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Abstract

Data free deep neural network quantization is a practical challenge, since the original
training data is often unavailable due to some privacy, proprietary or transmission issues.
The existing methods implicitly equate data-free with training-free and quantize model
manually through analyzing the weights’ distribution. It leads to a significant accuracy
drop in lower than 6-bit quantization. In this work, we propose the data free quantization-
aware fine-tuning (DFQF), wherein no real training data is required, and the quantized
network is fine-tuned with generated images. Specifically, we start with training a generator
from the pre-trained full-precision network with inception score loss, batch-normalization
statistics loss and adversarial loss to synthesize a fake image set. Then we fine-tune the
quantized student network with the full-precision teacher network and the generated images
by utilizing knowledge distillation (KD). The proposed DFQF outperforms state-of-the-
art post-train quantization methods, and achieve W4A4 quantization of ResNet20 on the
CIFAR10 dataset within 1% accuracy drop.

Keywords: Data-free, Quantization, Adversarial

1. Introduction

The state-of-the-art DNNs play a decisive role in various artificial intelligence application-
s such as computer vision Krizhevsky et al. (2012) and natural language processing Kim
(2014). The rising practical value drives the DNNs to move from server-level GPUs into mo-
bile phones, Internet of Things and edge devices. The large memory footprint, high power
consumption and long inference latency make it hard to directly apply full-size DNN models
into those embedded devices. Compressing and alleviating the excessive burden of the heavy
deep models are highly desirable for real-time applications or resource-limited devices. To
achieve this, Denton et al. (2014) utilize low-rank approximation to speed up the bottleneck
convolution operations. Han et al. (2016) propose a deep compression pipeline employing
pruning, trained quantization and Huffman coding. Hinton et al. (2015) propose the knowl-
edge distillation aiming at training an alternative small network with the dark knowledge
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distilled from the original large network. Among all, neural network quantization, convert-
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Figure 1: The state-of-the-art quantization solutions can be quartered by data-free or not
and backpropagation-free or not. Our method fills in the blanks of requiring
backpropagation but no data.

ing 32-bit floating-point (FP32) data to integers (INT), is an effective compression method
and it does not change the network architecture. However, the quantization operation in-
troduces noise and results in accuracy drop. Various types of algorithms are proposed to
narrow the performance gap, which can be roughly divided into post-training quantization
(PTQ) and quantization-aware training (QAT) dependent on requiring back-propagation or
not, as illustrated in Figure 1. QAT has high compressibility and high fidelity, but requires
full-size training data. PTQ is time-saving and data-free or only requires a small amount
of data, but the accuracy drop is non-negligible in low-bit length representations. In many
cases, we can only get the pre-trained FP32 model and allow no access to the training data.
The previous studies equate data-free quantization with back-propagation free quantiza-
tion and solve it with PTQ methods. Since they have no data for back-propagation and
weights are quantized linearly, the performance is normally worse than the algorithms with
fine-tuning or re-training on the quantization domain. Therefore, an effective knowledge
extraction approach from a pre-trained model for data-free quantization is needed.

To address this, we regard the pre-trained model as an encoded format of training
data and try to extract more information from it. Chen et al. (2019) propose DAFL
which rebuilds the training dataset from a pre-trained model with the help of a generator
network. Inspired by DAFL, our data-free quantization approach falls into two sub-steps:
generating a fake training set and training the quantized model. We firstly establish a data-
free knowledge distillation process including a training generator and a student. Then we
fine-tune the quantized network with the generated image set. We select fine-turning instead
of training from scratch because it has a higher accuracy in our data-free quantization cases.
In summary, the contributions of this paper are as follows:

• We propose a data-free knowledge distillation method by optimizing inception score
loss, batch-normalization statistic loss and adversarial loss, which fasten the conver-
gence and improve the accuracy of the student network.
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• We propose a quantization paradigm based on our data-free knowledge distillation
architecture and we name it Data Free Quantization-aware Fine-tuning (DFQF). It
requires back-propagation but no data, and fills in the blanks of the bottom right
corner in Figure 1.

• DFQF can be effectively applied to low-bit quantization (3 to 8 bit), and obtains a
higher accuracy than state-of-the-art on the CIFAR dataset.

2. Related Works

2.1. Neural Networks Quantization

Quantization refers to the process of reducing the number of bits. By replacing FP32 data
with lower-precision numerical formats, the requirements for bandwidth and computation
can be reduced. Several techniques have been introduced to improve networks Sung et al.
(2015) and can be roughly divided into two categories: quantization-aware training and
post-train quantization.

There are several works focusing on quantization-aware training. Rastegari et al. (2016);
Hubara et al. (2016) explore Binary neural networks (BNN), quantizing both weights and
activations into binary values {-1, 1}. Zhou et al. (2016) introduce the DoReFa train-
ing network with low bitwidth weights, activations and gradients. Zhou et al. (2017)
proposes INQ, incrementally quantizing the weight to power-of-two. Choi et al. (2018)
present PACT, clipping the activation with a learnable threshold. Jacob et al. (2018) pro-
pose a quantization scheme for integer-arithmetic-only inference, which has been applied in
Tensorflow-lite.

The state-of-the-art post-train quantization methods mainly concentrate on clipping,
and it can be applied to both weights and activations. The weight clip threshold can be
obtained off-line. For activation, the existing methods either need a small calibration set
to collect activation statistics or dynamically compute the clip threshold at runtime which
increases the inference workload. Migacz (2017) selects the clip threshold with the minimum
Kullback-Leibler (KL) divergence between the FP32 and INT. Banner et al. (2019) propose
ACIQ, which assumes the tensors follow the Laplacian or Gaussian distribution and finds
the clip threshold based on minimum mean square error (MSE). Krishnamoorthi (2018)
introduces a pre-channel weights and activations quantization scheme whitepaper which
exploits the ranges, and tensors can be quantized to 8-bits with almost no loss in accuracy.
Nagel et al. (2019) introduce DFQ that maintains close to FP32 performance at 6-bit
quantization through weight equalization and bias correction. Cai et al. (2020) propose
ZeroQ, distilling input data for activation range calculation and requiring no training data.

2.2. Data-free Knowledge Distillation

Knowledge Distillation (KD) is a model compression method, aiming at transferring knowl-
edge from a pre-trained larger model (teacher network) into a small model (student network)
Bucila et al. (2006). Hinton et al. (2015) generalize previous work and introduce the con-
cept of dark knowledge extraction. The student learns distilled knowledge by minimizing
the difference between its predicted class probabilities distribution and teacher’s. Several
techniques employ knowledge distilling to restore the quantization error Polino et al. (2018).
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Figure 2: The proposed architecture, includes a generator, a teacher and a student. The
Teacher network is fixed. The Generator abstracts knowledge from the Teacher
and is trained adversarially against the Student. The Student network learns
through imitating the teacher.

Mishra and Marr (2018) presented three schemes of improving low-precision networks with
knowledge distillation techniques.

Recently, several works study the data-free learning. Lopes et al. (2017) compress origi-
nal training data leveraging some extra metadata and train from the reconstructed training
data through knowledge distillation. Chen et al. (2019) propose DAFL, a data-free knowl-
edge distillation learning with GANs, and portable networks can be learned effectively. But
they regard the pre-trained teacher networks as fixed discriminator and use a specific target
(eg. one-hot output of classification network) when training the generator. Fixed discrim-
inator means there is no adversarial relationship between the generator and discriminator.
It is more like ordinary supervised learning. Yin et al. (2019); Haroush et al. (2019) also
propose data-free compression methods, and they generate synthetic samples by directly
optimizing the input images from trained models. Fang et al. (2019) introduce adversarial
distillation to the generator for data-free learning.

3. Method

3.1. Date-free Knowledge Distillation

The training data of the supervised learning task consists of input-output pairs D = (xi, yi).
In classification task, xi and yi are images and its labels respectively. In this section, we
address the labels first, then the images.
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3.1.1. Training without Labels

Hinton et al. (2015) distilled knowledge by using a temperature parameterized ”softmax”
that converts the logits into a probability. The loss function of the knowledge distillation
is calculated as:

LKD(x,Ws) = λHCE(σ(ys, τ), σ(yt, τ)) + (1− λ)HCE(σ(ys, 1), y). (1)

Where x is the input image, Ws are the student network parameters, y is the ground
truth label, HCE is the cross-entropy loss function, σ is the ”softmax temperature” function,
ys and yt are the respectively logits of the student and teacher. λ is the coefficient deciding
the contribution ratio of the distillation loss. We do not have the real label, and neglect
the temperature. Our student loss can be simplified to:

LS(x,Ws) = HCE(σ(ys), σ(yt)). (2)

Given a pre-trained teacher network NT and a dataset without label D = (xi), we can
generate a new labeled dataset D̂ = (xi,NT (xi)), and train the student network NS with
KD loss.

3.1.2. Image Generation

Training images are the premise of knowledge distillation. The simplest way is using random
images generated from a uniform distribution. However, the output of the teacher network is
uncontrollable, for example the teacher network trained from the CIFAR10 dataset considers
random images as either birds or frogs. Such results make sense because the protective color
of those two animals looks like a random texture. But it is almost impossible to train a
student network well with such an unbalanced training set. Consequently, we need to
create a fake image set whose distribution is similar to real images. The image set can also
be generated from a generator neural network, which is normally trained together with a
discriminator in the GAN Goodfellow et al. (2014).

We introduce a data-free training framework. The framework consists of three parts:
teacher (pre-trained network), questioner (image generator network) and student (com-
pressed network). The teacher can answer all the questions but can not ask one itself.
Therefore, we need a questioner to generate not only clear but also comprehensive ques-
tions from teacher’s feedback. Clear means the teacher’s answers can not be ambiguous and
comprehensive means the questions should cover all the knowledge points. Then the student
learns knowledge from the question-answer pairs. In order to fasten the learning progress,
the questioner updates its question base and stresses the questions for which teacher and
student have different answers. The questioner helps the student fill in gaps by searching
out its weaknesses. Akin to GANs, during the competition, both questioner and student
improve their ability until the student masters all the knowledge from the teacher. The
whole architecture is shown in Figure 2. We train the generator with the following loss
functions.

Inception Score Loss: The inception score Salimans et al. (2016) is a widely used
metric for evaluating generative models. It takes both image quality and diversity into
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consideration and correlates with human judgment. The inception score is acting on the
output of an inception network and is formulated as:

IS(G) = exp(Ex∈pgDKL(p(y|x)||p(y))). (3)

Where p(y|x) indicates the conditional label distribution, and p(y) =
∫
x p(y|x)pG(x) is

the marginal class distribution, DKL is the KullbackLeibler(KL)-divergence between two
distributions, the exponential operation is used only for comparison. And the inception
score is related to entropies of x and y (for proof see Barratt and Sharma (2018)) :

ln(IS(G)) = I(y;x) = H(y)−H(y|x). (4)

Where I(y;x) is mutual information, H(y|x) is conditional entropy. The smaller H(y|x)
indicates the generated samples are more likely to belong to a certain category. H(y) is
information entropy. The larger H(y) indicates the generated samples are more evenly
distributed on all classes. The inception score is similar to a combination of the one-hot
loss and the information entropy loss in DAFL. Here, we treat the pre-trained teacher as
the inception network and optimize the inception score of the generator. We use a hyper-
parameter α to balance two entropies. Our inception score loss function can be formulated
as:

Lis(α) = − 1

N

∑
i

p(y|x(i))log p(y|x
(i))

p̂(y)α
. (5)

Optimizing the metric normally used in the objective evaluation stage dose not seem a
proper way. Barratt and Sharma (2018) also list many suboptimalities of the metric and
warn that directly optimizing the inception score will lead to the generation of adversarial
examples. It is a no-other-alternative move without real training data, and the goal of it
is impelling the generator to generate realistic and varied images. FID (Fréchet Inception
Distance) Dowson and Landau (1982) is another better evaluation metric of generator, but
the calculation of it needs real data which is unavailable.

BN statistics Loss: If we expect that our generated image set is similar to the original
training set, then the statistics distributions of intermediate feature maps also need to be
similar. The DAFL introduces activation loss based on the law that feature maps get
a higher activation value from real input images than from random vectors. This law
is reasonable but not very strict. The running mean µ and variance σ2 in the Batch
Normalization (BN) layer can better reflect its distribution. Haroush et al. (2019) also
utilize BN statistics for data samples generation, and they directly optimize the input
images instead of generator network. We assume that the feature maps follow the Gaussian
distribution. The KL divergence of two Gaussian distribution original feature maps G(µ, σ2)
and generated feature maps Ĝ(µ̂, σ̂2) can be formulated as:

KL(Ĝ||G) = log
σ

σ̂
+
σ̂2 + (µ̂− µ)2

2σ2
− 1

2
(6)

And we remove the extraneous and accumulation over all the batch normalization layers
to get our BN statistics loss:
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Algorithm 1 Data-free knowledge distillation

Input:pre-trained teacher network NT .
Output: student network NS , generator network NG.
repeat

Sample a batch of m noise samples ẑ = {z0, ..., zm};
Update the generator network NG by descending its stochastic gradient:
∇θG 1

m

∑m
i=1(LG) (Equ. 9);

Sample a batch of m noise samples ẑ = {z0, ..., zm};
Update the student network NS by descending its stochastic gradient: ∇θS 1

m

∑m
i=1(LS)

(Equ. 2);
until convergence

Lbn =
∑
l

(σ̂2l − σ2l logσ̂2l + (µ̂l − µl)2) (7)

Adversarial Loss: The total framework has three networks: generator, teacher and
student. The teacher network is fixed, the generator and the student networks are trained
separately without any interactions. We believe that the difficulty of a different category
to be classified by the network is different, and we do not know the order of difficulties
beforehand, therefore the quantitative balance of each class in the training set is necessary.
When the image set is generated dynamically during training, the equilibrium in number is
not so important. The image set should pay more attention to the failings of the student and
try to stump it. Pertinence education is universally considered better than naive education.
In implementation, we build an adversarial relationship between the generator and the
student. We impel the generator to widen the divergence between teacher’s and student’s
output, simply through ascending the gradient of student’s KD loss as:

Ladv = −LS (8)

To sum up, the final generator loss function with hyper parameters is formulated as
follows and more details can be referred in Algorithm 1:

LG = Lis(α) + βLbn + γLadv. (9)

3.2. Data-free Quantization

We can use the above strategy to generate a fake training dataset, and simplify the data-free
quantization problem to a normal quantization problem. Then we can solve it with existing
quantization-aware training (QAT) methods. However, from intuitive perception and the
experimental results in DAFL, the student always performs no better than the teacher even
if they have the same network architecture and bit precision, let alone quantization. That
is because the student is trained without a real training set and only guided by the teacher.
In the opposite case, the state-of-the-art post-train quantization (PTQ) methods are able to
guarantee almost no accuracy drop in the above 8-bits quantization cases. But if we treat
the generated images as a calibration set and apply PTQ methods to it, the accuracy drop is
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Algorithm 2 Data-free quantization-aware fine-tuning

Input: pre-trained full-precision network NFP .
Output: quantized limited-precision network NLP .
Warm up generator NG through Algorithm 1;
Sample a small calibration set x̂c from NG;
Run forward NFP (x̂c) to collect activation statistics;
Initialize weight and activation clip threshold for NLP ;
Fine-tune NLP with NFP and NG through Algorithm 1;

non-negligible in quantization below 6-bits. Consequently, the performance of quantization
by utilizing only one of PTQ and QAT can not be sufficiently well in all bit-width cases.

To address this, we need to combines the prepotent parts of PTQ and QAT. But, it
is hard to combine the two methods directly. On the one hand, the PTQ methods never
concern about backward propagation, and many operations’ gradient are incalculable. On
the other hand, the QAT does not care about the initial state. Some QAT methods change
the distribution of weights such as DoReFa-Net Zhou et al. (2016) and INQ Zhou et al.
(2017) and need training from scratch.

The state-of-the-art post-train quantization focuses on optimizing the clip threshold.
In order to be compatible with PTQ methods, we propose a data-free quantization-aware
fine-tuning (DFQF) method. Our method quantize both weight and activation uniformly
with learnable step size ∆, and we initialize the learnable step size ∆ = A/Qmax using a
clipping threshold ”A” calculated from PTQ:

Xq = clamp

([
X

∆

]
, Qmin, Qmax

)
∗∆. (10)

Where [.] is the rounding operation. We dequantize the value back to floating-point
format for emulating the effect of quantization, and the clamp function is as following:

clamp(x,min,max) =


min, if x < min

max, if x > max

x, otherwise

(11)

The distribution of weight is symmetric, Qmin = −2n−1, Qmax = 2n−1 − 1. And for
activation, ReLU is unilateral, Qmin = 0, Qmax = 2n − 1. We choose linear quantization
because it is hardware-friendly, easy to implement and suits for both QAT and PTQ. And
for the same reason, we do not use per-channel or per-filter quantization. The quantization
operation is non-differentiable, so we use ”Straight-Through Estimator” (STE) Bengio et al.
(2013) to approximate the rounding operation’s gradient by 1.

Note that we need a generated training set to collect the statistic distribution of ac-
tivation in initialization. Moreover, since the quantized network can be considered as
pre-trained, the generator also requires to be well-trained, otherwise it would be counter-
productive during the fine-tuning. As a result, we first warm up the generator, then fine-tune
the quantized network. The whole process of data-free quantization is summarized in Algo-
rithm 2. We find that the adversarial loss is still helpful, even if the student network in the
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Table 1: Ablation experiments on CIFAR100 with teacher ResNet34 and student ResNet18

IS Loss BN Loss Adv Loss Accuracy Drop(%)

76.56√
6.09√
60.46√
23.96√ √
4.12√ √
1.90√ √ √
1.66

warm up stage and the student network in the fine-tune stage are not the same. So, we use
a tool student to warm up the generator, and then replace the student with the quantized
model in the fine-tune stage. Details and results are listed in Section 4.2.

4. Experiments

4.1. Image Generation Experiments

We conduct experiments on the CIFAR Krizhevsky (2009) and MNIST datasets. The
CIFAR dataset consists of a training set of 50,000 and a test set of 10,000 color images with
a size of 32 × 32. CIFAR-10 and CIFAR-100 contain 10 and 100 categories, respectively.
The MNIST data set of 28 × 28 pixel handwritten digits, has a training set of 60,000
examples and a test set of 10,000 examples. We use DCGAN Radford et al. (2016) as
our generator network and normalize the images with a Batch Normalization layer before
sending them to the classification network. The generator is trained using Adam with a
learning rate of 0.01. For the training of student network, we use SGD optimizer with a
multi-step learning rate starting from 0.1 and decayed by 0.1 for every 800 epochs. The
student and generator are trained jointly, and same as DAFL Chen et al. (2019), the whole
progress are trained for 2000 epochs, where each epoch contains 100 batches of batch size
512. We set α = 40, β = 0.1 and γ = 5 after a simple grid search.

4.1.1. Ablation Experiments

In this section, we investigate the effectiveness of each term in the loss functions. The
results are summarized in Table 1. As we can see, the random noise has no effect on the
student’s learning. The student is loosely trainable by utilizing inception score loss, but
still has a non-negligible accuracy drop (6.09%). Batch-normalization (BN) statistics loss
brings a slight improvement, but cannot play a decisive role. Adversarial loss is powerful,
but the network may get lost without the guidance of the inception score and spends too
much effort on some minor details, which never occur in the condition of real images. The
ablation study suggests that each term of the loss function has its own role: the inception
score loss Lis sets the tone of classification task, the BN statistics loss Lbn limits the data
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Table 2: Data-free knowledge distillation experiments.

Dateset Teacher Student Method Acc(%)

MNIST
LeNet5
(98.92%)

LeNet5-H
(F:33.0%)

(P:25.8%)

KD-RI 98.69
KD-RIL 98.81
DAFL 98.20
DFAD 98.3
Our 98.63

CIFAR10

ResNet34
(95.38%)

ResNet18
(F:46.9%)

(P:52.4%)

KD-RI 94.50
KD-RIL 94.77
DAFL 92.34
ADI 93.26

DFAD 93.3
Our 94.59

VGG-16
(93.64%)

VGG-13
(F:73.4%)

(P:65.1%)

KD-RI 93.44
KD-RIL 93.59
DAFL 90.31
Our 92.27

CIFAR100

ResNet34
(77.94%)

ResNet18
(F:46.9%)

(P:52.4%)

KD-RI 77.23
KD-RIL 77.63
DAFL 74.12
DFAD 67.7
Our 76.28

VGG-16
(74.19%)

VGG-13
(F:73.4%)

(P:65.1%)

KD-RI 73.29
KD-RIL 73.68
DAFL 68.23
Our 70.93

distribution, and the adversarial Ladv loss fills in gaps. They are supplementary to each
other, and together train a realistic-looking generator for the student.

4.1.2. Data free knowledge distillation

We conduct data-free knowledge distillation experiments on several datasets and networks.
The results are shown in Table 2. The value list below the teacher model is its Top-1 test
accuracy. And among the information below the student model, ’F’ stands for FLOPs and
’P’ stands for parameters and the values are the relative percentage of the teacher. KD-RI
and KD-RIL refer to the case if the student is trained using knowledge distillation with
real images only and image-label pairs, separately. KD-RI is the theoretical upper bound
of data-free knowledge distillation, the student learns everything the teacher knows. We
further add the labels in KD-RIL, because the teacher is not omniscient, and accuracy of
this method is mainly limited by the ability of the student model. When training the KD-
RIL mode, we set the coefficient for balancing the soft target and hard target (λ in Equ.
1) the same as the teacher’s test accuracy. The results of DAFL are run from open-source
code released by the authors 1, and results of ADI Yin et al. (2019) and DFAD Fang et al.

1. https://github.com/huawei-noah/Data-Efficient-Model-Compression/tree/master/DAFL
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(a) Real MNIST (b) Gen MNIST (c) Gen MNIST(adv)

(d) Real CIFAR (e) Gen CIFAR (f ) Gen CIFAR(adv)

Figure 3: Visualization of generated images

(2019) are edited excerpts from their papers. Our results achieve about 2% better than the
DAFL. This is close but there is still a gap in comparison to KD-RI and KD-RIL.

We also visualize the generated images in Figure 3 and the adversarial loss makes the
images more vivid. Compared with the generated images in ADI Yin et al. (2019), it seems
that ours look like chaos and unrecognizable for human. That is because the generator is
trained from a classification network instead of a real discriminator. However, this does not
prevent the student from learning knowledge from the teacher, which means the generated
images are similar to the real images in the neural network’s view. More realistic pictures
do not directly lead to improved performance. The generator can extract the features of
the teacher’s convolution kernels and is more suitable for knowledge distillation.

4.2. Quantization Experiments

4.2.1. Ablation Experiments

We have further trained the quantized W4A4 ResNet34 with the pre-trained generator
from the ablation study (Table 1), and the results are shown in Table 3. The table shows
that the learned step size gives better results than the fixed step size. We can also see
that the generator trained with adversarial loss performs better, even if the generator is
trained with a full-precision ResNet18 student, which means the student in warm-up stage
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Table 3: Ablation experiments for quantization
ResNet34(W4A4) Real IS IS+BN IS+BN+ADV

Fixed Step Size 77.83% 76.70% 76.81% 77.16%

Learned Step Size 77.78% 76.82% 76.85% 77.31%

and the student in fine-tune stage not have to be the same one. Therefore, we warm up
the generator for 200 epochs with a student of the same architecture and precision as the
teacher but random initialized. Then we fine-tune the quantized student for 40 epochs using
SGD with a learning rate of 0.001. The warmed-up generator can be shared to train the
quantized network of arbitrary precision. So, the total epochs for n different bit precisions
are 200 + 40 ∗n. Empirically we find that 40 epochs fine-tuning is a good trade-off between
accuracy and running time, training too much may lead the quantized student model to a
different local minimum. Furthermore, 40 epochs are one-fiftieth training epochs of data-
free knowledge distillation. The data-free knowledge distillation has to spend a lot of time
training from scratch since its teacher and student have different network architectures. The
search space of fine-tuning is much smaller than training from scratch and it also results in
faster convergence.

During the quantization experiments, we find that if the initial clipping threshold is
too small, the learned step size could be negative after some updates, causing the training
progress to be unable to proceed. The PTQ method usually has a smaller clipping threshold
for the lower bit width, which makes this problem very common at less than 6-bits quanti-
zation. The existing QAT methods with clipping generally set the threshold to a large value
first, then gradually decreasing it. For example, PACT Choi et al. (2018) starts the training
clipping parameter with a large initial value such as 10, and then use the L2-regularizer to
force the parameter to converge to a smaller value during the training progress. As a result,
we set a lower bound for the initial clipping threshold as the maximum weight or activation
multiplied by a ratio. We set the default lower bound ratio as 0.3, and it can be adjusted
manually if still too small on different networks or precisions.

4.2.2. CIFAR Results

We evaluate our DFQF on the CIFAR dataset, and the experimental results are shown in
the Table 4. In quantization experiments, we use the ResNet20 instead of the ResNet18/34
for the CIFAR dataset. The teacher accuracies on the CIFAR10 and the CIFAR100 are
listed under the model name. Quantizing to extreme low precision like W2A2 may brings too
much quantization noise and is beyond the capacity of fine-tuning. We use open-source code
for ZeroQ (without mixed-precision) 2 and other clip methods 3. The first and last layers
are quantized to 8-bit following the convention. All the clipping thresholds are obtained
off-line and fixed once the model is deployed at runtime. The activation clipping value of
reference MAX, MSE, ACIQ and KL methods are calculated from a calibration set of 512
random real training images. ZeroQ clip the activation with its distilled images, which are

2. https://github.com/amirgholami/ZeroQ
3. https://github.com/cornell-zhang/dnn-quant-ocs
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Table 4: Quantization results, (FG) means we fix the generator during fine-tune stage.

Network Method
CIFAR10 CIFAR100

W8A8 W6A6 W4A4 W3A3 W8A8 W6A6 W4A4 W3A3

ResNet20
(92.27/

68.87)

MAX 92.19 91.24 83.02 20.39 68.67 67.45 38.91 1.41
MSE 92.27 91.96 82.41 54.35 68.69 68.26 53.31 9.1
ACIQ 92.21 92.05 89.07 70.99 68.91 67.93 55.63 21.8
KL 89.45 90.99 80.17 45.33 66.27 66.71 46.41 7.05

ZeroQ 92.24 91.59 86.67 45.44 68.73 67.10 42.78 2.04
REAL 92.36 92.35 92.03 90.84 69.14 69.08 67.92 65.03

DFQF(FG) 92.23 92.10 91.28 88.94 68.91 68.60 66.44 60.34
DFQF 92.26 92.10 91.07 87.82 68.79 68.61 66.30 60.04

VGG16
(93.64/

74.19)

MAX 93.74 93.61 84.14 10.00 74.18 73.64 54.22 1.33
MSE 93.67 93.43 91.40 76.49 74.16 73.88 67.64 30.74
ACIQ 93.74 93.50 90.74 87.09 74.12 73.82 69.72 60.92
KL 87.37 82.02 80.53 32.57 73.03 72.33 65.82 15.28

ZeroQ 93.20 92.98 89.11 17.53 74.04 73.97 70.28 18.56
REAL 93.86 93.82 93.48 93.00 74.72 74.55 73.84 72.31

DFQF(FG) 93.57 93.49 93.00 91.58 74.40 74.32 73.61 71.42
DFQF 93.62 93.52 93.16 91.70 74.38 74.32 73.55 71.18

MobileV2
(91.06/

70.03)

MAX 90.97 90.22 69.99 14.08 69.87 68.55 25.23 2.09
MSE 91.03 90.24 79.00 41.44 69.97 69.57 46.13 4.71
ACIQ 90.82 89.70 72.44 31.98 69.92 67.62 39.38 3.53
KL 23.64 10.00 10.00 10.00 1.66 1.01 1.00 1.00

ZeroQ 90.83 90.38 82.48 27.09 68.50 67.74 43.06 9.22
REAL 91.41 91.51 90.51 89.12 70.88 70.64 69.67 66.55

DFQF(FG) 91.02 91.00 89.32 85.30 70.37 70.14 67.16 60.01
DFQF 91.01 90.51 89.05 85.66 70.42 70.19 67.43 61.51

optimized to satisfy the mean and standard deviation in BN layers. Our initial value is
calculated by MSE method with lower bound from our generated fake images.

Throughout the post-train quantization methods, MSE clipping maintains a relatively
high accuracy in all cases and is consistent with the analysis in Zhao et al. (2019). However,
the rounding operation in quantization introduces too much quantization noise in low-bit
condition. We can see that the post-training quantization methods are almost invalid in
lower than 4-bit quantization. In the opposite, fine-tuning can recover the quantization
error and make the network usable at W3A3. Comparing to real image set, our generated
set shows very slightly accuracy drop. We can achieve W4A4 quantization of VGG16 on the
CIFAR10 dataset within 1% accuracy drop, which even surpasses the full-precision student
in Table 2.

5. Conclusion and Discussion

In this paper, we solve the data free quantization problem and propose DFQF. This method
requires no training data, and can generate fake training data from the pre-trained full-
precision network. We train the generator with inception score loss, BN statistics loss and
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adversarial loss. This generator shows promising results in data-free knowledge distillation
application. The adversarial learning can improve the images quality universally, and not
for a specific student network only. Then we apply it to quantization and fine-tune the
quantized model rather than training from scratch, which not only saves training time but
also improves the accuracy. Our quantization method has a learnable step size, and is
compatible with both post-train quantization and quantization-aware training. The initial
method ensures almost no accuracy drop above 8-bit representations, and the following
fine-tuning progress recovers error for lower than 8-bit. As a result, DFQF achieves high
accuracy from 8-bit to 3-bit quantization without original training set.
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