Proceedings of Machine Learning Research 129:609-624, 2020 ACML 2020

Network Representation Learning Algorithm Based on
Neighborhood Influence Sequence

Meng Liu 2191438@s.HLJU.EDU.CN
Ziwei Quan QUAN_ZWZ@163.coM
Yong Liu * 2010023@HLJU.EDU.CN

HeiLongJiang University, Harbin, China

Editors: Sinno Jialin Pan and Masashi Sugiyama

Abstract

Network representation learning (NRL) is playing an important role in network analy-
sis, aiming to represent complex network more concisely by transforming nodes into low-
dimensional vectors. However, most of the current work only uses network structure and
node attribute to learn network representation, and often ignores the historical interactions
between nodes that will affect the future interactions. Therefore, we propose a network
representation learning algorithm based on neighborhood influence sequence (NIS), by in-
vestigating the influence of node historical interactions on future interactions. We propose
three kinds of influence when two nodes interact, and integrate them into NIS by introduc-
ing the Hawkes process. In experiments, we compare our model with existing NRL models
on four real-world datasets. Experimental results demonstrate that the embedding learned
from the proposed NIS model achieve better performance than state-of-the-art methods in
various tasks including node classification, link prediction, and network visualization.
Keywords: Temporal Network; Network Representation Learning; Hawkes Process; Neigh-
borhood Influence Sequence

1. Introduction

Network representation learning (NRL), also known as network embedding (NE), aims to
represent the large-scale networks by mapping nodes into a low-dimensional space. NRL
provides an efficient way to represent the network structure and alleviates the computation
and sparsity issues of conventional symbol-based representations Tu et al. (2017).

In recent years, researchers have become increasingly interested in network represen-
tation learning Cui et al. (2019). They use NRL algorithms in many real-world domains
such as scientific citation and collaboration, communication analysis Cavallari et al. (2017),
fraud and terrorist analysis Nguyen et al. (2018), etc. Most of the current works focus
on network structure and node attributes at a certain time stamp, i.e., they do not take
changes about nodes and edges into account during the learning process. One important
but often-overlooked issue underlying these methods is that they seldom focus on temporal
interactions between nodes.

In fact, node’s interactions occur frequently in real-world networks. By utilizing tempo-
ral interaction between nodes in network representation learning, we can capture network

* Corresponding Author

© 2020 M. Liu, Z. Quan & Y. Liu.

Liu QuaN Liu

dynamic and thus obtain better network embedding. Therefore, recent work has begun to
focus on dynamic networks with temporal information.

Dynamic network embedding methods can generally be classified into two main cate-
gories: (1) generating static snapshots and (2) learning temporal sequences. The methods
for generating static snapshots divide the network into multiple snapshots according to the
timestamp, and learn network embedding at each timestamp which is used as initialization
for network embedding at the next timestamp. The methods for learning temporal se-
quences attempt to capture network dynamic from interaction events and generate network
embedding.

J(a) Static J(b) Temporal
snapshot | sequence

t, — t, —

t,

X 1 X 1 2 3
I \\\

We can reasonably guess that

researcher 2 affected

2 3 researcher x, which prompt him

to work with researcher 3.

Figure 1: Comparison of static snapshot and temporal sequence

In Figure 1, we show the difference between two dynamic network embedding methods
by exemplifying a researcher’s co-author activity in timestamp ¢; and to. As shown in
Figure 1, static snapshot can only show that a researcher x worked with researcher 2 and 3
between t1 and to, but there is no cooperation order of two researchers. In contrast, after
generating a temporal sequence, we find that the researcher x firstly worked with researcher
2, and then worked with researcher 3. According to the order, we can reasonably guess that
researcher 2 affected researcher z, which prompt him to work with researcher 3. As a
result, temporal sequence can contain more information for learning network embedding
than static snapshot.

However, current work often ignores the influence of node’s neighborhood when they
focus on the temporal sequence. They usually consider the changes of a node’s property
at each time point, but the neighborhood of nodes may also change on time, thus causing
different influence on future interaction. Specifically, in Figure 1, when researcher x worked
with researcher 2, he might be influenced by researcher 1 he has previously worked with.
When he worked with researcher 3, he might be influenced by the first two researchers.

Therefore, we need to focus not only on the change of a node’s property over time, but
also on the change of its neighborhood in the temporal network. How nodes interact with
their neighbors sequentially can reveal the dynamic changes and should be exploited to
better represent the network. This paper aims to learn the influence of a node’s historical
neighbor sequence on its future interactions. According to the Hawkes process theory
Hawkes (1971), a node’s historical interactions will affect its future interaction. The closer

610

NRL BASED ON NEIGHBORHOOD INFLUENCE SEQUENCE

the interaction time is to the current time, the greater the influence. Therefore, inspired
by the Hawkes process, we proposed a network representation learning algorithm based on
neighborhood influence sequence, called NIS in this paper. In NIS, the interaction possibility
between two nodes is not only related to their own attributes, but also to the neighbors
that have interacted with the nodes in the past time, i.e., the historical neighbors of a node
will influence its future interaction.

x and y: Two researchers in collaboration
researcher 1/2: a historical partner of researcher x
researcher 3/4: a historical partner of researcher y

Link 1: Researcher x may establishes cooperation with
researcher y without introduction of outsiders.

1 3 Link 2: The historical partner 1 of researcher x will
~ recommends researcher y to x.
N
Link 3: There may be cooperation between researcher
1 y x’s partner 1 and researcher y’s partner 4, which
X L

promotes 1 recommend y to x.

Figure 2: Example of the neighborhood influence

In Figure 2, we take the collaboration of researcher x and researcher y as an example
to explain the possible influence of this process. First, we define two researchers 1 and
2 as historical partners of researcher x and two researchers 3 and 4 as historical partners
of researcher y. In this process, there are three kinds of influence when we consider the
possible interaction between researchers x and y.

The first influence is direct mutual influence between two nodes. As shown in link 1 in
Figure 2, researcher z may establish cooperation with researcher y without the introduction
of outsiders. The second influence is the influence of a node’s neighborhood embedding
on another node. As shown in link 2 in Figure 2, the historical partner 1 of researcher
x will recommends researcher y to . The third influence is mutual influence between
the two node’s neighborhood embedding. As shown in link 3 in Figure 2, there may be
cooperation between researcher x’s partner 1 and researcher y’s partner 4, which promotes
1 recommend y to . The above three influence constitute the main body of NIS,; i.e.,
learning the influence of neighborhoods on nodes over time.

We conduct extensive experiments on four real-world datasets from different areas and
compare NIS with the state-of-the-art algorithms. We show the performance of NIS via
various tasks such as node classification Niepert et al. (2016), link prediction, network vi-
sualization, etc. The results demonstrate that modeling neighborhood influence sequence
is critical for network analysis, in particular for dynamic network with complicated inter-
actions between nodes. The contribution of our work is summarized as follows.

(1) We propose a novel algorithm for network embedding in temporal networks called
NIS that take the influence of node neighborhood over time into consideration.

(2) We investigate three kinds of influence that will occur when two nodes intercat, and
utilize them to obtain network embedding in NIS.

611

Liu QuaN Liu

(3) We empirically evaluate NIS on several real-world datasets and show its superior
performance.

The rest of the paper is organized as follows. We define the network in Section 2. We
describe our network representation learning algorithm NIS in detail in Section 3. In Section
4 we introduce the experimental setup and results. We discuss related work in Section 5 and
conclude the paper in Section 6. The source code and data for this paper can be downloaded
from https://github.com/MGitHubL/NIS.

2. Network Definition

As discussed previously, the probability of future interaction between two nodes will be in-
fluenced by their neighbors which the two nodes have interacted with in the past. According
to the interaction of each node, we can formally define temporal network as follows.

Definition 1. Temporal Network: Temporal network is a network with edges an-
notated by chronological interactive events between nodes. Suppose there is a temporal
network G = (V, E, O), where V is the set of nodes, E CV x V are the set of edges, and
O denotes the set of events. Each event (z, y, t) € O represents an interaction between
nodes x and y at time ¢. O, denotes the set of events between node = and node y, i.e.,
Ow,y: {(xvyatl)a(xvyatQ)a """ ,(x,y,tn)}.

We believe that two nodes may interact at multiple moments. For example, user x and
user y jointly published a paper in 2019, then user x and user y jointly published another
paper in 2020. If we regard the nodes which a node has interacted with in the past as its
neighbors, we can obtain its neighborhood influence sequence which is defined as follows.

Definition 2. Neighborhood Influence Sequence: Given a source node x € V', we
can obtain its neighborhood influence sequence N, i.e., N, = {(y1,t1), (y2,t2) .-+, (Yn, tn)}-
Each tuple in the sequence represents an event, i.e., the target node y; interacts with the
source node x at time ¢;.

According to the neighborhood influence sequence of a node z, we can calculate the influ-
ence of neighbors on future interaction between x and other nodes, and learn an embedding
for node x.

Definition 3. Temporal Network Embedding: Given a temporal network G =
(V, E, O) , the neighbors and the corresponding chronological events of each node = € V/
can be induced into a neighborhood influence sequence N, by tracking all events in which
x interacts with its neighbors. Then, temporal network embedding aims to learning a D-
dimensional vector to represent each node, which is indeed learning a mapping function
¢:V — D, where D < |V].

3. Method

3.1. Hawkes Process

Since our algorithm NIS is based on the Hawkes process, we briefly introduce the Hawkes
process in this subsection. The Hawkes process is a point process that is widely used in
various fields, such as the prediction of commodity flow, social network modeling, etc.
Hawkes process is a special linear self-excitation model, which can be regarded as a
Poisson process satisfying a random process. According to the model, the probability of

612

https://github.com/MGitHubL/NIS

NRL BASED ON NEIGHBORHOOD INFLUENCE SEQUENCE

current events will be affected by historical events and will decrease with time. In other
words, events in the past will affect the future in some way. Guoming et al. (2018) used
the Hawkes process to recommend users’ future concerns. Mei and Eisner (2017) used this
model to process the historical event stream of a single user. All the above works use the
most core idea of Hawkes process, i.e., a node’s past behavior will affect the future, and the
future event can be judged by calculating the influence.

Therefore, the probability of future events can be predicted by establishing the relation-
ship between historical events and current events. The conditional intensity function of the
Hawkes process is defined as follows.

Ak (t) = Uk + Z QU (t - ti) (1)

i i<t

Where A, () denotes the intensity of the current event k, ux > 0 is the basic intensity of
the process, a;; > 0 represents the degree to which a historical event ¢ excites the current
event k, v (-) is a kernel function representing time decay effect, ¢t denotes the time when
the current event k occurs and t; represents the time when the historical event ¢ occurs.

Hawkes process divides the conditional intensity into the basic part and the Hawkes
increment. The Hawkes increment is the influence of historical events on the probability of
the current event. After calculating each historical event separately, we can treat their sum
as the overall Hawkes increment. Based on the Hawkes process, we propose our model NIS.

3.2. NIS Model

With the above definitions, we obtain the neighborhood influence sequence of nodes. Since
the number of historical interaction events at different nodes is different, in order to facilitate
the calculation for neighborhood influence sequence, we use the same length [for each
neighborhood influence sequence. If the number of historical interaction events for a node
is larger than [, we only choose the most recent [interactions for the node.

Neighborhood Embedding. Let 2 be the embedding of the ith node in the neigh-
borhood influence sequence of node z. According to the source node = and its neighbor-
hood influence sequence N., we can obtain its neighborhood embedding sequence Z, =
(21, 25, ,%) and interactive time sequence T, = (t{, t3,---,tf). The final neighbor-
hood embedding 2! of the source node 2 can be defined as follows.

=2 xuf (2)
=1

1
w?® = (1+‘t_tﬂ) (3)

T l 1
Zk:l (1+|

t—t;[)

Where t denotes the current time, w; is the weight of the interaction time of each
neighbor in the neighborhood influence sequence. We use w] to normalize the time and
obtain the proportion of the time influence of each interaction. Thus, for source node xz and
target node g, we can calculate their final neighborhood embeddings 2" and zg.

613

Liu QuaN Liu

Conditional Intensity Function. According to the Hawkes process, the function is
divided into two parts: basic intensity u, , and Hawkes increment h; ,, i.e.:

)‘y\m(t) = fgy + hx,y (4)

The basic intensity is the own influence of nodes and y on future interactions:

2
Hzy = — |22 — Zy” (5)

The Hawkes increment can be divided into two parts: the first part calculates the influence
of the node’s neighborhood embedding on another node, the second part calculates the
influence between the two node’s neighborhood embedding. The example explanation has
been introduced above in Figure 2.

We learn two parameters §; and d2 to adjust the weight of the two parts respectively.
The parameter §; and ds represent the influence weight of the first part and the second part
respectively. In the process of calculating condition intensity, the weights of different types
of influences are also different, and these weight parameters need to be constantly learning

in training.
2 2
b =51 (-)a (=2 -4]) 0

Thus, the conditional probability of node interaction can be obtained, where ¥’ means
all possible nodes that may interact with = at time t.

A
p<y|x>:m% @

Loss Function. The log likelihood of neighborhood influence sequences for all nodes
in the network can be defined as follows.

ogZ=3" 3" log[p (ylx) (®)

eV yeN,

y Az

2
h h
2 -af -

Due to the huge cost computations of the loss function, we use negative sampling to opti-
mize the loss function. Let K be the number of negative nodes sampled according to distri-
bution P (v) which is proportional to 3/4 of degree for node v, and o (x) = 1/ (1 + exp (—x))
be the sigmoid function. The objective function of an interaction between a source node x
and a target node y at time ¢t can be computed as follows.

K
log [p (yl2)]=Tog & (Ayja (1)) + D Earopiuy |~ 108 (Autis (1))] (9)
k=1

After obtaining the loss function of the model, we use Adam method to optimize the
objective function in Equation 9. The generated embeddings can well capture dynamic
interaction process between nodes, and thus can be used in various downstream tasks. The
pseudo code for NIS is shown in Algorithm 1.

614

NRL BASED ON NEIGHBORHOOD INFLUENCE SEQUENCE

Algorithm 1 An algorithm NIS for learning network embedding based on neighborhood
influence sequence
Input: A temporal network G = (V, E, O)
Output: Dynamic node embeddings
1: for each node x € V' do
2: Initalize node embedding z, for x;
3: obtain N, = {(y1,t1), (y2,t2),- -, (y1, 1)} for x from G;

4: end for

5: repeat

6 for each node z € V do

7 for each (y,t) € N, do

8 Calculate zﬁ and zfj baed on Equation 2;

9 Calculate Ay, (t) based on Equation 4;

10: Calculate log [p (y|x)] based on Equation 9;

11: Use Adam to get updated node embedding z, and zy;
12: end for

13: end for
14: until Convergence
15: Output node embedding for all nodes;

3.3. Comparison of NIS and HTNE

The HTNE algorithm Zuo et al. (2018) is also based on Hawkes process, but there are
obvious differences between NIS and HTNE.

Both NIS and HTNE draw on the idea of Hawkes process and regard the influence of
historical interaction neighbors on the current node as part of the Hawkes increment. Both
of them use negative squared Euclidean distance to denote the base intensity p. , between
source node x and target node y. But for Hawkes increment h, ,, they are significantly
different.

For Hawkes increment h, ,, HTNE uses negative squared Euclidean distance to represent
the degree to which a historical neighbor h of source node x excites target node y. In NIS,
we made many modifications to Hawkes increment h, ,. We first construct a neighborhood
influence embedding z” of source node z, and then use 2! to calculate the overall influence
of x’s historical neighbors on target node y. Further, we incorporated the idea of time decay
in the process of generating z?. The closer the interaction time between neighbor i and
source node x, the greater the proportion of neighbor ¢ in the neighbor influence embedding
2 of source node z, as shown in Equation 2 and 3.

In addition, HTNE only considers the influence of historical neighbors of source node x
on target node y when calculating Hawkes increment. Howerver, HT'NE ignores the influence
of historical neighbors of target node y on source node x. HTNE also fails to consider mutual
influence between the neighbors of z and the neighbors of ¢. In contrast, when calculating
Hawkes increment, NIS takes into consideration the influence of historical neighbors of
source node z on target node y, the influence of historical neighbors of target node y on
source node z, and mutual influence between neighborhood embeddings respectively, as
shown in Equation 6.

615

Liu QuaN Liu

4. Experiments

To investigate the effectiveness of NIS on modeling relationships between nodes, we conduct
experiments on four real-world datasets and compare with five state-of-the-art baselines.

4.1. Datasets

We first introduce the four real-world networks used in our experiments, with data statistics
listed in Table 1.

Table 1: Data statistics

Datasets | DBLP ML1IM Yelp AMms

Nodes 28,085 9,745 110,649 74,526
Edges 236,894 1,000,206 537,136 89,689
Labels 10 5 5 5

DBLP Zuo et al. (2018): This is a co-authorship graph which focused on the Computer
Science domain. Our dataset is extracted from it of ten research areas (Table 2). If more
than half of the last ten papers of a researcher are published in corresponding conference,
we assume he or she belongs to this particular area.

Table 2: Research areas in DBLP

Label Conference Research Area
0 ICDE, VLDB, SIGMOD Database
1 KDD, ICDM, SDM, CIKM Data Ming
2 SIGIR Information Retrieval
3 IJCAI, AAAI, ICML, NIPS Artificial Intelligence
4 CVPR, ICCV Computer Vision
5 STOC, SODA, COLT Theory
6 ACL, EMNLP, COLING Computational Linguistics
7 SIGCOMM, INFOCOM Computer Networks
8 SOSP, OSDI Operating Systems
9 POPL Programming Languages

ML1M Li et al. (2020): It is a widely used movie dataset for evaluating algorithms and
we use the version (MovieLens-1M) that includes 1 million user ratings.

Yelp Zuo et al. (2018): We derive the dataset from the Yelp Challenge Dataset. Users
and businesses are regarded as nodes, and commenting behaviors are taken as edges. We
only retain the top five categories during the experiments.

AMms Ni et al. (2019): This dataset is taken from the magazine subscription part on
the Amazon website (AMAZON-Magazine Subscriptions). Users rate the magazines and
we select the most rated score for each magazine as its category.

616

NRL BASED ON NEIGHBORHOOD INFLUENCE SEQUENCE

4.2. Baselines

We compare NIS with five state-of-the-art algorithms.

DeepWalk Perozzi et al. (2014): This algorithm performs random walks over networks
to generate node sequences and employ Skip-Gram Mikolov et al. (2013) model to learn
vertex embeddings.

LINE Tang et al. (2015): This algorithm learns node embeddings in large-scale networks
using first-order and second-order proximities.

Node2vec Grover and Leskovec (2016): This algorithm extends DeepWalk and pro-
poses a biased random walk procedure to maintain a balance between the local and global
properties of a network.

HTNE Zuo et al. (2018): This algorithm introduces the Hawkes process theory into
network embedding to capture the influence of historical neighbors on the current neighbors.

tNodeEmbed Singer et al. (2019): This algorithm proposes a joint loss function that
creates a temporal embedding of a node by learning to combine its historical temporal
embeddings, and the joint loss function focus on optimizes per given task (e.g., node clas-
sification).

4.3. Tasks and Evaluation Measures

We evaluate our model with regard to various fundamental tasks: node classification, link
prediction, network visualization, parameter sensitivity and ablation study.

Node Classification: We train a classifier to predict the node labels and use both
Accuracy and Weighted-F1 as measures to evaluate the classification performance.

Link Prediction: We adopt the AUC score as the measure to determine whether there
is an edge between two given nodes.

Network Visualization: We select some nodes in three fields to present their distri-
bution in figure and evaluate models through the given network views.

Parameter Sensitivity: We use the Accuracy score to evaluate the node classification
performance of NIS under different neighborhood influence sequence length [to verify its
importance.

Ablation Study: We divide the conditional intensity function into three parts and
evaluate different combinations. We use the Accuracy score to evaluate the effect of their
embeddings in node classification to determine the necessity of each part in NIS model.

4.4. Parameter Settings

For all baselines, we set the node embedding dimension to 128, and use the default values
for other parameters. For NIS, we set the length [of the historical sequence as 5, 5, 5, 2
for DBLP, ML1M, Yelp and AMms respectively. We set the mini-batch size, the learning
rate and the number of negative sampling to be 128, 0.001, 5 respectively.

As described above, we evaluate the performance of node embeddings by feeding them
into various tasks.

617

Liu QuaN Liu

4.5. Node Classification

For node classification, we train a classifier and predict the node labels and use both Ac-
curacy and Weighted-F1 as measures to evaluate the classification performance of various
methods.

We use an 8:2 ratio to divide the training sets and the test sets. Since the datasets
contain time information, we put a complete time period in the training set. Thus, the
training set proportions of ML1M, Yelp and AMms are all around 80%, while DBLP is set
to 70% ratio and its real training set instance accounts for 78%. The experimental results
are shown in Table 3.

Table 3: Node classification results of all alogrithms on all datasets

Metric Method DBLP ML1M Yelp AMms
DeepWalk 0.6210 0.6057 0.5092 0.5772

LINE 0.6231 0.6096 0.5184 0.5763

Accuracy node2vec 0.6270 0.6189 0.5145 0.5774
HTNE 0.6334 0.5910 0.5243 0.5698

tNodeEmbed 0.6259 0.6023 0.5209 0.5755

NIS 0.6423 0.6197 0.5298 0.5777

DeepWalk 0.6149 0.5837 0.3957 0.4246

LINE 0.6189 0.5766 0.4034 0.4266

Weighted-F1 node2vec 0.6194 0.5745 0.4120 0.4242
HTNE 0.6272 0.5312 0.4087 0.4237

tNodeEmbed 0.6203 0.5826 0.4039 0.4268

NIS 0.6336 0.5887 0.4181 0.4273

In this case, NIS outperforms all other baselines over all datasets. This means that
it is important to focus on the temporal information in network embedding. Compared
with HTNE and tNodeEmbed which pay attention to the temporal information, NIS also
focuses on the influence between neighborhoods which is one of the reasons for the better
performance.

On the Yelp dataset, all algorithm results are relatively poor, we believe it’s for the
following reasons: business on Yelp usually contains multiple category labels and user’s
comments on businesses are often mapped to different categories. These comments are usu-
ally difficult to cause other reactions, so most of the interaction between user and business
in the network is in an isolated state, which leads to poor performance of all models on this
special network structure.

4.6. Link Prediction

For link prediction, we conducted experiments on DBLP and AMms datasets and took AUC
Hanley and Mcneil (1982) to measure performance.

618

NRL BASED ON NEIGHBORHOOD INFLUENCE SEQUENCE

| |
DBLP ®m AMms 0.8967 0.9036

| 08108 0.8192

DeepWalk LINE Node2vec HTNE tNodeEmbed NIS

Baselines and NIS

Figure 3: AUC comparison of NIS and baselines in link prediction task

The experimental results are shown in Figure 3. From the results, it can be seen that the
overall performance of NIS is better, which proves the ability of the algorithm to capture
the influence between nodes.

Note that, all algorithms have poor performance on AMms, we believe this problem is
caused by the node distribution of datasets. As shown in Table 1, the number of nodes
differs little from the number of edges in AMms, which means that many nodes are only
connected to one or two nodes in the network, so the whole network structure is more like a
chain. Therefore, all algorithms have poor results, but algorithms which focus on temporal
information still work better than algorithms only focus on network structure.

4.7. Network Visualization

For network visualization, we employ the t-SNE method Der Maaten and Hinton (2008)
to project embeddings of researchers to a 2-dimensional space on the DBLP dataset. In
particular, we select three fields from the dataset: Computer Network, Data Mining and
Computer Vision, and select 500 researchers as nodes in each field. Different fields are
marked with different colors and presented with a scatter plot.

As shown in Figure 4, we use green for data mining, purple for computer vision, and
blue for computer networks. It can be seen that both DeepWalk, LINE and Node2vec
failed to separate the three areas apart clearly. HTNE and tNodeEmbed can only roughly
distinguish the area boundaries. NIS clearly separates the three areas, one of which has a
very obvious border. Above results can indicate that NIS has better performance on network
visualization, i.e., the algorithm has the ability to handle tasks at the social application level
such as community mining.

619

Liu QuAN Liu

(d) HTNE (e) tNodeEmbed (f) NIS

Figure 4: Network visualizations in three fields: green for data mining, purple for computer
vision, blue for computer networks.

4.8. Parameter Sensitivity

In NIS model, we proposed an important parameter named neighborhood influence sequence
length [which is designed to truncate the whole interaction sequence of a node at a specific
time into a recent sequence with fixed length.

In parameter sensitivity experiment, we select 2, 3, 4, 5 and 10 for the length [, other
parameters are the same as above. In particular, as illustrated in Figure 5, we report the
Accuracy of NIS on DBLP and AMms.

0.6450 0.6423 0.5780 0.5777
0.6400 0.5775
> 0.6350 > 0.5770
© ©
5 0.6300 5 0.5765
5] 5]
< 0.6250 < 0.5760
0.6200 0.5755
0.6150 0.5750
2 3 4 5 10 2 3 4 5 10
Length | in DBLP Length | in AMms

Figure 5: Parameter sensitivity of NIS on DBLP and AMms datasets
From the result, we can see that the accuracy score on DBLP first rises and then falls,

finally reaching the highest score when I=5. However, the score keeps decreasing with the
increase of [on AMms, and has reached the best performance when [=2.

620

NRL BASED ON NEIGHBORHOOD INFLUENCE SEQUENCE

The trend of the result curves on the two datasets is different. We think it is due to
the following reason: as mentioned above in Table 1, DBLP is a co-author network which
has 28,085 nodes and 236,894 edges. It means that on average ten interactions occur per
node, i.e., many nodes may have 5 neighbors. For AMms, this dataset has 74,526 nodes
and 89,689 edges. Each node in the AMms dataset may only have 1 or 2 neighbors. When
Il becomes larger, many useless nodes will be added to the neighbor sequence which affects
the performance of embedding.

Therefore, compared with DBLP, AMms provides fewer historical neighbors, so the
performance is better when [is smaller in AMms.

4.9. Ablation Study

NIS introduces the conditional function in the Hawkes process and divides it into two parts:
base intensity and Hawkes increment. The Hawkes increment includes the influence of
neighborhood on nodes and the influence between neighborhoods. Thus, we divide NIS
model into three parts.

Let NIS.a denotes the basic intensity part which is the own influence of nodes z and y
on future interactions:, i.e., NIS.a = p, , = — ||zz — zy\|2. N1S.b denotes the influence of a

node’s neighborhood embedding on another node, i.e., N1S.b = — Hz’x1 — zyH2 — sz’} — szQ
N1S.c denotes the influence between the two node’s neighborhood embedding, i.e., NIS.c =
h {}HQ When we only declare NIS, it means combining the above three parts, i.e.,
In the experiment, we take NIS.a, NIS.ab, NIS.ac, NIS respectively to modify the
method to find the true utility of each part. Specifically, we choose DBLP and ML1M as
experimental datasets and all parameter settings are consistent with above experiments.

0.7000 eDBLP

0.6423
0.6500 ML1M 0.6162 e
0.6000 -
> 0.6089 0.6197
& 0.5500
5 0.494
S 0.5000
< 0.4477 _ —
0.4500 o
0.4000 — " 0.4287
0.3500 0.3964
NIS.a NIS.ac NIS.ab NIS

Combination of different parts

Figure 6: Ablation study of NIS on DBLP and ML1M datasets

From Figure 6, we find that the model can complete the node classification task by
only retaining N1S.a, but the performance is not ideal. The model performance is slightly
improved when NIS.c is introduced, but it is much worse than N1.S.ab.

Comparing the performance on the two datasets, we found that the impact of Part
NI1S5.b on ML1M is greater than that on DBLP. We believe this phenomenon is due to the
following reasons: As shown in Table 1, compared with DBLP, ML1M has fewer nodes and

621

Liu QuaN Liu

more edges. This makes the nodes in the ML1M more sensitive to the influence of neighbors
because each node has more interactions. Therefore, when the model considers N1S.b (the
influence of the neighborhood on nodes), it will significantly improve the embedding effect
on ML1M.

In summary, NIS proves the importance of introducing neighbor influence sequences
through ablation study, which will improve the performance of nodes embedded in real-
world downstream tasks.

5. Related Work

Network representation learning (NRL), also known as network embedding (NE), becomes
more and more important in network analysis tasks with the surge of network data in
recent years. The goal of NRL is to transform nodes into low-dimensional vector repre-
sentations which contains original attribute and structure information as much as possible.
The low-dimensional representations for nodes is suitable for various network analysis tasks.
According to whether the network structure evolves, NRL methods can be divided into two
categories: static network-based methods and dynamic network-based methods Zhou et al.
(2018).

Static Network: It means that there are no changes about nodes and edges into
account during the learning process. In the development of network representation learning,
algorithms were based on static networks at the earliest. For example, DeepWalk performs
random walks over networks to generate node sequences and employ Skip-Gram model
to learn vertex embeddings. LINE learns node embeddings in large-scale networks using
first-order and second-order proximities. GraRep Cao et al. (2015) calculates the k-order
similarity between nodes and constructs the loss function by matrix decomposition to obtain
the global variable of nodes. Node2vec extends DeepWalk and proposes a biased random
walk procedure to maintain a balance between the local and global properties of a network.
SDNE Wang et al. (2016) first applies deep learning to network representation learning and
embeds nodes with first-order and second-order similarity. CANE Tu et al. (2017) focuses
on the text information attached to the node and learns the contextual embedding for the
node.

Dynamic Network: With the development of representation learning, researchers
began to pay attention to dynamic networks with nodes and edges changing. GrapSAGE
Hamilton et al. (2017) learn to generate a vector-represented map for each node to sample
the neighbors of the nodes in the graph and propose four different aggregation functions.
CTDNE Nguyen et al. (2018) introduces temporal information to model the network and
performs random walks in chronological order. HTNE introduces the Hawkes process theory
into network embedding to capture the influence of historical neighbors on the current
neighbors. tNodeEmbed proposes a joint loss function that creates a temporal embedding
of a node by learning to combine its historical temporal embeddings, and the joint loss
function focus on optimizes per given task(e.g., node classification).

However, although the dynamic network-based algorithms focus on the changes of time
in the network, their models don’t pay enough attention to the neighborhood information
around nodes. To solve this problem, we propose a NIS algorithm to focus on both historical
temporal sequence and neighborhood information in the network.

622

NRL BASED ON NEIGHBORHOOD INFLUENCE SEQUENCE

6. Conclusions

In this paper, we propose a NIS algorithm to focus on the influence of nodes’ neighborhood
in the interaction process. We propose three kinds of influence when two nodes interact,
and integrate them into NIS by introducing the Hawkes process. The node embeddings
which obtained by this algorithm can be well applied to the downstream tasks such as
node classification and network visualization, etc. In future, we will consider the inductive
method and the influence of the node’s text information.

7. Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 61972135),
the Natural Science Foundation of Heilongjiang Province (No. LH2020F043), and the Inno-
vation Talents Project of Science and Technology Bureau of Harbin (No. 2017TRAQXJ094).

References

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with
global structural information. In Conference on information and knowledge management,
pages 891-900, 2015.

Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chenchuan Chang, and Erik Cam-
bria. Learning community embedding with community detection and node embedding on
graphs. In Conference on information and knowledge management, pages 377-386, 2017.

Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on network embedding. IEEFE
Transactions on Knowledge and Data Engineering, 31(5):833-852, 2019.

Laurens Van Der Maaten and Geoffrey E Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9:2579-2605, 2008.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Knowledge discovery and data mining, pages 855-864, 2016.

Zhang Guoming, Wang Junshu, Jiang Nan, and Sheng Yehua. A point-of-interest recom-
mendation method based on hawkes process. Acta Geodaetica et Cartographica Sinica,
47(9):1261, 2018.

William L Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Neural information processing systems, pages 1024-1034, 2017.

James A Hanley and Barbara J Mcneil. The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology, 143(1):29-36, 1982.

Alan G Hawkes. Point spectra of some mutually exciting point processes. Journal of the
royal statistical society series b-methodological, 33(3):438-443, 1971.

Jiacheng Li, Yujie Wang, and Julian Mcauley. Time interval aware self-attention for se-
quential recommendation. In Web search and data mining, pages 322-330, 2020.

623

Liu QuaN Liu

Hongyuan Mei and Jason Eisner. The neural hawkes process: a neurally self-modulating
multivariate point process. In neural information processing systems, 2017.

Tomas Mikolov, Kai Chen, Greg S Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In international conference on learning representations,
2013.

Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network embeddings. In Companion of the The
Web Conference, pages 969-976, 2018.

Jianmo Ni, Jiacheng Li, and Julian Mcauley. Justifying recommendations using distantly-
labeled reviews and fined-grained aspects. In International joint conference on natural
language processing, pages 188-197, 2019.

Mathias Niepert, Mohamed H Ahmed, and Konstantin Kutzkov. Learning convolutional
neural networks for graphs. In International conference on machine learning, pages 2014—
2023, 2016.

Bryan Perozzi, Rami Alrfou, and Steven Skiena. Deepwalk: online learning of social repre-
sentations. In Knowledge discovery and data mining, pages 701-710, 2014.

Uriel Singer, Ido Guy, and Kira Radinsky. Node embedding over temporal graphs. In
International joint conference on artificial intelligence, pages 4605-4612, 2019.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:
Large-scale information network embedding. In The web conference, pages 1067-1077,
2015.

Cunchao Tu, Han Liu, Zhiyuan Liu, and Maosong Sun. Cane: Context-aware network em-
bedding for relation modeling. In Meeting of the association for computational linguistics,
volume 1, pages 1722-1731, 2017.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Knowl-
edge discovery and data mining, pages 1225-1234, 2016.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embed-
ding by modeling triadic closure process. In National conference on artificial intelligence,
pages 571-578, 2018.

Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaogian Hu, and Junjie Wu. Embedding
temporal network via neighborhood formation. In Knowledge discovery and data mining,
pages 28572866, 2018.

624

	Introduction
	Network Definition
	Method
	Hawkes Process
	NIS Model
	Comparison of NIS and HTNE

	Experiments
	Datasets
	Baselines
	Tasks and Evaluation Measures
	Parameter Settings
	Node Classification
	Link Prediction
	Network Visualization
	Parameter Sensitivity
	Ablation Study

	Related Work
	Conclusions
	Acknowledgment

