2.04 50.0 90.8
ThiNet-50 (Luo et al. (2017)) 1.71 58.18 90.02
RRBP (Zhou et al. (2019)) 1.86 54.5 91.00
GAL (Lin et al. (2019)) 1.84 55.0 90.82
FIREPruning 1.534 62.89 91.19

4.4. Parameter Analysis

Since the per round pruning ratio p% and accuracy drop tolerance r% are two predefined
system parameters, we analysis the performance of the proposed strategy with different
system settings.

4.4.1. INFLUENCE OF PRUNING RATIO

Pruning ratio is an important system parameter that influences the efficiency of filter prun-
ing. Unlike most prior works that set specific pruning rates for each layer, we use one global
pruning ratio for model compression. The pruning ratio p% represents the aggressiveness
of pruning the neural network. The larger it is, the more filters will be pruned. This may
cause a huge information loss for neural network that can’t be restored in fine-tuning. But
a smaller pruning rate usually means more rounds of pruning as well as time budget.
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Table 7 shows the performance of FIREPruning for VGG-16 on CIFAR-10 under dif-
ferent pruning ratio given a fixed time budget. It is shown that large pruning ratio (i.e.,
p% = 30%) may lead to unguaranteed accuracy drop due to dramatic change in network
structure. Smaller pruning ratio can yields lower FLOPs, but it also increases the compu-
tation time for model compression. A suitable pruning ratio is 5% in our system.

Pruning Ratio (%) ‘ 2 5 10 15 20 25 30

FLOPs (x107) 752 709 r10 713 884 839 6.08
Pruned FLOPs (%) | 76.02 77.40 7737 7727 7182 73.26 80.63
Accuracy (%) 93.07 93 93.04 93.12 93.57 93.67 -

Table 7: Performance of FIREPruning under different pruning ratio (VGG-16 on CIFAR-
10).

4.4.2. INFLUENCE OF ACCURACY DROP TOLERANCE

A tolerance of accuracy drop r% will be given prior to pruning. The pruning procedure
will stop if the model’s accuracy drop after pruning-and-fine-tuning is beyond the tolerance.
However, accuracy drop is nearly inevitable if we want to accelerate the network by pruning
more FLOPs. To find out the relation between tolerance accuracy drop and FLOPs pruned,
we conduct experiments on varying r values, whose results are illustrated in Table 8.

According to the table, smaller accuracy drop tolerance may lead to less model compres-
sion and less acceleration. Increasing the accuracy drop tolerance can reduce the FLOPs
dramatically. There is a trade-off between the tolerance accuracy drop and the FLOPs
reduction, and a suitable value is 1% in our system.

Tolerance (%) | 01 02 05 1 2

FLOPs (x107) 28.40 25.50 15.19 4.11 3.18
Pruned FLOPs (%) | 9.49 18.72 51.59 86.90 89.85
Accuracy% 94.03 93.94 93.64 93.37 92.06

Table 8: Performance of FIREPruning under different accuracy drop tolerance (VGG-16 on
CIFAR-10).

5. Conclusion

Filter pruning had been introduced as a promising method to compress CNNs to reduce
computation cost and storage overhead. In this paper, we introduced the dying ReLLU prob-
lem into CNN model compression to guide filter pruning. Specifically, we proposed Filter
Inactive Rate (FIRE), a novel indicator to measure the degree of inactive filters in a neural
network. Based on FIRE, we developed a learning based filter pruning strategy for fast
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model compression. It extracted features from individual filter, trained a FIRE detector
to predict the FIRE value and used a three stage pipeline (FIRE prediction, pruning, and
fine-tuning) to compress CNN models. The three stages run repeatedly to remove unim-
portant filters from the CNN model, until the accuracy drop exceeds a predefined tolerance
threshold. Using FIRE to “burn” the inactive filters, our extensive experiments show that
the proposed FIREPruning strategy outperforms the other state-of-the-art pruning meth-
ods and achieves up to 86.9% computation cost saving for widely-used CNN models (VGG
and ResNet) on a number of well-known datasets (CIFAR-10, CIFAR-100, and ImageNet).
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