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Abstract

In this paper, we propose a novel adaptive step-size approach for policy gradient reinforce-
ment learning. A new metric is defined for policy gradients that measures the effect of
changes on average reward with respect to the policy parameters. Since the metric directly
measures the effects on the average reward, the resulting policy gradient learning employs
an adaptive step-size strategy that can effectively avoid falling into a stagnant phase from
the complex structure of the average reward function with respect to the policy param-
eters. Two algorithms are derived with the metric as variants of ordinary and natural
policy gradients. Their properties are compared with previously proposed policy gradients
through numerical experiments with simple, but non-trivial, 3-state Markov Decision Pro-
cesses (MDPs). We also show performance improvements over previous methods in on-line
learning with more challenging 20-state MDPs.

Keywords: Policy Gradients, Natural Policy Gradients, Average Reward Metric

1. Introduction

Policy gradient reinforcement learning (Williams, 1992; Kimura and Kobayashi, 1998; Sut-
ton et al., 2000; Konda and Tsitsiklis, 2003) has received much attention for several appli-
cations (Tedrake et al., 2004; Matsubara et al., 2006; Richter et al., 2006). This approach
has a stochastic policy expressed by a function with its own parameters called the pol-
icy parameters. The policy parameters are updated to increase some performance criteria,
(e.g., average reward) towards locally optimal policies using gradient ascent. Compared
with global optimization with value-function-based methods (e.g., Q-learning (Watkins and
Dayan, 1992) and Sarsa (Sutton and Barto, 1998)), policy gradients have several advantages
such as their applicability to Partially Observable Markov Decision Processes (POMDPs)
and the convergence proof for using function approximators (Baxter and Bartlett, 2001b;
Sutton et al., 2000; Konda and Tsitsiklis, 2003).
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One recent theoretical advance is a natural gradient approach for policy gradients called
the natural policy gradients. This approach, originally proposed in (Kakade, 2002), was
inspired by Amari’s natural gradient algorithms in supervised learning contexts (Amari,
1998). Following this pioneering work, various algorithms have been proposed (Bagnell and
Schneider, 2003; Peters et al., 2003; Richter et al., 2006; Ghavamzadeh and Engel, 2006).
The natural policy gradients involve covariant policy searches with some metric measur-
ing the effect on an action probability distribution with respect to the policy parameters
(Kakade, 2002). A number of studies have empirically demonstrated that natural policy
gradients significantly outperformed ordinary policy gradients in terms of their convergence
rates as in (Kakade, 2002; Bagnell and Schneider, 2003; Peters et al., 2003; Richter et al.,
2006; Ghavamzadeh and Engel, 2006).

However, the metric does not measure the effect on the performance criteria (e.g., aver-
age reward). This means that the updates of the policy parameters, even with the natural
gradient, may result in an extremely small (or undetectable) improvement. Therefore, nat-
ural policy gradients still lead to a learning process in a stagnant phase from a complex
structure of the average reward function because the metric does not reflect the average
reward function. This concern motivates us to ask whether we can find a principled metric
that takes the average reward in a Markov Decision Process (MDP) into account to more
directly control the progress of the learning process.

In this paper, we propose a novel adaptive step-size approach for policy gradient rein-
forcement learning. A new metric is defined for policy gradients that measures the effect
of changes on the average reward with respect to the policy parameters. Since the metric
directly measures the effect on the average reward, the resulting policy gradient learning em-
ploys an adaptive step-size strategy that can effectively avoid falling into a stagnant phase
from the complex structure of the average reward function. Two algorithms are derived
with the metric as variants of ordinary and natural policy gradients. Their properties are
compared with previously proposed policy gradients by numerical experiments with simple,
but non-trivial, 3-state MDPs. We demonstrate performance improvements over previous
methods in on-line learning with more challenging 20-state MDPs.

The rest of this paper is organized as follows. Section 2 briefly reviews policy gradients
and natural policy gradients. Section 3 shows our adaptive step-size policy gradient ap-
proach for the metric of average reward. Section 4 presents algorithms for policy gradients
using the metric. Section 5 demonstrates its effectiveness compared to previously proposed
policy gradients with 3-state MDPs and more challenging 20-state MDPs. We discuss the
conclusions of this paper and future work in Section 6.

2. Policy Gradient to Natural Policy Gradient

In this section, policy gradients and natural policy gradients are briefly reviewed as prelim-
inaries for the next sections.

2.1 Policy gradient approach

We explain policy gradient reinforcement learning for finite-state Markov Decision Processes
(MDPs) defined by a system consisting of a finite state set S and a finite action set A. The
state transitions are governed by a state transition probability distribution p(s′|s, a), where
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s and s′ ∈ S, a ∈ A. A stochastic policy that controls the MDP is defined by π(s, a; θ)
(= p(a|s; θ)) and a reward function is defined as r(s, a) : S × A → R. The objective is to
acquire the (locally) optimal policy π(s, a; θ∗) to maximize the average reward. Assuming
that all of the policies π(s, a; θ) in the parameter space are ergodic (irreducible and aperiodic)
(i.e., a unique steady state distribution dπ(s) is well-defined for each policy (e.g., (Bertsekas,
1995)), the average reward function with respect to the policy parameter is defined as

η(θ) = lim
n→∞

1
n

E{r1 + r2 + · · · + rn|πθ}

=
∑
s∈S

dπ(s)
∑
a∈A

π(s, a; θ)r(s, a), (1)

where rn indicates the immediate reward r(s, a) ∈ R at time step n. The policy gradients
estimate gradient ∇θη(θ) with respect to the policy parameter of the current policy and
update the parameter as θ := θ + α∇θη(θ) (Sutton et al., 2000; Konda and Tsitsiklis,
2003; Baxter and Bartlett, 2001b; Kimura and Kobayashi, 1998), where α is a sufficiently
small step-size parameter and the notation := denotes the right-to-left substitution. From
Eq. (1), the policy gradient ∇θη(θ) is obtained as

∇θη(θ) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a; θ)∇θ lnπ(s, a; θ)Qπ
γ (s, a)

+ (1 − γ)
∑
s∈S

d(s)∇θ ln dπ(s)V π
γ , (2)

where Qπ
γ (s, a)≡ limK→∞ E

{∑K
k=1 γkrk|s, a

}
V π

γ (s) ≡ limK→∞ E
{∑K

k=1 γkrk|s
}

,

γ ∈ [0, 1) is a time-discounting factor, V π
γ (s) is a state value function, Qπ

γ (s, a) is a state-
action value function (Baxter and Bartlett, 2001b). In general for reinforcement learning
tasks, the gradient cannot be obtained analytically because the steady-state distribution
dπ(s) and value functions V π

γ (s) and Qπ
γ (s, a) are unknown. Therefore, the gradient must

be estimated from the empirically sampled data.
In this paper, we refer to a policy gradient with this approach as an Ordinary Policy

Gradient method (OPG).

2.2 Natural policy gradient approach

(Kakade, 2002) introduced the natural gradient learning approach in policy gradient rein-
forcement learning called a Natural Policy Gradient method (NPG). In (Kakade, 2002), a
Riemannian metric is defined to measure the effects of changes on an action probability
distribution π(s, a;θ) by a small incremental vector ∆θ in the current policy π(s, a; θ) as

Dp(s,a)[θ‖θ + ∆θ] ≡ ∆θTF(θ)∆θ, (3)

where

F(θ) ≡
∑
s∈S

dπ(s)
∑
a∈A

π(s, a; θ)
[
∇θ lnπ(a, s; θ)∇θ lnπ(a, s; θ)T

]
. (4)
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In NPG, the update direction of the policy parameter is F (θ)−1∇θη(θ) with the con-
straint Dp(s,a)[θ‖θ + ∆θ] = ε2. The update schema of policy parameters with Kakade’s
NPG (Kakade, 2002) is

θ := θ + αF (θ)−1∇θη(θ),

where α is a sufficiently small step-size parameter.
Kakade implemented this method in simulation studies and empirically showed its ef-

fectiveness, i.e, faster convergence to locally optimal policies than OPG. Further studies as
in (Bagnell and Schneider, 2003; Peters et al., 2003) found that Kakade’s work was based
on the probability manifold of the path distribution p(τ ; θ) (also called the trajectory or
history denoted by τ = [s0, a0, s1, a1, · · · , sH , aH ], where H is the horizon of the history).
They also demonstrated that NPG often outperforms OPG in practice.

One of the main advantages of using NPG comes from the direction of the gradient. A
natural gradient will be rotated in a direction that avoids serious plateau phenomena on a
curved manifold in policy parameter space during learning (Amari, 1998). Another charac-
teristic comes from the adaptive step-size parameter consistent with the Riemannian metric
constraint (Amari, 1998; Peters and Schaal, 2008). This constraint makes the NPG covari-
ant policy search (the performance progress of the learning process) no longer depends on
the parametrization of the policy (in the limit of infinitesimally small step-sizes). However,
the step-size parameter will be adjusted so that every policy improvement yields the same
effect in the action probability distribution (Kakade, 2002). Therefore, its effect on the
average reward can be significantly different so that the updates of the policy parameters
may result in an extremely small improvement. This may lead the learning process to a
stagnant phase caused by the complex structure of the average reward function.

These considerations motivate us to ask whether we can define a principled metric that
considers the average reward in the MDP to directly control the learning process. In the
next section, we derive a novel policy gradient approach for this purpose.

3. A Policy Gradient Approach with Average Reward Metric

In this section, we present a policy gradient approach with a metric for the average reward.
The basic method of the learning is discussed in Section 3.1. In Section 3.2, we derive a Rie-
mannian metric that measures the effect on the average reward of the policy improvement,
and its properties are described in Section 3.3.

3.1 Average reward metric policy gradient method

Let us consider a metric for policy gradient algorithms that measures the effect of a change
in policy parameter θ on the average reward. Assuming that the effect is measured by a
Riemannian metric similar to a NPG, we can define a metric Dη as

Dη[θ‖θ + ∆θ] ≡ ∆θT R(θ)∆θ, (5)

where ∆θ is a small incremental vector and R(θ) ∈ Rd×d is a Riemannian metric matrix
that defines the properties of the metric. We call Dη the average reward metric and R(θ) the
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average reward metric matrix. The average reward metric Dη measures a kind of distance
between θ and θ + ∆θ in the average reward.

We assume that R(θ) is a positive definite matrix. Following the same approach as
(Amari, 1998), the steepest ascent learning scheme under the constraint Dη = ε2 can be
derived as

θ := θ + εα(θ)R(θ)−1∇θη(θ), (6)

where
α(θ) ≡ 1√

∇θη(θ)TR(θ)−1∇θη(θ)
.

We call this learning scheme the Average reward metric Policy Gradient method (APG).
Since APG learning has a constraint that the average reward metric Dη[θ‖θ + ∆θ] is

constant, the derivative of the change in the average reward at each policy improvement
with this gradient is also constant. Therefore, each policy improvement only causes a fixed
size change in the average reward, i.e., ε2 for the constraint Dη = ε2. That is, the learning
process can be directly controlled by changing ε which can also be used to avoid falling into
a stagnant phase caused by the complex structure of the average reward function in MDPs.

3.2 Average reward metric in a Riemannian metric form

As an example of the average reward metric Dη, we can simply consider the squared length
between the average rewards with policy parameters θ and θ + ∆θ as

Dη[θ‖θ + ∆θ] := {η(θ) − η(θ + ∆θ)}2.

By taking the Taylor series expansion to the squared length, this metric can be approxi-
mately represented in a Riemannian metric form as

{η(θ) − η(θ + ∆θ)}2 = ∆θTG(θ)∆θ + O(‖∆θ‖3) (7)

where the metric matrix is

G(θ) ≡ ∇θη(θ)∇θη(θ)T (8)

and ‖a‖ denotes the Euclidean norm of the vector a. We ignore the final term on the
right-hand side of Eq. (7) by assuming ‖∆θ‖ � 1. Then we can use this metric matrix
G(θ) as an instance of the average reward metric Dη . In the rest of this paper, we consider
the case R(θ) := G(θ). Note that the Reimannian metric matrix R(θ) will no longer be a
positive definite matrix.

3.3 APG as a Newton method

APG has another desirable property with respect to the convergence rate around the local
optimal policies. Assuming a (locally) optimal average reward η(θ∗) and the average reward
for the current policy η(θ), we can calculate the error between them as

E(θ) =
1
2
{η(θ∗) − η(θ)}2.
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By using a second-order Taylor series expansion and simple analytic calculations, the second-
order-convergence gradient ascent, called the “Newton method” is given as

θ := θ + ∇2
θE(θ)−1∇θE(θ), (9)

where {
∇θE(θ) = −∇θη(θ)
∇2

θE(θ) = ∇θη(θ)∇θη(θ)T + {η(θ∗) − η(θ)}∇θη(θ)2.

When η(θ)−η(θ∗) ≈ 0, which is true near locally optimal policies, the Hessian matrix ∇2
θE

becomes

∇2
θE(θ) ≈ ∇θη(θ)∇θη(θ)T = R(θ).

Therefore, the proposed method is roughly equivalent to the Newton method near a (locally)
optimal policy. The term roughly reflects that, while the Hessian is assumed to be a positive
definite matrix without a step-size parameter, R(θ) is not the positive definite matrix and
there is adaptive learning in the APG approach. This is well-known in supervised learning
contexts (Bishop, 1995). However, to our knowledge, it has never been exploited in the
policy gradient reinforcement learning context.

4. Algorithms for APG approach

In this section, we propose several APG algorithms. Section 4.1 derives two algorithms for
APG learning. Section 4.2 presents an on-line implementation of APG learning.

4.1 Derivations of algorithms for APG

Here are some APG algorithms. Before going into the details, we need to note that R(θ)
cannot be of the full-rank because it is a rank-one matrix. Thus, there must be some
additional constraint to implement an APG algorithm. Here are two different algorithms
with two different optimization forms.

The first algorithm is derived as an optimization form with a Euclidean norm objective
function constrained by an average reward metric. The resulting policy gradient is a variant
of the ordinary policy gradient with an adaptive step-size strategy. This is Algorithm 1.
While this learning scheme should avoid a stagnant phase caused by the complex structure
of the average reward, unlike NPG, it does not consider the curvature of the manifold in the
policy parameter space. Since we want the advantages of both APG and NPG, we derived
a second algorithm as an optimization form with a Riemannian metric objective function
constrained by the average reward metric. The resulting policy gradient is a variant of the
natural policy gradient with an adaptive step-size strategy. This is Algorithm 2. Here are
the detailed derivations.

(Algorithm 1) We consider the following optimization form with a Euclidean norm ob-
jective function as

min∆θ ∆θT ∆θ, (10)

s.t.
√

∆θTR(θ)∆θ = ∇θη(θ)T ∆θ = εη. (11)
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The solution ∆θ∗ is obtained as

∆θ∗ = εηα
∗(θ)∇θη(θ),

where

α∗(θ) =
1

∇θη(θ)T∇θη(θ)
.

The gradient ∆θ∗ can be regarded as an ordinary policy gradient with an adaptive step-size
strategy, so, the policy update becomes θ := θ +∆θ∗. Note that this gradient is calculated
using the ordinary policy gradient ∇θη(θ). Therefore, this method does not require any
additional estimation from an ordinary policy gradient at all. We call the gradient ascent
by ∆θ∗ Policy Gradient learning method on the average reward metric (aPG).

(Algorithm 2) We consider the following optimization form with a Riemannian metric
objective function as

min∆θ ∆θTF(θ)∆θ, (12)

s.t.
√

∆θTR(θ)∆θ = ∇θη(θ)T ∆θ = εη, (13)

where F(θ) =
∑

s∈S dπ(s)
∑

a∈A π(s, a; θ)
[
∇θ lnπ(a, s; θ)∇θ lnπ(a, s; θ)T

]
.

The solution ∆θ? is

∆θ? = εα?(θ)F(θ)−1∇θη(θ),

where

α?(θ) =
1

∇θη(θ)TF(θ)−1∇θη(θ)
.

In Eq. (12), the objective function is Dp(s,a)[θ‖θ + ∆θ] = ∆θTF(θ)∆θ that measures the
effect on an action probability distribution with respect to the policy parameters (Kakade,
2002). Thus, the gradient ∆θ? can be regarded as NPG with an adaptive step-size strategy.
We call this gradient ascent by ∆θ? Natural Policy Gradient learning method on the average
reward metric (aNPG). The difference between the aNPG and the NPG comes from the
adaptive step-size parameter derived from the average reward metric. This difference can
significantly improve the learning performance. Details about the differences are described
in Appendix A. The effectiveness is validated by the numerical experiments in Section 5.

4.2 On-line learning implementation of Algorithms (1) and (2)

The proposed APG Algorithm (1) only requires ∇θη and Algorithm (2) additionally requires
an estimate of F(θ). Here we give a straightforward way to calculate these variables when
implementing the APG algorithms. To estimate ∇θη, we simply use the on-line version of the
GPOMDP algorithm in (Baxter and Bartlett, 2001b). The Fisher information matrix F(θ)
is estimated as the mean of the exponential recency-weighted average (Sutton and Barto,
1998) as F̂t+1 := F̂t + λ

(
∇θ lnπt+1∇θ lnπt+1

T − F̂t

)
, where λ is a forgetting parameter.

These are shown in Algorithms 1 and 2. To reduce the variance of the estimator, the
constant baseline, as proposed by (Weaver and Tao, 2001), is estimated as bt+1 = bt +
(r(st+1, at+1) − bt)/(t + 1), which is used in both algorithms.
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Algorithm 1 On-line aPG algorithm
Given: an ergodic (PO)MDP, parametrized by θ
Initialize θ = θ0, ε, β, λ ∈ [0, 1), z = 0, g = 0
repeat

state transition from st with action at to st+1

zt+1 = βzt + ∇θ lnπ(st, at)
gt+1 = gt + λ [(r(st+1, at+1) − b(st+1)) zt+1 − gt]
γ =

{
gT

t+1gt+1

}
, g̃t+1 = gt+1/γ

θ := θ + εg̃t+1

until
√

gT
t gt ≈ 0

Algorithm 2 On-line aNPG algorithm
Given: an ergodic (PO)MDP, parametrized by θ
Initialize θ = θ0, ε, β, λ ∈ [0, 1), λF ∈ [0, 1), z = 0, g = 0
repeat

state transition from st with action at to st+1

zt+1 = βzt + ∇θ lnπ(st, at)
gt+1 = gt + λ [(r(st+1, at+1) − b(st+1)) zt+1 − gt]
F̂t+1 := F̂t + λF

(
∇θ lnπt∇θ lnπt

T − F̂t

)
γ =

{
gT

t+1F̂
−1
t+1gt+1

}
, g̃t+1 = gt+1/γ

θ := θ + εF̂−1
t+1g̃t+1

until
√

gT
t F̂−1

t gt ≈ 0

5. Numerical Experiments

In this section, the proposed algorithms for APG learning are validated through numerical
simulations. In Section 5.1, we investigate the algorithms with analytically computed policy
gradients for 3-state MDPs. Then, in Section 5.2, the performance with estimated gradients
in an on-line approach is validated for a more challenging task with large (20-state) MDPs
followed by comparisons.

5.1 Analytical approach: applications to 3-state MDPs

To investigate our suggested approach for APG learning, we considered the application
of the proposed algorithms to MDPs. Here an analytical policy gradient approach, as
proposed in (Baxter and Bartlett, 2001b,a), was used to avoid any algorithmic disturbance
such as estimation errors of the gradient. By using the reward function and the model of
an environment, we can analytically obtain the exact policy gradient ∇θη(η). We applied
our proposed aPG and aNPG to two 3-state MDPs in (Baxter and Bartlett, 2001a) and
(Schraudolph et al., 2006)), where the state is defined as s ∈ S = {A,B, C} and the action is
a ∈ A = {a1, a2}. We also applied NPG, OPG, and fNPG (conventional NPG learning with
an adaptive step-size strategy as in (Kakade, 2002; Peters and Schaal, 2008), see Appendix
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Figure 1: Simulation results obtained by several policy gradient methods in which each
gradient is analytically calculated by using models of environment and reward
functions. (a) is obtained from MDP1. The step-size parameters for all of
the methods are αPG = 0.05, αNPG = 0.0005, εfNPG = 0.09, εaPG = 0.1, and
εfNPG = 0.1. The initial policy parameter is set θ0 = [2.5, 2.5]T . (b) is with
θ0 = [25,−25]T and the same learning rate in (a). These settings are set follow-
ing (Baxter and Bartlett, 2001b). (c) is obtained by MDP2 with αPG = 0.000125,
αNPG = 0.0005, εfNPG = 0.16, εaPG = 1.25, εaNPG = 1.25, and θ0 = [−0.1, 0.1]T

following (Schraudolph et al., 2006). (d) is with αPG = 0.00025, αNPG = 0.001,
εfNPG = 0.22, εaPG = 2.5, εaNPG = 2.5, and θ0 = [−10.0, 0.5]T .

A. for more details) as the baseline algorithms for PG learning. The control policy π(s, a; θ)
is defined with the policy parameters θ = [θ1, θ2]T .
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As pointed out in (Schraudolph et al., 2006), Baxter’s 3-state MDP has the property that
the greedy maximization of the instantaneous reward leads to an optimal policy. In contrast,
Schraudolph’s 3-state MDP is more challenging by modifying the state transitions, the
reward structure, and the state features in Baxter’s MDP. In the rest of this section, we refer
to Baxter’s MDP as MDP1 and Schraudolph’s as MDP2. The experimental comparisons
are shown in Fig. 1. Two reward functions were used for both MDP1 and MDP2. Each
sub-figure in Fig. 1 shows the obtained average rewards against the number of iterations.

PG and NPG encountered serious plateau phenomena during learning, perhaps due to
the curvature of the manifold in the policy parameter space. While fNPG outperformed
PG and NPG, it still saw some unnaturally slow convergence due to the lack of reward
information in the metric. The aPG method considered the reward information in the
metric, which significantly accelerated the learning process in (a) to (c), but, the negative
effects from the curvature of the manifold could not be avoided in (d). The aNPG method,
which considered both the curvature of the parameter manifold and the average reward
metric, resulted in the best performance in all of the test cases.

5.2 On-line learning for large MDPs

We tested the PG algorithms (aNPG, aPG, fNPG, NPG, and OPG) while estimating the
gradients for random synthesized 20-state MDPs, which are useful for various conditions as
in (Morimura et al., 2008; Wang et al., 2008). Each MDP was initialized in each episode.
Set of actions initialized as A={a1, a2}. The state transition probability function was set
using a Dirichlet distribution Dir(α ∈ R2) and a uniform distribution U(20; b) generating
integers from 1 to 20 except b. We first initialized it so that p(s′|s, a) := 0, ∀(s′, s, a) and
then with q(s, a)∼Dir(α=[.3, .3]) and x\b ∼ U(|S|; b) using{

p(s + 1|s, a1) := q1(s, a1)
p(x\s+1|s, a1) := q2(s, a1)

{
p(s|s, a2) := q1(s, a2)
p(x\s|s, a2) := q2(s, a2)

where s′ = 1 and s′ = 21 are identical states. The reward function r(s, a, s′) is set for
each argument by using a Gaussian distribution N(µ=0, σ2 =1) and normalized such that
maxθ η(θ) = 1 and minθ η(θ) = −1 as

r(s, a, s′) :=
2(r(s, a, s′) − minθ η(θ))
maxθ η(θ) − minθ η(θ)

− 1.

The policy was represented by the sigmoidal function:π(l|i; θ) =
1

1 + exp(−θ>φ(i))
π(m|i; θ) = 1 − π(l|i; θ).

Each ith element of the initial policy parameter θ0 ∈ R20 and the features of state sj ,
φ(sj) ∈ R20 were drawn from N(0, 1) and N(δij, 0.5), where δij is the Kronecker delta.
The hyper parameters β, λ, and λF (for the NPGs) were set as 0.998, 0.001, and 0.0002.
The step-size parameters were initialized to αPG = 0.0002, αNPG = 0.00001, εfNPG =
0.00005 εaPG = 0.00005, and εaNPG = 0.00005. Here we introduced a heuristic where, if the
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adaptive step-sizes in aNPG, aPG, and fNPG are larger than 10αPG, 10αNPG, and 10αNPG,
respectively, they are reset to 10αPG, 10αNPG, and 10αNPG.

Figure 2 shows the learning performances. The learning process of aNPG was consid-
erably faster than the other methods. We thus confirmed that, just as with the results of
the analytical approach in Section 5.1, our aNPG algorithm outperformed the other PG
algorithms even in larger MDPs and with the settings for on-line learning.
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Figure 2: Means and standard deviations over 50 independent episodes. The learning per-
formances (average rewards) are from various PG algorithms on the 20-state
MDP.

6. Conclusions

In this paper, we proposed a novel adaptive step-size policy gradient reinforcement learning
approach in an average reward metric space. A new metric was defined for policy gradients
to assess the effects of changes in the average reward with with respect to the policy param-
eters. Since the metric measures effect on the average reward, it effectively avoids falling
into a stagnant phase caused by the complex structure of the average reward. The difference
between aNPG and Kakade’s NPG is the adaptive step-size parameter. Though it may seem
to be small difference, it can significantly change the properties of the derived policy gradi-
ent. Experimental results verified this with simple, but non-trivial, 3-state MDPs and more
challenging 20-state MDPs. Future work includes the development of more sophisticated
algorithms for on-line learning implementations with LSPI as proposed by (Lagoudakis and
Parr, 2003) and an application of our method to a high-dimensional robotic arm for optimal
control. Another direction of the future work would be qualitative analysis on the cause of
the stagnant phase for the policy gradient methods.
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Appendix A. Comparison of aNPG with Kakade’s NPG

We presented an adaptive step-size parameter for conventional NPG learning in (Kakade,
2002)1. Since NPG learning is derived from the constraint Dp(s,a) = ε2p(s,a), it can be
regarded as the optimization problem

max∆θ ∇θη(θ)T ∆θ, (14)

s.t.
√

∆θTF(θ)∆θ = εp(s,a). (15)

As a solution, an adaptive step-size gradient ascent is obtained as

∆̃θ = εp(s,a)α̃(θ)F−1(θ)∇θη(θ)

where

α̃(θ) =
1√

∇θη(θ)TF(θ)−1∇θη(θ)
.

We call this gradient ascent ∆̃θ Natural Policy Gradient learning on the Fisher information
metric (fNPG).

Note that the difference between aNPG and fNPG comes from these step-size parame-
ters. The step-size parameter α?(θ) in aNPG is the square of α̃(θ) in fNPG. If εη = εp(s,a),
then α? is larger than α̃ if α? is less than one. Otherwise, α? is smaller than α̃ if α? is more
than one. These observations suggest that a more conservative strategy than NPG exists
for an adaptive step-size parameter for policy search.
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