Proceedings of Machine Learning Research 129:753-768, 2020 ACML 2020

Scalable Calibration of Affinity Matrices from Incomplete
Observations

Wenye Li WYLIQCUHK.EDU.CN
The Chinese University of Hong Kong, Shenzhen, Guangdong, China
Shenzhen Research Institute of Big Data, Guangdong, China

Editors: Sinno Jialin Pan and Masashi Sugiyama

Abstract

Estimating pairwise affinity matrices for given data samples is a basic problem in data
processing applications. Accurately determining the affinity becomes impossible when the
samples are not fully observed and approximate estimations have to be sought. In this
paper, we investigated calibration approaches to improve the quality of an approximate
affinity matrix. By projecting the matrix onto a closed and convex subset of matrices that
meets specific constraints, the calibrated result is guaranteed to get nearer to the unknown
true affinity matrix than the un-calibrated matrix, except in rare cases they are identical.
To realize the calibration, we developed two simple, efficient, and yet effective algorithms
that scale well. One algorithm applies cyclic updates and the other algorithm applies
parallel updates. In a series of evaluations, the empirical results justified the theoretical
benefits of the proposed algorithms, and demonstrated their high potential in practical
applications.
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1. Introduction

Developing techniques to processing incompletely observed data is a fundamental task in
statistics (Little and Rubin, 2019). Missing data pose nontrivial challenges to data analysis
in numerous science and engineering domains. One application of particular interest in this
paper is on estimating the affinity (or similarity) between pairs of data samples, which is
of key importance and lays a foundation in many machine learning models, as commonly
seen in supervised learning and unsupervised learning algorithms (Jain et al., 1999; Duda
and Hart, 2000).

A lot of work has been devoted to model the affinity between data samples. When
data samples are represented as algebraic vectors, the inner product model, the cosine
similarity, the radial basis function, etc., are popularly adopted in practice (Salton et al.,
1975; Scholkopf and Smola, 2001). When each vector element takes binary values only, the
Jaccard index is often used (Jaccard, 1912; Rogers and Tanimoto, 1960).

These models work empirically well when the data are fully observed. However, if
missing values are taken into consideration, which often occur when certain features aren’t
observed or don’t exist in data samples, these models typically become not directly applica-
ble and nontrivial challenges arise to the learning algorithms that reside on the estimation
of pairwise affinities between data samples.
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To handle the difficulty, significant attention has been devoted on the study of missing
data from the early years of statistics. As a routine treatment, various imputation techniques
were designed with great influences on various disciplines. These techniques try to make
the data full by replacing the un-observed feature values with substituted values based on
various assumptions, such as distribution assumptions or low-rank assumptions (Little and
Rubin, 2019; Enders, 2010; Wright et al., 2009).

The pairwise affinities can be calculated based on the imputed full samples. Unfortu-
nately, there still exist significant difficulties even if the assumptions hold. With a large
portion of missing observations, the required computation becomes expensive or even in-
feasible. There is no tight guarantee on the quality of the imputation, needless to say the
quality of the subsequent pairwise affinities that rely on the imputed data.

Instead of imputing missing data, this paper follows a different line which calibrates an
approximate affinity matrix (Li, 2015). Comparing with the classical imputation techniques,
the proposed approach makes little assumption about the missing values and has wide
application scenarios. Moreover, the proposed approach has another strong advantage in
that the calibrated matrix is guaranteed to be better than, or at least identical to, in special
cases, the un-calibrated matrix in terms of a shorter Frobenius distance to the unknown
true affinity matrix.

A major challenge to the calibration approach is the expensive computation required.
As a remedy, we designed two simple algorithms for scalable calibration. By dividing a large
affinity matrix into smaller ones and solving them one by one, it is guaranteed to build an
affinity matrix that is better than the initial approximation. The proposed algorithms are
empirically verified to be effective and efficient.

The paper is organized as follows. Section 2 reviews the related background. Section 3
introduces the proposed model and algorithms in detail. Section 4 reports the evaluation
results, followed by conclusion in Section 5.

2. Background

2.1. Missing Data and Imputation Approaches

When data samples are fully observed, the affinity matrix can be obtained trivially by cal-
culating their inner product, cosine similarity, Jaccard index, and so on, between each pair
of samples. Unfortunately, missing observations are common in reality (Little and Rubin,
2019; Enders, 2010), which poses nontrivial challenges to affinity estimation. Consequently,
many data analysis algorithms that rely on pairwise similarities cannot be directly applied
any more. To handle the difficulty, one naive approach is to ignore the features with missing
values. Only those fully-observed features are kept in data analysis. Unfortunately, if the
feature values are randomly missing in a large dataset, this method is likely to throw away
all the features, which makes the approach not applicable at all.

In practice, imputation methods are widely applied. A missing value is simply replaced
by a zero value, or by the feature’s mean, median or most frequent value in the nearest
neighboring samples or all observed samples. A more rigorous treatment that attracts much
attention is based on the classical expectation maximization (EM) algorithm (Dempster
et al.,, 1977). The algorithm assumes the existence of un-observed latent variables. It
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operates by alternating between the expectation and the maximization steps, and seeks
maximum likelihood or maximum a posterior estimates of the latent variables.

2.2. Matrix Calibration

Instead of throwing away the un-observed features or imputing the missing values, a com-
pletely different approach was designed in the work of (Li, 2015) to calibrate the pairwise
affinities from missing data. The method starts from an approximate affinity matrix and
calibrates it to meet model specific constraints. Commonly, such constraints include the pos-
itive semi-definiteness requirement on the affinity matrix, and the boundedness requirement
for each matrix entry. A key result of the work is that, although the true affinity matrix
from the incompletely observed samples is unknown, the method guarantees to calibrate
the approximate matrix to be nearer to the ground-truth in terms of a shorter Frobenius
distance, except in rare cases that the starting and the calibrated matrices are identical.

Despite the successful theoretical and empirical results, the method faces a nontrivial
challenge in scalability to large-scale problems. To provide the positive semi-definiteness
required by the affinity models, the method needs to decompose the affinity matrix repeat-
edly, which poses significant challenge in computation. When the sample size is large, say
tens of thousands, the computation becomes even prohibitive on conventional computing
platforms.

3. Scalable Matrix Calibration
3.1. Basic Model

For a given set of data samples {A;,---, A,}, our work investigates the affinity matrix
estimation problem. Denote by J* = ¢ J5 r an n x n affinity matrix, where Jj; is the true

affinity value between two samples A; and A; (1 <4, j < n). Due to the existence of missing
observations, this ground-truth J* is unknown. We are interested in how to calibrate an
approximate affinity matriz to be nearer to the unknown J*.

For simplicity, we specifically made two assumptions about J*, although our proposed
work can be applied in more general settings.

(1) Positive semi-definiteness: the matrix J* is positive semi-definite, i.e., J* > 0.

(2) Boundedness: A lower bound /;; and an upper bound p;; are known for each element
of J*, i.e., Eij S J;; S Hij (1 S i,j S n)

These two assumptions are mild. In many popular affinity models, such as the inner
product model, the cosine similarity model and Jaccard index model, the affinity matrix
calculated from full observed data is always positive semi-definite. But with missing obser-
vations, the approximate affinity matrix usually loses such positive semi-definiteness.

The second assumption also commonly holds in practice. For example, all cosine sim-
ilarity values are within [—1,1]. All Jaccard index values are within [0, 1]. Besides, even
tighter bounds can be obtained for specific sample pairs based on their observed feature
values (Li, 2015).
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To formulate the problem, let M, be the set of n X n symmetric matrices, equipped with
an inner product that induces the Frobenius norm:

(X,Y) =trace (X'Y) ,for X,Y € M,.

Define two nonempty closed and convex subsets of M, by: S = {X | X € M,,, X > 0},
and T = {X | X e Mn,éi]’ < Xij < Hij (1 <1,7< n)} for given {gij}z;:l and {,uij}z;:r Let
R =5SnNT. Obviously, the true J* that meets the two assumptions satisfies J* € R.

Our approach proceeds from an affinity matrix J° € M,, approximated from the observed
features. Very likely JY loses positive semi-definiteness due to the existence of missing values,
which makes J° ¢ S and J° ¢ R.

Denote by Pgr the projection operator onto R and denote by J]% the projection of J°
onto R, i.e., J% = Pg (JO). The work of (Li, 2015) utilizes the following result.

Theorem 1 ||J* — J%H? < ||J* - JOH?,, where ||| denotes the Frobenius norm of a ma-
triz. The equality holds if and only if J° € R, i.e., JO = J%.

This key observation shows that projecting J° onto the feasible region R will produce
an improved estimate towards the unknown true J*.

Now we can study the following minimization problem:

. 0112
min [|.7 = /%[ (1)
This is a standard convex problem (Boyd and Vandenberghe, 2004). The unique minimizer
to the problem is the projection of J? onto R. Based on the observation in Theorem 1,
seeking the minimizer to Eq. (1) will produce a better affinity matrix than J°, in terms of
a shorter distance from J* measured in the Frobenius norm.

Considering that R = SN T, the problem becomes seeking the projection of J° onto
the intersection of S and T with respect to the Frobenius norm. Directly computing J9 is
expensive, while computing the optimal projections of any matrix onto S and T respectively
are relatively easier. Denote by Pg the projection operator onto S, and Pr the projection
operator onto 1. For projection onto S, we have:

Fact 1 For a real symmetric matric X € M, and its singular value decomposition X =
USVT where ¥ = diag (M1, - , \n), the projection of X onto S is given by: Xg = Pg(X) =
US'VT where X! = diag (\},--- ,\,) and

Vo {)\i7 if \i 20

1 . N
0, otherwise

The matrix Xg = Pg (X) gives the positive semi-definite matrix that most closely approx-
imates X with respect to the Frobenius norm (Knol and ten Berge, 1989; Higham, 2002).
For projection onto 7', we have:

Fact 2 For a given matric X € M, its projection onto T, X7 = Pr (X), is given by
Xij, if by < X5 < g
(X1)y; = by, if Xij < Ly
pij> i Xig > i
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With the two facts, we are able to apply Dykstra’s algorithm (Dykstra, 1983) to find
the minimizer to Eq. (1). Starting from J°, the algorithm generates two sequences, the
iterates {J%, JL.} and the increments {I%,I%}, by:

Jy = Ps(Jat I8 (2)
Iy = Js—(Jr ' —1Ig) (3)
o= Po(h— 1) )
Iy = Jp—(Js— I (5)
where J% = J°, I3 = 0 (an n X n zero matrix), and ¢t = 1,2,---. The two sequences {Jfg}

and {J%} converge to the optimal solution Jl% as t — oo.

3.2. Scalability Challenge

The matrix calibration approach given in Section 3.1 provides a principled way to calibrate
an affinity matrix with an improved estimate. It runs reasonably efficient on a mainstream
workstation for problems with a few thousand or less samples. However, when the number
of samples grows, significant challenge arises in scalability issues.

The challenge comes from the projection of a matrix onto the subset S. It involves
singular value decomposition of the matrix, which has a time complexity of O (n3) for
an n X n matrix (Golub and Van Loan, 1996; Cline and Dhillon, 2006). The required
computation grows fast and becomes infeasible when n is large.

A natural solution to the challenge is to resort to parallel computing. Unfortunately, the
development of parallel algorithms for singular value decomposition is nontrivial. Existing
results mostly focus on the decomposition of sparse matrices, while developing a parallel
solution to decomposing dense matrices, as in our case, still faces significant difficulty (Berry
et al., 2005).

3.3. Projection onto Supersets

To develop a scalable matrix calibration method, our proposal is based on the following
observation.

Lemma 1 Let R be a closed conver subset of M, and J* € R. Let C be a closed convex
superset of R and C C M,,. For any J° € M, we have HJ* — Jg“? < HJ* — JOH; The
equality holds if and only if J° € C, i.e., JO = J2..

Obviously this is a direct result from Theorem 1. Based on this observation, we consider
a divide-and-conquer approach. Let C1, - - -, C; be r supersets of R that satisfy (),_, C = C
and | J;,_, Cx € M,,. Starting from JO € M, Dykstra’s algorithm generates two sequences,
the iterates {J,i} and the increments {I,i}, by:

J¢ o= gttt (6)

Jy = P, (i~ L7 (7)

L = Ji— (i —1I7Y) 8)
where k = 1,--- ,r and t = 1,2, ---. The initial values are given by J? = J° and IZQ =0.
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By assuming that C' is not empty (i.e., C' # ®), the sequences of {J}é} converges to Jg
with theoretical guarantee (Dykstra, 1983; Escalante and Raydan, 2011).

Theorem 2 Let Cy,---,C, be closed and convex subsets of M, such that C = (;_, C #
®. For any J° € M, and any k = 1,---,r, the sequence {J}é} converges strongly to

JO = Po (J°), dce., ||Jf — JO|[% — 0 as t — oo

3.4. A Cyclic Projection Algorithm

Algorithm 1: Cyclic projection of J? onto C' = (;_; Ck
function [Jg] = CyclicProjection(JO, {Cy,--- ,Cr})
t<«<0
JO «— J°
IP+0
repeat
t—t+1
J§ — Jt
for k< 1tor do

Ji + Pe, (']1271 - Iliil)
I Jp = (i — )
end
until CONVERGENT
return J2 « J!
end

Different designs are possible to realize the r supersets for given R. We consider the
following scheme. Let r nonempty index sets be given as Iy, - - - , I, which satisfy J,_; I =
{1,---,n}. For any matrix A € M,, denote by Aj the principal submatrix formed by
selecting the same rows and columns of A indicated by Ij. Then for each I} (1 < k <),
define

Sy ={A| A€ M,, and A, = 0}

and
Cr=5.NT.

Consider a classical fact that a matrix is positive semi-definite if and only if all its
principal submatrices are positive semi-definite (Horn and Johnson, 2012). In our problem,
we can’t directly apply this fact to ensure the positive semi-definiteness of a matrix, as it
involves similar or even more computation (than performing singular value decomposition
on the whole matrix) to calibrate, one by one, these O(2") principal submatrices. Here we
consider a relaxation approach. Instead of calibrating all principal matrices of a given matrix
JY to be positive semi-definite, we calibrate a random selection of  principal submatrices
only, which are indicated by the index sets I;,---,I.. This can be done by projecting
the matrix onto each Sy (and T to ensure the boundedness requirement) cyclically through
Dykstra’s algorithm.
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Algorithm 2: Parallel projection of J° onto C' = (;_; Ck

function [Jg] = PamllelProjectz’on(JO, {Ch,--- ,Cr})
t+0
repeat

t+—1t+1

parfor k < 1 to r do

e Po, (1)

end

DY WY
until CONVERGENT

return J*
end

Repeating the procedure illustrated above for different index sets, we reach a simple
iterative algorithm:

1. Randomly generate r index sets I, ..., 1I;
2. Project the matriz onto Cq,--- , C,. cyclically;
3. Repeat steps (1) and (2) until convergence.

In each iteration of the algorithm, we project a matrix onto C', which can be solved
by Algorithm 1. The algorithm starts from an initial or random guess of the solution .J°
and performs the projection onto each subset Cy = Si ()T cyclically by carrying out the
updates shown in Egs. (7) and (8).

The algorithm’s major computation comes from computing Pc, (J), the projection of
a matrix J € M, onto each Ck. The projection can be obtained in two steps. Firstly,
the principal submatrix indicated by I needs to satisfy the positive semi-definiteness and
the boundedness constraints. This can be ensured via projecting an || x |I| principal
submatrix onto the subset Cj by applying the basic Dykstra’s calibration algorithm given
in Section 3.1, which has a much smaller complexity than projecting an n X n matrix J.

Secondly, all other elements of Pg, (J) need to satisfy the boundedness constraint only,
which can be trivially computed based on Fact 2 in Section 3.1. By merging the results
from the two steps, the projection Pg, (J) is obtained.

3.5. A Parallel Projection Algorithm

In addition to the cyclic algorithm, a parallel matrix calibration algorithm can be imple-
mented in three steps:

1. Randomly generate r index sets I, ..., 1I;
2. Project the matriz onto C1,--- ,Cy in parallel and merge the results;

3. Repeat steps (1) and (2) until convergence.
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The details of step (2) is given in Algorithm 2. Different from the cyclic update scheme,
the major computation of projecting onto the r supersets C1,--- ,C, of C can be executed
in parallel. Then these r projections J¢,---  J! are averaged to form a new estimate J°.

It can be shown that the sequence {Jt}t>0 is Fejér monotone with respect to C' (But-

nariu et al., 2001; Escalante and Raydan, 2011), which satisfies HJt — JHzF < HJ’F1 — JH?,
(Vt > 0,VJ € C). Considering that J* € R and R C C, we have

(R e [ ) o)

Therefore, the sequence of J? (¢ > 0) improves the estimate of J° towards the true J*.

3.6. Accelerations

It is worth mentioning that Dykstra’s algorithm can be accelerated (Lépez and Raydan,
2016). The key technique relies on the introduction of a suitable subspace in the product
space M,, x M. The acceleration intersects a conveniently defined line with this subspace
after each iteration of projections. The acceleration keeps the optimality of Dykstra’s algo-
rithm, and guarantees termination at the solution. With the acceleration, the convergence
speed of Dykstra’s algorithm can often be significantly increased.

Based on the Dykstra’s algorithm, our proposed approaches will potentially benefit from
this acceleration scheme. A detailed discussion goes beyond the scope of this paper and is
therefore omitted.

3.7. Complexity Analysis

A key concern to the complexity of the calibration approaches is the computation required to
project onto the feasible region. The work of (Li, 2015) projects an nxn matrix directly to .S,
the set of n x n positive semi-definite matrices. Fact 1 shows that the major computation
comes from the singular value decomposition of the matrix. The complexity is O (n3) 1
(Golub and Van Loan, 1996; Cline and Dhillon, 2006).

Our work proposes to project the matrix to Sy (1 < k < r) cyclically, which requires the
principal submatrix indicated by the index set I to be positive semi-definite. When setting
the cardinality of the index set I to O (%), the complexity of decomposing this submatrix

is O (f—:) In each iteration, we need to repeat the projection r times, and the complexity

becomes O (f—j) in total, which brings a significant improvement.

Another concern is about the number of iterations needed to converge. Theoretically the
convergence rate of Dykstra’s algorithm for polyhedral sets is linear (Deutsch, 2001), which
coincides with the convergence rate of von Neumann’s alternating projection method (von
Neumman, 1955). Empirically our proposed approaches used around 30 to 40 iterations
(generations of different index sets) to converge on a problem with 10K samples 2, and
used 50 to 100 iterations on a problem with 70K samples.

For the memory requirement, the proposed approaches need to store the affinity matrix
with the complexity of O (n2), which is the same as the method proposed in (Li, 2015).

1. The complexity of projecting onto T is trivial and omitted.
2. For short, “K” is used to denote one thousand in this paper.
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Figure 1: MSD and Accuracy on MNIST dataset (10K and 70K samples respec-
tively) with cosine similarity model. X-axis: observed ratio; Y-axis: MSD
or classification accuracy. Under all settings with the observed ratio varying from
0.1 t0 0.9, CYCLIC and PARALLEL provided comparable results to SVDCAL,
while significantly improving the results of the other methods. The results of EM
and SVDCAL were not available on MNIST (70K) for computation restrictions.
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(a) PROTEIN(10K) (b) PROTEIN(10K) (c¢) WEBSPAM(10K) (d) WEBSPAM(10K)

Figure 2: MSD and Accuracy on PROTEIN and WEBSPAM datasets (10K sam-
ples each) with Jaccard index model. X-axis: observed ratio; Y-axis: MSD
or classification accuracy. Under all settings with the observed ratio varying from
0.1 t0 0.9, CYCLIC and PARALLEL provided comparable results to SVDCAL,
while significantly improving the results of the other methods. The results of EM
were not available for computation restrictions.

4. Evaluation

We carried out a series of experiments to verify the performance of the proposed methods,
with three objectives:

e To evaluate the effectiveness in calibrating the affinity matrix, measured by the mean
square deviation of the calibrated matrix from the ground-truth.

e To evaluate the effectiveness of the calibrated matrix in machine learning applications,
measured by the classification accuracy.
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To evaluate the scalability to large-scale problems, measured by the actual and the
expected running time on problems of different sizes.

The same as (Li, 2015), benchmark datasets from three application domains were in-
cluded in the experiments.

MNIST (LeCun et al., 1998): an image database of 70K handwritten digits (“0”
to “9”). After preprocessing, each image is represented as a 784-dimensional binary
vector.

PROTEIN (Chang and Lin, 2011): a bioinformatics database with three classes of
instances. Each instance is represented as a 357-dimensional sparse binary vector.

WEBSPAM (Wang et al., 2012): a dataset with spam and non-spam web pages. Each
page is represented as a binary vector. The data are highly sparse. On average one
vector has about 4K non-zero values out of more than 16 million features.

Our two proposed algorithms, denoted by CYCLIC (the cyclic projection algorithm) and
PARALLEL (the parallel projection algorithm) respectively, were compared with a number
of imputation methods that are popularly used in practice. We applied these imputation
methods to replace missing observations with substituted values and then calculated the
affinity matrix. Besides, we also included the results of NOCAL and SVDCAL as the
baselines.

ZERO: Replace all missing elements by zero.

kNN: Replace each missing element of a sample by the median over k nearest neigh-
boring samples based on the observed features. The value of k£ was iterated from 1 to
5 and the best result was reported, which actually overestimated the performance of
this approach.

EM: The missing elements are imputed by the classical expectation maximization
algorithm (Dempster et al., 1977). An implementation from (Ghahramani and Jordan,
1994) were used.

NOCAL: The affinity matrix is best calculated from the observed data. That is, for
two samples, the similarity is calculated based on their commonly observed features.
The matrix J° was obtained with this approach.

SVDCAL: The calibration approach proposed in (Li, 2015) that applies singular value
decomposition on the whole affinity matrix.

In addition to the algorithms above, we also tried to apply the low-rank matrix recovery
algorithm (Wright et al., 2009) as an imputation method ®. But unfortunately the experi-
ment failed. A thorough inspection found that the low-rank assumption does not hold on
these datasets, which made an unfair comparison to the matrix recovery algorithm. So the
results from the algorithm are omitted here.

3. Code downloaded from https://people.eecs.berkeley.edu/~yima/matrix-rank/sample_code.html.
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Although in theory our proposed algorithms can be applied on all affinity models with
the characteristics of positive semi-definiteness and boundedness, our experiments specifi-
cally investigated two affinity models that are widely used in machine learning and infor-
mation retrieval tasks (Duda and Hart, 2000; Leskovec et al., 2019).

e Cosine Similarity: a model that measures the cosine of the angle between two non-zero
vectors of an inner product space, with each value being within [—1, 1].

e Jaccard Index: a model that measures the size of the intersection of any two samples’
features divided by the size of the union of their features, with each value being within
[0, 1].

All the computations were carried out on a mainstream 8-way server with 224 CPU
cores sharing 1.5TB memory. All the codes were implemented on MATLA B platform with
intel MKL as the maths library.

4.1. Calibration

On MNIST dataset, we randomly selected 10K samples. For each sample, different portions
(from 10% to 90%) of randomly chosen feature values were assumed to be observed.

We firstly built an approximate cosine similarity matrix J° based on the incomplete data
with the NOCAL approach. Then we applied the calibration approaches on the matrix to
meet the positive semi-definiteness and the boundedness constraints. For the imputation
approaches, the cosine similarity matrix was calculated directly from the imputed data.

The results are presented through the comparison of mean square deviations (MSD)
from the true cosine similarity matrix J* which was computed from the fully observed
data. For any n x n matrix J, its MSD from J* is defined as the square Frobenius distance

n * 2
between the two matrices, divided by the number of elements, ie., Z”:l(i—;r]”)

The results are shown in Figure 1. Comparing with NOCAL, consistently improved
results were achieved by the calibration approaches. The improvement is especially signifi-
cant when the ratio of observed features is low. When the ratio is below 0.5, the calibration
brought about 2 to more than 10 times smaller MSD values from the un-calibrated matri-
ces. As an example, the MSD value was reduced from 6.989 x 1072 to 5.525 x 1072 when
the observed ratio is 30%. Comparing with the imputation approaches (ZERO, kNN, EM),
evidently smaller MSD values were observed in most experiments. When comparing the
three calibration approaches, CYCLIC and PARALLFEL provided highly comparable, if not
better than, results to SVDCAL.

In the experiment with the full MNIST dataset of 70K samples, the results of EM
and SVDCAL were not available due to the prohibitive computation required. Similarly
improved results were observed under all settings of observed ratios, which verified the
effectiveness of the two proposed calibration approaches.

In addition to the cosine similarity model, we further evaluated the performance of the
proposed approaches on Jaccard index model with PROTEIN and WEBSPAM datasets of
10K samples each. The results are shown in Figure 2, where our proposed approaches
reported similar improvements on reducing the MSD from the true affinity matrix over the
uncalibrated matrix and over the results from the imputation algorithms.
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Figure 3: MSD and Accuracy on MNIST dataset (10K samples) with cosine sim-
ilarity model. X-axis: iterations; Y-axis: (left) MSD, (right) classification ac-
curacies. The CYCLIC and PARALLEL methods were recorded with 20% and
80% observed features. On all settings, the two proposed algorithms showed fast
convergence and their results evidently improved the results of NOCAL (shown
at iteration = 0).

4.2. Classification

The second experiment investigated whether the reduced MSD could benefit practical ap-
plications. Specifically, we applied the calibrated affinity matrices in nearest neighbor clas-
sification tasks. Given a training set of labeled samples, we tried to predict the labels of the
samples in the testing set. For each testing sample, its label was determined by the label
of the sample in the training set that had the largest affinity value with it.

The experiment was carried out with 10K and 70K samples and different portions of
observed values from 10% to 90% respectively. In each run, 10-fold cross validation was
used and the mean accuracies were reported. Similarly from the classification results shown
in Figures 1 and 2, the calibration methods reported the best results in most experiments
and consistently improved the results of NOCAL. As an example, on MNIST (10K) with
30% observed features, the classification accuracy sharply increased around 10% through
calibration.

Similar improvements were observed on PROTEIN and WEBSPAM datasets under dif-
ferent experimental settings. All these results successfully verified the benefits brought
by the reduced deviation from the true affinity matrix, and justified the usefulness of the
calibration methods in machine learning tasks.

4.3. Convergence and Scalability

Figure 3 shows the convergence of the two proposed approaches on MNIST dataset with
10K samples and 20% and 80% observed feature values. In the experiment, r was set to 8
and each index set Ij, had around 2.5K elements . The results clearly demonstrated that,
in around 30 to 40 iterations, the two calibration algorithms converged in both MSD and
classification accuracy.

4. These index sets were overlapping and each index number roughly appeared in two index sets.
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Figure 4: Real and Estimated Running Time by different calibration methods. X-
axis: number of samples (n); Y-axis: time in seconds (logscale). The estimations
of SVDCAL-70K /100K, CYCLIC-100K and PARALLEL-100K were based on
50 iterations. For n = 1K/10K, r = 8; for n = 70K/100K, r = 80. |I;| ~ 22
(1 <k <r). The proposed algorithms exhibited evident improvement in running
time when the sample size becomes large.

Next, we compared the running time by the three calibration methods. For CYCLIC
and PARALLEL, we recorded their real running time with 1K, 10K and 70K samples and
estimated their time with 100K samples based on the complexity analysis in Section 3.7
and the real performance on smaller datasets. For SVDCAL, we recorded its running time
with 1K and 10K samples, and estimated its time with 70K and 100K samples. Here, the
execution was regarded as converged if the relative improvement on MSD was smaller than
0.1% from the MSD of last iteration.

In the experiment, both SVDCAL and CYCLIC were allowed to use at most 50 parallel
threads. PARALLEL run on 8 CPU nodes, and each node was allowed to use at most 50
parallel threads.

As shown in Figure 4, CYCLIC and PARALLEL did not have significantly improved
running efficiency on small problems. With 1K samples, CYCLIC was even several times
slower than SVDCAL, and PARALLEL was comparable to SVDCAL. With 10K samples,
the running time of CYCLIC and SVDCAL became comparable. The improvement from
parallel execution was still not significant.

With 70K samples, the two proposed approaches exhibited their full advantages. They
were expected to be fifty to more than a hundred time faster than SVDCAL. It was estimated
that over 100 days would be needed to run SVDCAL to calibrate a 70K x 70K matrix in 50
iterations. Comparatively, CYCLIC spent around 62 hours to converge. More significantly,
PARALLEL spent less than 20 hours. Comparing with SVDCAL’s fast growing O (n3)
complexity, the time needed by the proposed approaches grows much smoother when the
sample size increases, which provides a scalable solution for large-scale data processing
applications.
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5. Conclusion

Estimating pairwise affinity between data samples is a fundamental problem in data science
and machine learning. In practice, it is hard to perform the estimation when there are
incompletely observed data samples. Instead of trying to impute the missing values, our
work followed the idea of matrix calibration and proposed two simple yet efficient methods
for large-scale calibration problems. Specifically, we addressed the scalability challenge to
the existing matrix calibration method that resides on decomposing a full affinity matrix.
It was shown that, by dividing a matrix and calibrating the smaller submatrices one by one,
we can also reach an improved estimate with guarantee. In our experiments, the calibration
approaches reported superior results over the classical imputation approaches in estimating
affinity matrices from incomplete observations.

Our work provided another successful example that the idea of “divide-and-conquer”
works empirically well in machine learning and data analysis applications (Li et al., 2007).
The proposed algorithms reported high-quality calibration results as the state-of-the-art
calibration method. At the same time, the new algorithms brought significant improvement
in scalability. Problems that cannot be calibrated by the existing approach can now be
tackled with the proposed algorithms.

To calibrate a smaller submatrix, our work resorts to the classical singular value decom-
position method. For future development of our work, it may be possible to seek modern
alternatives to solve these sub-problems, such as (Cheng and Higham, 1998; Sun et al.,
2020). The combination of these modern solvers with our proposed framework deserves
further investigation.

Considering the improvement and the benefit brought by the proposed algorithms, we
strongly believe that our work provides a highly practical tool, which potentially benefit
various tasks such as in kernel approximation problems (Gisbrecht and Schleif, 2015), in rec-
ommender systems (Resnick and Varian, 1997) and in large-scale genome analysis (Mount,
2001). Future applications along these lines are highly expected.
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