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Abstract

Computing the distance among linguistic objects is an essential problem in natural language
processing. The word mover’s distance (WMD) has been successfully applied to measure
the document distance by synthesizing the low-level word similarity with the framework
of optimal transport (OT). However, due to the global transportation nature of OT, the
WMD may overestimate the semantic dissimilarity when documents contain unequal se-
mantic details. In this paper, we propose to address this overestimation issue with a
novel Wasserstein-Fisher-Rao (WFR) document distance grounded on unbalanced optimal
transport theory. Compared to the WMD, the WFR document distance provides a trade-
off between global transportation and local truncation, which leads to a better similarity
measure for unequal semantic details. Moreover, an efficient prune strategy is particularly
designed for the WFR document distance to facilitate the top-k queries among a large num-
ber of documents. Extensive experimental results show that the WFR document distance
achieves higher accuracy that WMD and even its supervised variation s-WMD.

1. Introduction

Measuring the similarity between linguistic objects plays an important role in natural lan-
guage processing. Word Mover’s Distance (WMD) (Kusner et al., 2015) measures the
Wasserstein distance of documents as bag of words distributed in word embedding space.
As a mathematically solid metric, WMD comes with clear interpretation and has demon-
strated great success in many applications, e.g. metric learning (Huang et al., 2016), docu-
ment retrieval (Wu et al., 2018), question answering (Brokos et al., 2016) and word trans-
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Table 1: Transport plan by Example 1 (WMD) and Example 2 (WFR)

word

WMD WFR
B cost B cost

awful
amount total

awful
amount total

indiv. cost mass indiv. cost mass
A happy 1.43 1 1.43 1.43 2.04 1 2.04 2.04

C

sad 1.20 0.20 0.24

1.50

1.45 0.47 0.68

1.96
lost 1.49 0.20 0.30 2.21 0.16 0.35
key 1.50 0.20 0.30 2.25 0.15 0.34

evening 1.56 0.20 0.31 2.42 0.12 0.30
restaurant 1.75 0.20 0.35 3.07 0.09 0.30

Figure 1: Illustration of transport plans by WMD (Example 1) and WFR Document Dis-
tance (Example 2). (key, 0.2, 0.15) denotes the mass of the word key is 0.2 in
WMD while 0.15 in WFR.

lation (Grave et al., 2019). More concretely, in the word embedding space, WMD employs
the Wasserstein metric on the space of normalized bag of words (nBOW) distribution of
documents, i.e. given two documents Ds = {xs1, ..., xsm} and Dt = {xt1, ..., xtn} with nBOW
distributions fs and f t, the WMD of Ds and Dt is:

WMD(Ds, Dt) = min
R∈Rm×n

∑
ij

CijRijs.t.
∑
j

Rij = fsi ,
∑
i

Rij = f tj ,

where Cij = ‖xti − xsj‖ is the transport cost and x·· is the word vector. With the help
of optimal transport theory, WMD naturally bridges the document-level distance and the
word-level dissimilarity in the embedding space.

Example 1 Consider the three sentences in Figure 1. Indeed, sentence A has positive
semantics while B and C are negative. Therefore, well-defined document distance should
reveal DAB > DBC . After removing stop words, the cost to transport from B to A or C is
listed in Table 1. During the transport from B to C, the mass at “awful” in B is equally
allocated to the five words in C. Since four out of the five words are semantically far from
“awful”, the average individual cost is pulled up, which makes WMD(A,B) < WMD(B,C).

Classical optimal transport models require that every piece of mass in the source distri-
bution is transported to an equal-weight piece of mass in the target distribution. However,
this requirement appears to be too restrictive for documents classification, especially when
there are words semantically far away from the motifs of the documents. Example 1 shows

722



Wasserstein-Fisher-Rao Document Distance

that WMD tends to overestimate the semantic dissimilarity when the longer document con-
tains additional details that not involved in the shorter one. In this case, WMD may be
too demanding and not an effective metric for comparing documents with rich semantic
details. Especially, this situation becomes extremely severe in some advanced tasks such as
text summarizing (Kedzie and McKeown, 2016) and length-varying matching (Gong et al.,
2018).

To address the issues above, we introduce a robust document distance to make the
justification of weights happens naturally, text-specifically without any supervision. Our
new document is based the Wasserstein-Fisher-Rao (WFR) metric, a natural extension
of Wasserstein metric newly developed from the theory of unbalanced optimal transport
Stanislav Kondratyev and Vorotnikov (2016); Liero et al. (2016); Chizat et al. (2018a,b).
Unlike traditional Wasserstein metric, WFR metric allows transport from a piece of mass to
another piece with different mass by adding a penalty term accounting for the unbalanced
mass. WFR document distance allows the unbalanced transport among semantic words,
which naturally re-weight the transport plan based on the squared distances in word em-
bedding space. This unique property of WFR alleviates the overestimation effects caused
by WMD in a text-specific way. The following Example 2 illustrates how WFR document
distance remains effective in the case where WMD fails.

Example 2 The unbalanced transport plan from B to A or C and its cost that derives
WFR document distance are listed in Table 1. As we can see, the points closer to “awful”,
such as “sad”, are more preferable in the transport plan from B to C because its weights is
higher (than 0.2). Words with less weight (less than 0.2) in transport plan like “evening”
and “restaurant” are identified as outliers. This effect naturally re-weights the five words
in C and the distance of “awful” to them, making the total cost to transport from B to C
lower than B to A.

The main contributions of this paper are three folds.

• We present a novel and robust document distance to address the overestimation issue
of previous WMD in a text-specific and unsupervised way, especially for documents
with unequal semantic details. This document distance is solidly grounded on the
trade-off of global transport and local truncation in unbalanced optimal transport
theory. The transport plan as a by-product of the document distance could be inter-
preted to identify the semantic outliers.

• We conduct extensive experiments in the tasks of varying-length matching and doc-
ument classification. WFR document distance is proved to be far more robust than
WMD when applied to varying-length documents. Moreover, the results of the eight
document classification tasks comprehensively show the advantage of the WFR doc-
ument distance over both WMD and its supervised variation s-WMD.

• We design an effective pruning strategy for fast top-k WFR document distance query.
With GPU implementation, the computation efficiency is improved nearly by an order
of magnitude. We also show other frameworks based on metric space (for example
WME) could be benefited from WFR document distance. We believe the WFR doc-
ument distance have the potential of practical use as well as further modifications.
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2. Related Work

In this section, we briefly review the literature from the following three perspectives.
(a) Representation of documents. There have been many ways for documents repre-
sentation. Latent Semantic Indexing Deerwester et al. (1990) and Latent Dirichlet Allo-
cation Blei et al. (2003) are based on inferred latent variables generated by the graphical
model. However, most of those models are lack of the semantic information in the word
embedding space Mikolov et al. (2013). Stack denoising auto encoders Glorot et al. (2011),
Doc2Vec Le and Mikolov (2014) and skip-thoughts Kiros et al. (2015) are neural network
based similarities. Despite their numerical success, those models are difficult to explain,
and the performance always relies on the training samples.

Recently, WMD Kusner et al. (2015) is proposed as an implicit document represen-
tation. By considering each document as a set of words in the word embedding space,
it defines the minimal transportation cost as the distance between two documents. This
metric is interpretable with the consideration of semantic movements. Many other metric
learning models are inspired by the metric property of WMD. S-WMD Huang et al. (2016)
employed the derivative of WMD to optimize the parameterized transformation in word
embedding space and histogram importance vector. Word Mover’s Embedding Wu et al.
(2018) designed a kernel method on WMD metric space. However, those methods are still
more or less suffer from the overestimation issue. They do not have the document-specific
re-weight mechanism as WFR Document Distance.
(b) (Un)balanced optimal transport. Optimal transport (OT) has been one of the
hottest topics of applied mathematics in the past few years. It is also closely related to
some subjects in pure mathematics such as geometric analysis Ma et al. (2005); Lott and
Villani (2009) and non-linear partial differential equations Froese and Oberman (2011). As
the most fundamental and important object of OT, Wasserstein metric can be applied to
measure the similarity of two probability distributions. The objective functions defined by
this metric are usually convex, insensitive to noise, and can be effectively computed. Thus,
Wasserstein metric has been deeply exploited by many researchers and has been successfully
applied to machine learning Arjovsky et al. (2017), image processing Schmitz et al. (2017)
and computer graphics Solomon et al. (2015).

A key condition of Wasserstein metric is that the total mass of the measures to be
compared should be identical. This requirement prevents further application of Wasserstein
metric as it cannot capture the features with mass difference, growth or decay. To overcome
the shortage, WFR metric is proposed Stanislav Kondratyev and Vorotnikov (2016); Liero
et al. (2016); Chizat et al. (2018a,b) and applied to the situations where the similarity of
objects (distributions) cannot be characterized by transport alone. Thus, it is not surprising
that WFR has shown great performance in many applications, e.g. image processing Chizat
et al. (2018b) and tumor growth modeling Chizat and Di Marino (2017).
(c) Fast calculation of (un)balanced optimal transport. Sinkhorn algorithm Cuturi
(2013) solves the entropy regularized OT problems. By reducing the entropy regularization
term, the solution of each Sinkhorn iteration approximates to that of the original OT prob-
lem. A greedy coordinate descent version of Sinkhorn iteration Altschuler et al. (2017) called
Greenkhorn is proposed to improve the convergence property. Recently, Sinkhorn algorithm
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is applied to solve the unbalanced optimal transport problem Chizat et al. (2018b), which
is the foundation of the computation of the Wasserstein-Fisher-Rao document distance

This dual lower bound is computationally cheap and could be used in prune strategy to
further accelerate the KNN.

3. Backgrounds: Unbalanced Optimal Transport

Like traditional Wasserstein metric, WFR metric can be interpreted as the square root
of the minimum cost of a transport problem. The most intuitive approach to formulate
this optimization is by introducing the Benamou-Brenier formulation of optimal transport
theory:

Definition 1 (WFR metric) Given two measures µ and ν over some metric space (X, ‖·‖)
and η > 0. Then the WFR metric is defined by the following optimization problem

WFRη(µ, ν) =

(
inf
ρ,v,α

∫
x∈Ω
t∈[0,1]

(
1

2
‖v‖2 +

η2

2
α2

)
dxdt

) 1
2

The infimum is taken over all the triplets of fields (ρ(t, x), v(t, x), α(t, x)) satisfying the
following continuity equation:

∂tρ+∇ · (ρv) = ρα, ρ(0, ·) = µ, ρ(1, ·) = ν.

The “source term” ρα in the continuity equation and the corresponding penalty term
η2α(t, x)2/2 in the objective function in the formulation of WFR metric are the main differ-
ences between WFR and classical Wasserstein metric. They quantify the failure of conser-
vation law (mass balance) in the transport plan. The parameter η controls the interpolation
of the transport cost and the penalty term, which also determines the maximum distance
that transport could occur. One can refer to Chizat et al. (2018a) for more details.

We note that this dynamic formulation is one of the most important motivation. For the
Dirac distribution, Equation (1) reveals the locality (see Lemma 2), which is intrinsically
different from Wasserstein metric based WMD Kusner et al. (2015).

3.1. WFR metric for Discrete distribution

Discrete measure µ over Rn could be considered as µ =
∑

i µiδxi , where δx is the Dirac
function on x ∈ Rn. When

∑
i µi = 1, µ is probabilistic distribution. In the following

context, we begin with the explicit formula of the transport between two Diracs and the
proof is from Section 4 in Chizat et al. (2018a). This simplest situation of unbalanced opti-
mal transport brings the clear interpretation of local truncation described in the following
lemma.

Lemma 2 Given two Diracs µ = h0δx0 of mass h0 at and location x0 and ν = h1δx1 of
mass h1 and location x1, the WFR metric of two Diracs behaves in three distinct ways
depending on the distance of Diracs.
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1. Traveling Dirac: if |x0−x1| < πη then the transporting Dirac is implicitly defined by:

ρ(t) = h(t)δx(t),

where h(t) = At2−2Bt+h0, h(t)x′(t) = ω0, A = h1 +h0−2
√

h0h1
1+τ2 , B = h0−

√
h0h1
1+τ2 ,

ω0 = 2ητ
√

h0h1
1+τ2 and τ = tan

(
||x1−x0||

2η

)
. This is the unique geodesic.

2. (No-transport) Fisher-Rao Geodesic: if |x0 − x1| > πη then

ρ(t) = t2h1δx1 + (1− t)2h0δx0

is the unique geodesic.

3. Cut Locus: if |x0 − x1| = πη, there are infinite many geodesics, including traverling
Dirac and Fisher-Rao Geodesic.

To summarize, the WFR metric between two Diracs are:

WFRη(µ, ν) =
√

2η

[
h0 + h1 − 2

√
h0h1 cos+

(
|x1 − x0|

2η

)] 1
2

,

where

cos+(x) =

{
cos(x), x ∈ [−π/2, π/2];

0, x /∈ [−π/2, π/2].

It is observed that the local truncation of WFR only allows the transport of two Diracs
that no further away than πη. This propery helps to understand the global and local trade-
off in Example 2 intuitively. In general, the transport of two discrete distributions composed
of multiple Diracs can be interpreted as the linear combination of point-to-point transports.
Considering two distributions,

µ =

I∑
i=1

µiδxi , ν =

J∑
j=1

νjδyj , µi ≥ 0, νj ≥ 0,

The mass µi, νj are split into different pieces αij ≥ 0, βji ≥ 0 as

J∑
j=1

αij = µi,
I∑
i=1

βji = νj for every i and j

and assign each pair of (αij , βji) to the transport between xi and yj . The WFR distance
between µ and ν is

WFR2
η(µ, ν) = min

αij ,βji

∑
i,j

WFR2
η(αijδxi , βjiδyj ) (1)
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4. Methods

4.1. WFR document distance

Under the bag of features point of view, one document should be formulated as one discrete
measure µ =

∑K
k=1 µkδxk . Following the bag of words representation, a document D is

considered as a multi-set with K elements D = {w1, . . . , wK} and the number of occurrence
of each word CD = {c1, . . . , cK}. Each word wi belongs to the vocabulary V. The nBOW
distribution is defined by normalizing the number of occurrences: µk = ck/

∑
j cj for k =

1, . . . ,K. Given a word embedding X : V 7→ Rn, each word wk in Document D is mapped
to a point in Rn, i.e. xk = X (wk) for k = 1, . . . ,K. Formally, we define the WFR document
distance as follows.

Definition 3 (WFR document distance) Given a pair of documents D1 and D2 and
a constant η > 0. Let µ =

∑I
i=1 µiδxi and ν =

∑J
j=1 νjδyj be the nBOW probability

distribution of D1 and D2 respectively. The WFR document distance between D1 and D2

is defined as
Dist(D1, D2) = WFRη(µ, ν).

It is noted that the problem of (1) is equivalent to the minimization problem in Defi-
nition 1. However, it is difficult to find a numerical method to implement (1). Theorem 4
which is more numerically friendly is derived.

Theorem 4 Chizat et al. (2018a) Wasserstein-Fisher-Rao metric WFRη(µ, ν) for two dis-
crete measures µ, ν is the optimum of the primal problem:

WFRη(µ, ν) = inf
Rij≥0

Jη(R;µ, ν). (2)

Rij is the transport plan and the objective function Jη is

Jη(R;µ, ν) = tr(CR>) +KL (R1‖µ) +KL
(
R>1‖ν

)
where

Cij = −2 log(cos+(|xi − yj |/2η)) (3)

is the cost matrix, 1 indicates the column vector whose elements are all 1, and KL denotes
the KL divergence1 The corresponding dual problem is

sup
φi,ψj

Dη(φ, ψ;µ, ν) s.t. φi + ψj ≤ Cij for any i, j.

where the dual objection function is

Dη(φ, ψ;µ, ν) = 〈1− e−φ, µ〉+ 〈1− e−ψ, ν〉, (4)

where 〈·, ·〉 is the inner product and φ, ψ are called potentials.

1. Applying this cost function in balanced OT is another modification. We did the ablation study in
Section 5 to show that the KL part is also necessary.
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Algorithm 1 WFRSinkhorn(µ, ν, C, ε, n, φ, ψ)
Input: Discrete measure µ and ν, cost matrix C, ε for entropy regularization and number of iteration n
Output: Optimal transport plan R and potential φ, ψ.
(b, φ, ψ)← (1J , φ, ψ)

Rij ← exp(
φi+ψj−Cij

ε
)

for k = 1 to n do
ai ← (µi/ exp(φi)

∑
j Rijbj)

1/(1+ε), bj ← (νj/ exp(ψj)
∑
i Rijai)

1/(1+ε)

if ‖a‖ or ‖b‖ is too large, or k equals to n then
φ← φ + ε log(a), ψ ← ψ + ε log(b)

Rij ← exp(
φi+ψj−Cij

ε
)

b← 1J
end if

end for
Return (R, φ, ψ).

4.2. Numerics for WFR document distance

Sinkhorn iteration Cuturi (2013) aims at solving the family of “entropy regularized” opti-
mal transport problems, including WFR. We use the calligraphy letter to distinguish the
regularized problem from the original one.

The entropy regularized optimal transport problem is the minimization of

inf
Rij>0

Jη,ε(R) := Jη(R) + ε
∑
ij

Rij log(Rij), (5)

which is strictly convex. Up to a multiplier 2η2, we have

Jη,ε(R) = KL (R1‖µ) +KL
(
R>1‖ν

)
+ εKL

(
Rij || exp(−C/ε)

)
By convex optimization theory Rockafellar (2015), the dual problem (5) is

sup
φ,ψ
Dη,ε(φ, ψ), (6)

Dη,ε(φ, ψ) = 〈1− e−φ, µ〉+〈1− e−ψ, ν〉+ ε〈1− e
φ⊕ψ
ε ,Kε〉,

where Kε = e−C/ε, (φ ⊕ ψ)ij = φi + ψj and could be solved by alternative gradient de-
scent Benamou et al. (2015).

Proposition 5 Let u = eφ/ε and v = eψ/ε, the Sinkhorn iteration Sε for Problem (6) is

u
(l+1)
i =

(
µi/
∑

j e
−Cij/εv

(l)
j

)1/(1+ε)
,

v
(l+1)
j =

(
νj/
∑

i e
−Cij/εu

(l+1)
i

)1/(1+ε)
.

(7)

where i = 1, . . . , I and j = 1, . . . , J .

Algorithm 1 describes single Sinkhorn iteration Sε that are used to calculate entropy
regularized Wasserstein-Fisher-Rao metric with log-domain stabilization. It is noted that
in (7), the term e−Cij/ε or u, v might be extremely small or large which could cause the
numerical instability in the implementation. In the Sinkhorn algorithm, exp((φi + ψj −
Cij)/ε) is taken as a whole for improving the numerical stability.
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Algorithm 2 WFRDocDist(µ, ν,M, {(εm, nm)}, η)
Input: Documents distribution µ and ν, number of the WFR Sinkhorn iteration M , {(εm, nm)}Mm=1 for each iteration, η for WFR
metric.
Output: WFR document distance

Cij ← −2 log

cos+

 ‖xi−y(n)
j
‖2

2η


(φ, ψ)← (0, 0)
for m from 1 to M do

(R, u, v)←WFRSinkhorn(µD1
, νD2

, C, εm, nm, φ, ψ)

end for
Return Jη(R;µ, ν).

To solve the original problem (2) for WFR document distance, we sequentially perform
WFR Sinkhorn iterations {Sεn} on descending {εn} where εn → 0, and adopt the optimal
φ, ψ for Sεn as the initial value for Sεn+1 . The precision of WFR metric is controlled by
the gap between the primal and dual problem. Algorithm 2 shows how to get the WFR
document distance based on Algorothm 1.

In our experiment, we use M = 5 WFR Sinkhorn iterations with parameter {(εm, nm) =
{(e−m−1, 32m)}} for the m-th iteration. Experiments show that the mean relative error of
the approximate solution is no more than 0.001 by evaluating the duality gap which achieves
the desired accuracy.

4.3. Pruning strategy for top-k smallest WFR document distance query

Top-k smallest WFR document distance query is significant in applications like document
retrieval. Kusner et al. (2015) proposed a pruning strategy for fast WMD-KNN classification
based on the lower bound of WMD. In the case of WFR document distance, it is natural
to adopt the evaluated value of the dual objective function (4) as a lower bound. With the
descending of the entropy regularization’s coefficient ε, the dual lower bound gets more and
more tight.

In the top-k smallest WFR document distance query setting, the query document D0 is
formulized as µD0 =

∑I
i=1 µiδxi and the document samples are {(Dn, yn)}Nn=1 where each

Dn as νDn =
∑J

j=1 ν
(n)
j δ

y
(n)
j

, n = 1, . . . , N . Considering the task with hyper-parameter k,

after each WFR Sinkhorn iteration, we sort the document samples by the value of primal
objective (2) and take the maximum of WFR document distance among the first k smallest
values as the threshold. Furthermore, we evaluate the dual lower bound, document samples
with lower bounds that are larger than the threshold will be dropped. By this way, we only
need to perform few WFR Sinkhorn iterations for most of the samples, which saves a lot of
time.

For WFR document distance described in Definition 3, the number of WFR Sinkhorn
iterations M and parameters {(εm, nm)} for each WFR Sinkhorn iteration is fixed. Given
document size L, the time complexity of the Sinkhorn iteration is O(L2) for a fixed param-
eter. Given the size of training samples N , the time complexity of WFR-KNN classification
is bounded by O(NL2). It is noticed that this asymptotic bound cannot be further improved
since the time complexity of the distance/cost matrices calculation between the evaluated
sample and N labeled samples are O(NL2). Algorithm 3 describe how to accelerate the
KNN calculation by pruning the lower bounds.
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Algorithm 3 Top-k smallest WFR document distance query
Input: Test document D0 and training document set {(Dn, yn)Nn=1}, number of iteration M , parameter {(εm, nm)}Mm=1 for each
WFR Sinkhorn iteration, η for WFR document distance and K for KNN.
Output: k indices of top-k smallest WFR document distance samples
for each Dn in training set do

C
(n)
ij ← −2 log

 cos+

(
‖xi−y

(n)
j
‖2
)

2η

, (u(n), v(n))← (None,None)

end for
FilteredIndex← [1, . . . , N ]
for m from 1 to M do

CandidateIndex← FilteredIndex
FilteredIndex← [ ]
threshold← 0
for k from 1 to K do

t← WFRDocDist(µD0
, νDm ,M, {(εm, nm)}, η)

if t ≥ threshold then
threshold← t

end if
end for
for each i ∈ CandidateIndex do

(R(i), u(i), v(i))←WFRSinkhorn(µD0
, νDi , C

(i), εm, nm, u
(i), v(i))

if Dη(u(i), v(i);µD0
, νDi ) < threshold then

append i to FilteredIndex
end if

end for
Sort FilteredIndex by Jη(R(i);µD0

, νDi ) in ascending order.

end for
Return the first-K elements of FilteredIndex.

5. Experiment and Discussion

In this section, we demonstrate the supreme of WFR Document Distance over WMD and
other WMD based metrics in two tasks. The first task directly illustrates the robustness of
WFR over WMD when matching length-varying documents, which is exactly the situation
that documents have unequal details. The second task examines the effectiveness of WFR
Document Distance on a vast number of documents by KNN classification. The WMD is
computed by the code provided by Kusner et al. (2015).

Task 1: Varying-length matching

(a) Setup. The concept-project dataset by Gong et al. (2018) is designed for length-varying
document matching task. This dataset contains 537 samples. Each sample contains one
short document named “concept”, one long document named “project” and one human
annotated binary label for whether this pair is a good match. The length of each “concept”
and corresponding “project” varies a lot. The mean of the distinct words among all “con-
cept” is 26.4, while the mean distinct words among all “project” is 556.6. The matching is
binary classification. The ratio of true and false label is 56:44. For this task, we take WMD
as the baseline. It has been proven Gong et al. (2018) that WMD is a stronger than the
neural network methods such as doc2vec Le and Mikolov (2014). We also apply the cost
function of WFR (see Equation (3)) to balanced optimal transport as an ablation study.
Suggested by Gong et al. (2018), the document distance between “concept” and “project”
(WMD or WFR) is used as one score of the concept-project pair for binary classification.
Given the threshold, the pair with the distance smaller than the threshold is classified as
the true label. The word embedding in the experiments is pretrained by fasttext Mikolov
et al. (2018). We evaluate WMD and WFR Document Distance on the whole dataset.
After calculating the document distance of each pair, we adjust the threshold to obtain the
precision-recall curve.

730



Wasserstein-Fisher-Rao Document Distance

Figure 2: PR curve for the length-varying matching task

Table 2: The datasets used for evaluation and their description.

DATASET # TRAIN # TEST AVG NDW STD NDW
bbcsports 517 220 117.0 55.0

twitter 2175 933 9.9 5.1
recipe2 3059 1311 48.4 29.8

ohsumed 3999 5153 59.2 22.3
classic 4965 2128 38.8 27.7
reuters 5485 2189 37.1 36.6
amazon 5600 2400 45.1 45.8
20news 11293 7528 69.7 70.1

(b) Discussion. Figure 2 illustrates the precision-recall curves of WMD and WFR
Document Distance whose hyper-parameter η ranges from 0.25 to 4. The curve of WMD
is dominated by that of all WFR Document Distances at all recall level. At low recall
level (less than 0.1, the threshold is small), the pairs with small document distances are
classified to be good matches. The high precision (over 0.8) of WFR Document Distances
of all hyper-parameters shows the effectiveness of our WFR Document Distance. The low
precision of WMD is consistent with the observation in the Example 1 that document pair
who is semantically similar may not be closed under WMD. WFR Document Distance
is proved to be more reliable and robust than WMD and is not sensitive to the hyper-
parameter η. (WMD4.00 and WMD1.00 collapsed together, which also supports η is not
sensitive.) Composing ground metric of WMD with the cost function of WFR improves the
performance. However, for fixed parameter η this amendment in balanced optimal transport
is clearly weaker than unbalanced WFR document distance.

Task 2: KNN classification

(a) Setup. We evaluate the effectiveness of WFR Document Distance on eight document
classification datasets: BBCSPORTS: BBC sports article at 2004-2005; TWITTER: sen-
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Table 3: KNN classification error rate for WFR and other baselines.
DATASET BBCSPORT TWITTER RECIPE OHSUMED CLASSIC REUTERS AMAZON 20NEWS
WMD 4.6± 0.7 28.7± 0.6 42.6± 0.3 44.5 2.8± 0.1 3.5 7.4± 0.3 28.3
S-WMD 2.1± 0.5 27.5± 0.5 39.2± 0.3 34.3 3.2± 0.2 3.2 5.8± 0.1 26.8
WFR 1.1± 0.3 26.4± 0.2 38.9± 0.1 41.82 2.6± 0.2 3.2 4.8± 0.2 24.3

timent classification corpus of tweets; RECIPE: recipe procedures from different origins;
OHSUMED: medical abstracts from cardiovascular disease groups; CLASSIC: academical
papers by different publishers; REUSTERS and 20NEWS: news articles by topics. The pre-
processing procedures and the choice of word embeddings are the same as that described
by Kusner et al. (2015); Huang et al. (2016). We use directly the preprocessed version of
datasets from the authors. The key information of the datasets are presented in Table 2,
including the number of train/test samples and the average and the standard deviation of
the number of distinct words (NDW).

Besides WMD, We consider an additional supervised baseline named Supervised Word
Mover’s Distance (S-WMD). Compared to WMD, this method employed a histogram
importance vector w of vocabulary to re-weight the nBOW distribution f̃i = wifi/

∑
j wjfj ,

and a linear transformation A : xi 7→ Axi to modify the distances in the word embedding
space. The parameters are trained by gradient descent of the loss defined by Neighborhood
Components Analysis (NCA). Other traditional document representation or similarity base-
lines are proved to be significantly weaker than WMD and SWMD Kusner et al. (2015);
Huang et al. (2016). So they are not included. Throughout the experiments, we opti-
mize over the neighborhood size (k ∈ {1, . . . , 19}) in KNN and the only hyper-parameter
(η ∈ {1, 1/2, 1/3, 1/4}) by 5-fold cross-validation. We obtain the original code from the
authors and re-conduct the evaluation process. For datasets without predefined train/test
splits (bbcsport, twitter, recipe, classic, amazon), we report the mean and standard devia-
tion of the performance over five random 70/30 train/test splits.

(b) Discussion. In the first three rows of Table 3 we output the results from three dif-
ferent document distances and eight datasets. Firstly, we compare the performance between
WFR with WMD. As presented, WFR Document Distance has less KNN classification error
rate at all datasets. Furthermore, for the datasets with large standard deviation of NDW
(exceeds 40), i.e. dataset BBCSPORTS, AMAZON and 20NEWS, WFR outperforms the
document distance with a clear margin. For those datasets with less standard deviations
of NDW, the reduction of the KNN classification error is not that significant. Secondly,
we compare the performance between WFR with S-WMD. WFR successfully outperforms
S-WMD in six out of eight datasets even though S-WMD has more supervised parameters.
The successful of WFR over S-WMD since a more effective way to re-weight the transport
plan is automatically captured by WFR, rather than text-independent global re-weighting
in S-WMD. We notice that S-WMD only outperforms WFR and WMD at OHSUMED
dataset. The medical term for cardiovascular disease in the OHSUMED dataset may not
have proper word vector. The text-independent deficiency of the word embedding might be
relieved by supervision in S-WMD.

(c) WFR Document Distance for Other Frameworks. Word Mover’s Embedding
(WME Wu et al. (2018)) framework is proposed to abstract the document space of Word
Mover’s Distance (or other metric spaces). This framework realized fast estimation of WMD
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Table 4: KNN classification error rate for WME+WFR and WME+WFR.
DATASET BBCSPORT TWITTER RECIPE OHSUMED CLASSIC REUTERS AMAZON 20NEWS
WME(512)+WMD 3.5± 0.7 26.8± 2.3 48.0± 0.6 42.1 4.8± 0.3 4.0 7.4± 0.4 30.7
WME(512)+WFR 2.7± 1.0 26.0± 1.9 43.3± 1.2 37.2 4.8± 0.3 4.0 7.4± 0.4 30.7
WME(4096)+WMD 2.0± 1.0 25.9± 2.3 40.2± 0.6 36.5 3.0± 0.3 2.8 5.7± 0.4 22.1
WME(4096)+WFR 1.8± 1.0 25.3± 1.6 40.1± 0.6 34.4 2.9± 0.3 2.3 5.5± 0.5 21.5

Table 5: KNN prune efficiency and GPU acceleration ratio for eight datasets
DATASET Prune Acc.

1st 2nd 3rd Ratio
BBCSPORTS 89.6% 6.2% 4.1% 3.9
TWITTER 2.1% 1.0% 0.9% 35.0
RECIPE2 46.3% 1.9% 0.8% 7.3

OHSUMED 31.1% 0.8% 0.5% 8.9
CLASSIC 33.8% 1.2% 0.5% 9.0
REUTERS 3.2% 0.6% 0.4% 11.8
AMAZON 1.7% 0.5% 0.4% 9.9
20NEWS 40.0% 0.6% 0.2% 6.7

by Monte Carlo’s method. We found that replacing the WMD in WME framework with
WFR document distances effectively improves the original results. Here we demonstrate
the detailed results for WFR+WME and WMD+WME (WFR document distance and word
mover’s distance within WME framework). We present WME with two sizes of Monte Carlo
samples, i.e. 512 and 4096. We didn’t exact recover the original results in Wu et al. (2018)
since we didn’t know exact value of hyperparameters Dmax, γ and R that are used for
each dataset. By similar parameter selection process, we produce the compatible results
(WME(512)+WMD is close to WME(SR) in Wu et al. (2018) and WME(4096)+WMD is
close to WME(LR)). For WME+WFR, we take an additional cross-validation process to se-
lect the hyperparameter η of WFR. The differences of WME and WFR are compared under
the same MC sample condition. In most case, We could see that WME+WMD is weaker
than WME+WFR for both 512 and 4096 MC samples. For some datasets (TWITTER,
OHSUMED and CLASSIC), WME(512)+WFR is really close to the WME(4096)+WMD.
This results support that WFR document distance is better than word mover’s distance.

5.1. Pruning Efficiency and Time Cost

The pruning strategy for top-k smallest WFR document distance query and GPU parallelism
is important to constrain the computation cost of KNN in an affordable range. Table 5
demonstrates the effect of prune strategy and GPU parallelism.

The columns in Table 5 named by Prune shows the average percent of samples left after
m-th round of prune. For BBCSPORTS dataset, since the training set has only 517 samples,
3.87% of the training set contains 20 samples, which is the minimal number required for
KNN classifier when K = 20. For other larger datasets, we noticed that after 2 rounds,
more than 98% of the training samples are pruned. For all datasets, one could examine that
after 3 rounds, the number of left samples is about 20, which is suitable for the following
KNN classification. With this pruning strategy, most of the computing cost is at the 1st
Sinkhorn iteration, which is of time complexity O(NL2). In other words, one could improve
the final precision for top-k smallest WFR document distance with merely little cost.

Figure 3 shows the averaging time of one KNN classification on eight datasets. The
value is scaled by the minimal time cost (TWITTER dataset by GPU). The column in
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Figure 3: Scaled time cost for one KNN classification (K=20)

Table 5 named by GPU Acc. Ratio denotes the acceleration ratio. For example, 3.9 for
bbcsports means that one CPU (Core i7-7700HQ) computation costs 3.9 times as one GPU
(GTX-1080Ti). For TWITTER, this dataset is too small so that all the data could be placed
into the visual memory of GPU at single batch, which allows extremely high parallelism.
Discard the highest and lowest value of the acceleration ratio, we observe that the GPU
parallelism provides about 8.9 times acceleration.

Another concerning about the computation time is the difference between WFR and
WMD by Sinkhorn iteration. We evaluate conduct 1000 pairs of documents (point clouds)
with number of distinct words varying from 10 to 1000. Experiments are conducted by
MATLAB with fixed iteration parameters. WFR takes 42.3 seconds in total while WMD
takes 39.7 seconds. We think about additional 5% time cost is worthwhile.

6. Conclusion

In this paper, we present WFR document distance to address the overestimation issue of
previous optimal transport. This document distance is robust to unequal semantic details
by taking the advantage of the trade-off of global transportation and local truncation by
unbalanced optimal transport theory. As a result, WFR document distance benefits from
the dissimilarity of word-level while achieves automatically text-specific and unsupervised
re-weighted transport plan. This makes it outperforms WMD and supervised s-WMD
and could be seamlessly adapted to other frameworks. Extensive experiments confirm the
effectiveness and efficiency of the new proposed document distance.
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Mart́ın Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In ICML, pages 214–223, 2017.

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré.
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Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. Wasserstein dictionary
learning: Optimal transport-based unsupervised non-linear dictionary learning. CoRR,
abs/1708.01955, 2017.

Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy
Nguyen, Tao Du, and Leonidas J. Guibas. Convolutional wasserstein distances: efficient
optimal transportation on geometric domains. ACM Trans. Graph., 34(4):66:1–66:11,
2015.
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