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Abstract

In this paper we integrate two essential procesdissretizationof continuous data and learning of

a model that explains them, towards fullgmputationaimachine learning from continuous data.
Discretization is fundamental for machine learning and data mining, since every continuous da-
tum; e.g, a real-valued datum obtained by observation in the real world, must be discretized and
converted from analog (continuous) to digital (discrete) form to store in databases. However, most
machine learning methods do not pay attention to the situatenthey use digital data in actual
applications on a computer whereas assume analog data (usually vectors of real numbers) theoret-
ically. To bridge the gap, we propose a novel measure of the difference between two sets of data,
called thecoding divergenceand unify two processes discretization and learning computationally.
Discretization of continuous data is realized by a topological mapping (in the sense of mathemat-
ics) from thed-dimensional Euclidean spaf¥ into the Cantor spacE“, and the simplest model

is learned in the Cantor space, which corresponds to the miniopen seseparating the given

two sets of data. Furthermore, we construct a classifier using the divergence, and experimentally
demonstrate robust performance of it. Our contribution is not only introducing a new measure from
the computational point of view, but also triggering more interaction between experimental science
and machine learning.

Keywords: Coding divergence, Discretization, Cantor space, Binary encoding, Computable Anal-
ysis, Computational Learning Theory

1. Introduction

The aim of this paper is giving a computational basis for machine learning and data mining from
continuous data. We integrate two fundamental proceshssietizationof continuous data and
learning of a model that explains them, using theories of encoding of real numbers in Computable
Analysis Weihrauclh2000) and those of learning from examples in Computational Learning Theory
(Jain et a,/1999. We treat the problem of measuring the difference between two sets of continuous
data by assuming that one contains positive data and the other contains negative data, since such
a problem is basic for a lot of tasks in machine learning such as classification and clustering. We
propose a novel measure, called toeling divergencgo measure similarity between such sets, and
construct a classifier using it. The key concept of the divergence is the simple proseparation
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The coding divergence measures the complexity of separating a positive data set from a negative
data set, which corresponds to the height of a decision tree separating them intuitively.

1.1 Background and Problems in Machine Learning

With the recent rapid development of machine learning techniques, more and more data sets are
stored in databases and distributed through computer networks, where every continuous datum such
as a real-valued datum obtained by scientific activéty, observations or experiments in the real
world, is discretizedfrom analog to digital form. Thereby there is an unavoidable gap between
raw continuous data and converted discrete data used for learning and mining on a computer. This
means that whereas lots of machine learning methods assume continuous data (usually vectors of
real numbers) ideally, actual applications on computers use discretized binary data.

However, to the best of our knowledge, existing theoretical bases for machine learning do not
try to bridge the gap. For example, methods originated from the perceptron are based on the idea
of regulating analog wiringRosenblait195§), hence they take no notice of discretization. Fur-
thermore, despite now there are several discretization technigleesda and Rou$2003 Fayyad
and Iranj 1993 Friedman et a)/199§ Gama and Pin{a200¢ Kontkanen et al/199% [Lin et al,,

2003 Liu et al), 2002, 'Skubacz and Hollrer, 2009, they treat discretization as just the data prepro-
cessing for improving accuracy or efficiency of the machine learning/data mining procedure, and
the process discretization itself is not considered from computational point of view. Thus, roughly
speaking, we have to build an “analog-to-digital (A/D) converter” into a machine learning method
computationally to treat discretization appropriately.

1.2 Background and Problems in Experimental Science

In experimental science, a lot of experiments are designed includiegative controhnd apositive
control. Paositive controls confirm that the procedure is competent for observing the effect, and
negative controls confirm that the procedure is not observing an unrelated effect. Testing the effect
of a treatment group is the objective of such an experiment. A typical situation is testing the effect
of a new drug, where the result of applying the new drug (treatment group) is compared against
placebo (negative control).

The standard method for the above taskssagistical hypothesis testhich has developed from
the works by Neyman and Pearsitefyman and Pearspgh928§ (1933, and FisherlFishe; 1925
1956). However, it is well known that there exist many fundamental problems in statistical hy-
pothesis testing such as non-verifiable assumptions for populations and anbitedings Johnson
1999 when we apply such methods to actual data sets. As a result, even in the top journals such as
Nature ScienceandCell, we can easily find inappropriate usage of statistical hypothesis testing
Thus an alternative method to give theoretical justification to experimental results is required.

All the scientists have to do is to judge which controls a treatment group belongs to and, obvi-
ously, this typical task in experimental science can be viewedbasificationn machine learning,
that is, a pair of negative and positive controls is given as a training data set, and a classifier labels
a treatment group (corresponds to a test set) “negative” or “positive” using the training set. Note
that labels of all elements in the test set are same. Therefore, comparing the similarity between the

1. Nature says “please help us” to deal with various statistical methods appropriatety {//www.nature. com/
nature/authors/gta/).
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negative control and the test set to the one between the positive control and the test set is a direct
way, and the coding divergence, which will be introduced in this paper, can achieve such task.

Note that lots of existing classification methods based on statistics could not work well, since
most of them have been proposedlfoge data sets, while typical data sets anmgallin experimental
science such as physiology.

1.3 Solutions and Examples of Our Method

In this paper we focus on machine learning from real-valued data, and measure the difference be-
tween two sets of real-valued data by the complexity of separating the two sets. We call this novel
measure theoding divergenceThis divergence uses no statistics and no probabilistic models, and
purely depends on the topological structure (in the sense of mathematics)Cdirthar space=«,

which is known as the standard topological space of the set of infinite sequiveibsauch2000).

Thus, for example, it has no assumptions for the probability distributions of data sets. This property
enables us to develop a robust machine learning algorithm for various data sets.

We identify each real-valued datum with a vector of real numbers in/tienensional Eu-
clidean spac®¢, and realize discretization of a real-valued datum through an topological mapping
from R? into the Cantor spacE“. A topology usespen setso axiomatize the notion of approx-
imation, and it enables us to treat each discretized datum as a base element of an open set of the
Cantor space.

The simplest model that is consistent with the given two sets is learned in the Cantor space with
assuming that one set is a set of positive examples and the other set is a set of negative examples;
i.e., the learned model explains all positive examples and does not explain any negative examples.
This model corresponds to tiheinimum open seh the Cantor spacg“. The coding divergence is
obtained from the length of the code that encodes the learned model in the Cantor space.

Figure!ll shows two examples of computing thaary-coding divergencé&he coding diver-
gence with the binary encoding) where each datum is a vect®?.ifThe unit cubeZ = [0,1] x
[0, 1] is partitioned recursively, and each partitioned cube is encoded by the binary encoding (see
Section3.2 and Figure3). In the left panel (Figurd(a)), to separate one set from the other set,
we need only one partition in each dimension, and rigdd symbols par datum. In contrast in
the right panel (Figuré(b)), three recursive partitions are needed in each dimension, and we need
26/10 symbols par datum. The binary-coding divergence is determined directly from these numbers
of symbols, thatis2/10 + 2/10 = 0.4 in Figure1l(a)and26,/10 4+ 26/10 = 5.2 in Figure1(b).

1.4 Related Works

Liu et al. (Liu et al, 2008 used the similar idea of our divergence to anomaly detection. They
constructed decision trees by partitioning intervals randomly and recursively, and used the height
of them to measure the complexity of separating each datum. Comparing to the method, our con-
tribution is as follows: We treat the way of partition as the process of discretization and formulate
it as a mapping (encoding) &¢ into the Cantor spacE“, and show that the height of a decision
tree corresponds to the size of an open set in the topological &pacehis gives the theoretical
justification for the process “partition”. Furthermore, this is the first time to perform classification
using such idea.

Discretization is also used to construct decision trees from continuous data. For example, C4.5
(Quinlar} [1996) is one of famous algorithms to develop decision trees together with discretization.
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Figure 1: Two examples of computing the binary-coding divergence. kaamfd x denotes a real-
valued datum, and each cube is encoded by the binary encoding (same as the base-2
embedding in Definitiod). In the left panel (a), we need a pair of codéso) (encod-
ing [0,1/2] x [0,1/2]) to separate from x, and(1, 1) (encoding[1/2,1] x [1/2,1])
to separatex from o, hence we can separate them wathi0 symbols par datum, and
the binary-coding divergence /10 + 2/10 = 0.4 (For each pair of codes, we ignore
symbols (", “,”, and “)”, and actually wrap into one code. See the equath (In
contrast in the right panel (b), we need codes, 00), (00,01), (010,010), (011,011),
and(110, 100) to separate from x, and(10, 10), (11,11), (111,101), (010,011), and
(011,010) to separatex from o. Thus they are separated by + 4 + 6 + 6 + 6)/10
symbols par datum, and the divergencedg10 + 26/10 = 5.2.

Our approach is different from them since we realize discretization process by methods of encoding
real numbers, give theoretical support by modern mathematical theories in Computable Analysis,
and integrate the process into computational learning.

Kernel methods including Support Vector Machines (SVMs) are known to be one of the most
famous and powerful classification metho@shor 2007, where any form of data sets, for ex-
ample sequences, images, and graphs, are mapped into a high dimensional feature space, which is
the d-dimensional Euclidean spa@®, or more generally the infinite-dimensional Hilbert space,
to measure the similarity between each pair of data. In contrast, our strategy is inverted: Every
real-valued datum iiR? is mapped into the Cantor spaEe. The “discrete” spac&“ might seem
to be strange as a feature space, but is natural for machine learning from real-valued data with
discretization.

Some studies use the Kolmogorov complexity for machine learning such as clus€ifibiaéi
and Vitanyi, 2005 LLi et al., 2003 by measuring the similarity between a pair of data. Comparing
to the methods, our approach has mainly two advantages as follows: First, the coding divergence is
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computable (SectioB.3) whereas the Kolmogorov complexity is not, hence they use actual com-
pression algorithms such ggip to obtain an approximate value of the Kolmogorov complexity,
which result in a gap between theory and practice; second, our approach is more general than their
ones, because we can treat any continuous objects through encoding of them, however they cannot
since they do not consider encoding process of objects.

1.5 Organization of This Paper

This paper is organized as follows: Sect@iis the main part in this paper, where we introduce

the coding divergence and a classifier using the divergence. We give mathematical background in
Section3, and analyze performance of our classifier experimentally in Sedti®ections gives
conclusion.

1.6 Notation

We assume that the reader is familiar with the basic concepts of analysis and the ordinary com-
putability theory Dieudonrg, 1960 Hopcroft and Ullman1979. In the following R denotes
the set of real numbers, aikl’ denotes thel-dimensional Euclidean space. The unit interval
[0,1] x --- x [0,1] in R? is denoted byZ. The set of all finite sequences and infinite sequences
over an alphabeX is denoted by-* and ¢, respectively. Thdengthof a finite sequence is
the number of positions for symbolsin denoted byw|, and theempty strings the string whose
length is0, denoted by\. For a set of sequencé, thesizeof W is defined by W | := >, i/ [w].
For example, i’ = {11,0, 100}, then|W| =2+ 1+ 3 =6.

Forv € ¥* andp € ¥* U X%, if p = vq for someqg € ¥* U X¢, thenv is aprefixof p, denoted
by v C p. Theith symbol of a sequengeis denoted by(i), and the prefixp(0)...p(n) of the
lengthn + 1 of p is denoted by[n]. The set{p € ¥ | w C p} is denoted bywX*, and the set
{peX¥|wLC pforsomew € W} by W%,

2. The Coding Divergence

In this section we give a novel measure of the difference between sets ihdineensional Eu-
clidean spac®&?, called thecoding divergencewith assuming that an elementl{ corresponds to

a real-valued datum. This divergence is the main contribution in this paper. We design a classifier
using it in2.2, and construct a learner that learns the divergen@e@in

2.1 Definition and Properties

Let X andY be a pair of nonempty finite sets in the unit interZat- R¢. We encode them by a
mappingy from Z to the Cantor space“, wherey is called arembeddingand its formal definition
will be given in SectiorB.2. Thus~(X) and~(Y") are sets of infinite sequences.

We set amodelof given data as anpen sein the Cantor space, since this property “open” is
desirable for machine learning as follows: For aBetf P is open, then there exists a set of finite
sequenced such thafVx¥ = P (remember thatVX® = {p € 3¢ | w C p for somew € W}).
This means thaP is finitely observabldSmyth [11992), that is, for any infinite sequenge we can
decide whether or ngt € P by observing just some prefix pf Thus from sets of infinite sequences
~v(X) andv(Y'), we can obtain an open set as a model of tlirefimite time(see Sectio®.1 for its
formal definition).
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We say that a set of infinite sequendes_ ¢ is consistentvith an ordered paify(X), v(Y))
if P2 ~(X)andPN~(Y) =0, hence if we seg(X) andv(Y) as positive and negative examples,
respectively, then the sét “explains” all elements iny(X) and does not explain any elements in

Y(Y).

Definition 1 Given an embedding : Z — >*. For a pair of nonempty finite sef§, Y C Z, define
the coding divergencewith respect toy by

fXNY
CL(X,Y) e 00 [ ﬂ' # 0,
D.(X;Y)+ Dy(Y;X) otherwise
whereD,, is thedirected coding divergence with respecttaefined by
D (X;Y) = HXlH min{ |O| | O is open, and consistent with (X ),y(Y)) }

(IIX]| is the cardinality ofX).

The standard embedding for the coding divergence is the Basebeddingys that will be given

in Definition'S and, especially, the coding divergence with respeecfstis written by C3(X,Y).

If 3 = 2, then we callC>(X,Y") the binary-coding divergencenformally, the base? embedding
encodes each real number by dividing each interval jhg&ame width intervals recursively (see
Figure3).

Intuitively, the procedure to obtain the directed coding divergence is as follows: We encode
given setsX, Y into the Cantor spacE“ by an embedding, find the simplest model (minimum
open set)) that is consistent with an ordered pair of sets of infinite sequepdes), v(Y')), and
measure the sizg)|. Thus the directed coding divergentk (X;Y') can be viewed as the result
of consistent learnindrom positive examples(X ) and negative examplegY’) in Computational
Learning Theory contextJain et al. 1999).

Example 1 Suppose thak = {1/0.2,0.8} andY = {x/10}. Then in the binary embedding

(Definition5), these sets are encoded into infinite sequences as fole\s:) = {011...,111...}
andv(Y) = {010...}. Thus for an open sét>* with V' = {011,1}, VE* is minimum and
consistent with(y2(X),v2(Y)). Therefore we hav®s(X;Y) = (3 + 1)/2 = 2. Similarly, WX«

with W = {010} is minimum and consistent witfy(Y'), v2(X)), henceDy(Y; X) = 3/1 = 3.

Consequentlys(X,Y) = Dy(X;Y) + Do(Y; X) = 5.

Itis trivial that the coding divergence is not a metric siieg X, Y') # 0 for all nonempty finite
setsX,Y C 7.

Lemma 2 The coding divergence satisfies the following conditions:
1. C,(X,Y)>0.
2. 0,(X,)Y) =C, (Y, X).

Furthermore, it does not satisfy the triangle inequality.

1. The usage of the word “divergence” follows the original definition of the Kullback-Leibler diverg&utiéck and
Leibler,1957).
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Proof The conditionsC,,(X,Y) > 0 andC,(X,Y) = C,(Y, X) are proved directly from the
definition. We can easily find an example, where the triangle inequality does not hold. For example,
let X = {0.1}, Y = {0.8}, andZ = {0.2}, and assume that we use the binary embedding. We
haveCy(X,Y) = 2, Co(Y, Z) = 2, andC(Z, X) = 6, thusCo(X,Y) + Co(Y, Z) < Ca(Z, X).

|

2.2 Classification Using the Coding Divergence

We construct a lazy learner that classifies a given data set using the coding divergence. It classifies
a test set by measuring its similarity (coding divergence) to a training data set. It is quite simple
and has no parameters, hence we can apply it to any type of real-valued data sets without any
consideration. We will show its robustness in Secdon

Assume that there are two classésand B, and a pair( X, Y) is given as a training data set
(X,Y are nonempty finite sets iR%), where X (resp. Y) belongs toA (resp. B). Moreover,
suppose that we have a data get: R? in which every datum is unlabeled, and we just know that
all labels of elements i¥ are same.

The classifier performs as follows: First, it compuées X, Z) andC, (Y, Z), and next, judges

A it C(X,Z) > C,(Y, 2),

Z belongs to the cla )
B otherwise

Generally, the computability af’, (X, Z) andC, (Y, Z) is not guaranteed. However, if we use the
bases embeddingys such as the binary embedding (Definitignthen it is effectively computable.
We give the learnep that learns the coding divergence with respectddn the next subsection.

2.3 Learning of the Coding Divergence w.r.t:ys

Here we integrate discretization of encoded real-valued data iffinite sequences) and learn-
ing of the coding divergence with respectg, and construct a learner that learns the divergence
C3(X,Y) from v5(X) andys(Y).

Procedure 1 shows the learnethat learns the coding divergenCg (X, Y’) from a pair of given
sets of encoded infinite sequenegg.X) and~z(Y"). It continues to discretize each sequence, ob-
tain longer and longer prefixes, and generate an approximate value 6%{¢ Y'). For inputs
v3(X) and~g(Y"), the output ofy> (finite or infinite sequence) is denoted Byv3(X),v3(Y)),
hence for exampley(v3(X),v3(Y))(0) is the first outputy)(v3(X ), v5(Y))(1) is the second out-
put, and so on.

To learn the coding divergence, a learner has to judge whether or not an opers ensistent
with given setgv3(X),v3(Y)), and we show that it is decidable in finite time.

Lemma 3 For every open se® and everyP, Q C X, it is decidable that whether or na? is
consistent with P, Q) in finite time.

Proof Let O = WX andk = max,ew |w|, and defineP[k] := {plk] | p € P} andQIk] :=
{q[k] | ¢ € Q}. We show that we can check the consistency only uBihgP[k], andQ[k] (thus it
is decidable). The conditio® O P holds if and only if for allz € P[k], there existsv € W such
thatw C x. MoreoverO N Q = P ifand only ify Z w andw Z y forallw € O andy € Q[k]. &
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Procedure 1The learnenr) that learngC3(X,Y")

Input: a pair(y3(X),v3(Y)) (bothX andY are nonempty finite sets if)
Output: a finite or infinite sequence converging@(X,Y")

function MAIN (v5(X), v3(Y))
11 LEARNING(v5(X), v5(Y), 0,0, | X, [[Y], 0)

function LEARNING(P, Q, H1, Hy, m, n, k)

V « DISCRETIZH P, k)

W « DISCRETIZHQ, k)
H1<—H1U{U€V’U¢W}

Hy — HyU{weW |w¢V}
P—{peP|p¢ HX¥}

Q< {geQ|q¢ Hx¥}

outputm ™' Y7 vl + 07t Yy w]

if P =0 andQ@ = () then halt

else return LEARNING(P, Q, Hy, H2, m, n, k + 1)

function DISCRETIZH P, k)
1: return {p[n] | p € P}, wheren = (k+1)d — 1

If X NY = 0, theny halts in finite time, and the last output is exactly the sam€gsX,Y").
Otherwise ifX N'Y # (), theny continues to output approximate values of TigX,Y) = oo
forever. Here, we can easily prove that forall € Nwith i < 7,

D(16(X), 1Y) (@) < ¢(y5(X), 75(Y))(5), and lim (y5(X), v5(Y))(7) = 0.

This means that we can obtain more and more accurate values of the coding divergence, even though
we cannot obtain the exact value in finite time. This property corresponds teffdaivecom-
putability realized by th&@ype-2 machinewhere while a computer reads more and more precise
information (longer and longer prefixes) of the input, it produces more and more accurate approx-
imations of the result. This machine is a natural extension of the usual Turing machine, and used
to introduce computability of continuous objecWdihrauchi2000). Furthermore, this property of
computation is an effective version of thensistencyn statistical context.

Example 2 Let us consider the case in Figuteand assume that andY consist of allo and x,
respectively. LetP = ~,(X) and@ = (Y. Every pair of codes is wrapped into one code by
the wrapping functiorp that will be defined in1). In Figure1(a) DISCRETIZE P,0) returns{00}
(corresponds t¢0, 0)) and DSCRETIZE @, 0) returns{11} (corresponds t@1, 1)). Thusy outputs
2/10+2/10 = 0.4 and halts. In Figurg(b), both DSCRETIZH P, 0) and DSCRETIZE(, 0) return
{00, 11}, and DSCRETIZE P, 1) returns{0000,0001,0011, 1110}, and DSCRETIZE (), 1) returns
{1100,1111,0011,1110}. ThusH; = {0000,0001} andHy = {1100,1111}. Furthermore, for
the rest of data, BCRETIZEperforms similarly, and finite sequena@s 100, 001111, 111000 and
111011,001110, 001101 are added tdZ; and Hs, respectively. Thug outputs26,/10 + 26/10 =

5.2 and halts.
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0103w 10103®
01 01 01 0 \0 0 f 01 01 01 0 Xo f 01 01 01 01 0
01 01 \01/ 01 01 \51 01 01
0 1 N\ 1 0 1 0 1
0 1 0 1
0 1

Figure 2: The tree representation of the Cantor space @ver {0,1}. The subtree910%* and
1010%¢ are base elements, antlo>“ U 10103« is an open set.

3. Mathematical Background

In this section we introduce our mathematical background using the framework of Type-2 Theory
of Effectivity (TTE) studied in the area of Computable Analy3i¢eihrauch2000).

3.1 The Cantor Space

First, we introduce th€antor topologyinto the set of infinite sequencé®’, which is known as
the standard topology on iWeihrauch2000). Remember that>* = {p € ¥ | w C p} and
WE¥ ={peX¥|wC pforsomew € W}.

Definition 4 Definers. := {WX¥ | W C ¥*}. We say thatw. is theCantor topologyover %,
and the topological spag¢&®, ms. ) is theCantor space

We abbreviatgX“, 7s») as X if 7w is understood from context. The sep¥® | w € X*}
becomes a base of the topology..

Example 3 Let an alphabeE = {0,1}. For example, the s&0%“ = {p € ¥ | 00 C p} is

a base element of the Cantor space and10X“ is also a base element. Of course, both sets
00X“ and 10X* are open sets in the spak¥’; i.e, 00X € 7y and10X¥ € 7vw. Assume

W = {00,10}. Then the seWX¥ = {p € ¥ | 00 C p or 10 C p} is an open set. Note that
WX = 00X% U 10X,

The Cantor spacE“ can be visualized by a tree, where each infinite sequerc&® corresponds
to an infinite descending path from the root (Fig@je Then a base element:* is a full subtree
and an open set is a union of full subtrees, and the legtborresponds to the depth of the root of
the subtree.
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3.2 Embeddings of the Euclidean Space into the Cantor Space

Let us approach thé-dimensional Euclidean spat¥ through the Cantor spaé’ using topolog-
ical mappings betweeR? andX¥.

We say that a surjective functign:C ¥ — R? is arepresentatiorof R¢, and an injective
functiony :C R? — X¥ is anembeddingf R?, meaning that representations and embeddings are
dual concepts. In the field of Computable Analysis, computabilifig®obr other continuous objects
(i.e., uncountable sets) are treated through representationWitfSchibdel; 2002, Weihrauch
2000), and in this study we apply this theoretical framework to machine learning. For simplicity,
we turn an embedding into a bijective function by replacing the codomaiti by its actual image
v(R?), and assume that a representagion .

When we identify an element iR with an object with analog quantity, an embeddingan
be viewed as a mathematical realization of an encoding method or an actual A/D converter, where
a continuous signal (analog quantity) is converted to a sequence of bits (digital quantity). The true
valuez of the analog quantity is encoded as an infinite sequefceby the embedding, and any
prefix w of y(x) is a discretized digital value. The prefixtells usz is in the intervaby = (w¥«),
and the width of the interval

|7 (W) | = sup { d(z,y) | 2,y € v (wE®) }
(d is the Euclidean metric) corresponds to an errowofThis modeling reflects the fundamental
property of observation together with discretization: Every (discretized) real-valued datum must
have some error intrinsicalliB@ird, (1994).
We now define the standard embedding, the asaibedding.

Definition 5 Assumed = 1. Thebasef embeddingf the unit intervalZ = [0, 1] is a mapping
g+ T — X¥ that mapse to an infinite sequencge composed as follows: For alle N, x = 0
impliesp(i) = 0, andx # 0 implies
0 if z<xz<z+ 30D,

if Z—i—ﬂ_(i—H) <z < Z_i_ﬁ—(i—i-l)—&-l’

B—1 if 24 HD+B-2) < L 7 4 g~ DB
where

if i # 0, andz = 0 otherwise.

Especially, we call the bastembedding théinary embeddingFigure3 denotes the binary em-
beddingy2, where each horizontal line means that the corresponding positioorighe line and
otherwise. For example, let= ~,(0.3). Thenp(0) = 0 since the positioM is not on the line, and
p(1) = 1 since the position is on the line, and so on.

For infinite sequences,, . . ., pq, define thavrapping function

(p(pl, ‘e ,pd) = p1(0) .. .pd(O)p1(1) .. .pd(l)pl(z) .. .pd(2) ceee (1)
With this function, define thé-dimensional bas@embeddingyg fromZ c R? to * by

V(@1 ma) = p(yp(@), - -, y8(Ta))- 2
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Position
O = N W b

0 ¥2(0.3) = 01001.. — ;
y>((0.625,0.75]) = 1015¥

Figure 3: The (I-dimensional) binary embedding. The position: is 1 if it is on the line, and
otherwise.

Example 4 For the binary embedding,, we havey;(0.3) = 010... andy2(0.5) = 011.... Thus
12(0.3,0.5) = 001101 . ...

We abbreviatel of yg if it is understood from the context.

4. Empirical Experiments

We evaluate the performance of the classifier given in Se&igiy experiments to analyze the
coding divergence empirically. We compared accuracy of classification performed by the classifier
obtained from sensitivity and specificity to those of other classification methods.

Theoretically, our classifier can be applied to actual analog data such as (raw) real-valued data
and continuous signals. However, it is difficult to collect such type of data sets and apply our
classifier to them directly. Thereby in the following we use just discretized real-valued data stored
in databases.

4.1 Materials and Methods

First, for empirical experiments we construct the learning algorithrthat computes an approxi-
mate value of the coding divergence with respect to the Bammbedding and always halts in finite
time (Algorithm 1). The algorithnM does not receive infinite sequences, but receives just finite
sequences.

Definevg(X)[i] := {w | |w| = i andp € wX*® forsomep € ~5(X)}. The algorithm
M is slightly different from the learney, since it receives only finite sequenceg X )[i] and
v3(Y)[j]. We can get the exact coding divergence.(M (vg(X)[i],v3(Y)[j]) = Cs3(X,Y)) in
the usual situation wherg; (X)[i] N v5(Y")[j] = 0 holds. Moreover, the output & (denoted by
M (v5(X)[i],v5(Y)[j])) has themonotonicitywith respect ta and: For all pairs ofi, j and?’, 5/
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Algorithm 1 The learning algorithnM that learns’'3(X,Y")

Input: a pair(yg(X)[i],ys(Y)[j]) (X,Y CZandi,j€N)
Output: an approximate value @f3(X,Y")

function MAIN(V, W)
1: (D1, D3) «— LEARNING(V, W, 0, 0, 0, min{i, j})
2: return Dy /|[V||+ Dy /|W|

function LEARNING(V, W, D1, Do, k, kmax)
1. Vyis < DISCRETIZHV, k)
Wiis < DISCRETIZHW, k)
Vsep {v € Viis | v ¢ Wiis}
Wsep— {w € Wyis | w ¢ Viis}
Dy — Di+ Zvevsep|’0|
Dy Do+ 3 e W
V—{veV|v¢gVsep*}
W—{weW|w¢ Wsp}
if V=0 andW = 0 then return (D, D3)
else ifk = kmax thenreturn (Dy + n||V||, D2 + n||W]]) (n=(k+1)d—1)
11. else returnLEARNING(P, Q, D1, D, k + 1, kmax)

[EEN
=

function DISCRETIZEV, k) [*V C ¥X**/
1. return {v[n] |veV} (mn=(k+1)d—1)

with 7 < ¢ andj < 7/, we have

|Co(X,Y) = M((X)[il, v(Y)[I]D) | = | Ca(X,Y) = M(ys(X)[], (V)i |

andlim; j_.o | Cg(X,Y) — M (vg(X)[i],v3(Y)[s]) | = 0. Thus, intuitively, if we obtain more and
more accurate data (longer and longer sequences), then approximation of the coding divergence
becomes better and better, meaning Mas aneffectivealgorithm.

The computational complexity &fl is O(mn), wherem andn are the cardinality oK andY’,
respectively, since in each level updatingl” andW (lines 7 and 8 in Algorithm 1) take®@(mn).

To treat data that are not in the unit interZalwe use the so-called min-max normalization that
maps a value to =/, where

, r—min{XUY UZ}

S max{XUYUZ} -min{XUuYUZ}

The classifier with the above algorithih was implemented by the language version 2.10.1
(R Development Core Teari009. We tested the performance of it by evaluating accuracy, which
is the standard error measure of classificatldar and Kambé&2006).

We chose ten data sets from UCI Machine Learning Repositnank and Asuncicri2010):
abalon, transfusion, sonar, glass, segmentation, ionosphere, madelon, magic, waveform,
andyeast. Every datum in each data set is real-valued type and belongs to one of two classes (if
there are more than two classes, we picked up just two classes). We used the size of eachata set
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B Binary-coing divergence
m SVM (RBF kernel)
m SVM (porynomial kernel)
m 1-nearest neighbor
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Figure 4: Experimental results of accuracy using real-valued data sets collected from UCI reposi-
tory. We applied our classifier (using the binary-coding divergence) and other four classi-
fication methods: SVM with the RBF kernel, SVM with the polynomial kerhetearest-
neighbor classifiersk( = 1,5), to ten real-valued data setabalon, transfusion,
sonar, glass, segmentation, ionosphere, madelon, magic, waveform, andyeast.

We examined six cases: The number of used attributes are 1, 2, and 3, and the size of
each sampled training/test data sets are 10 and 30.

and30, since one of main applications is controlled experiments in life science, where these small
sizes are typical.
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We repeated the following procedure 10,000 times: 1) Samhplgributes § is 1, 2, or 3), 2)
collectn data for a training seX and for a test sef’. from one class by independent random
sampling without replacement, andand7_ from the other class, where = 10 or 30, and 3)
using X andY’, classify test set$’; and7_ by our method and other classification methods. The
binary-coding divergence was used through experiments.

Let tpos be the number of true positives, that is, the number of the case in Whidb clas-
sified correctly, andneg be the number of true negatives. We calculated the accura¢pby-+
tneg) /20000, since the sensitivity i5,0s/ 10000 and the specificity igneg/10000. For reference, we
used SVM with the RBF kernel, SVM with the polynomial kernel, &ndearest neighbor classifiers
(k = 1 and5). We used the functiorsvm in the “kernlab” package for SVMKaratzoglou et aj.
2004, and the functiofnn in the “class” package for thie-nearest neighbor classifiers, which have
been implemented iR. Note that these methods classifies each element in a test set, thereby we
classifiedl. (or 7_) to the class in which greater number of elements are classified.

4.2 Results and Discussions

The experimental result of accuracy is shown in FigdreLet us compare the result using the
binary-coding divergence to those of other methods. In most cases, the accuracy of our classifier is
the highest value, and only in some cases other methods are more accurate than ourerggthod (
low dimensional data sets ifeast). This result shows the robustness of our classifier for various
data sets. The simple process “separation by encoding” of our theoretical background might cause
this robustness.

Moreover, results of other methods highly depend on kinds of data sets. For example, 1- and
5-nearest neighbor methods are better than SVMsirvsphere, but are worse irbalon. This
means that these methods require adjustment of parameters depending on data sets. However, our
method has no parameters and does not need any adjustment. Thus we can apply our method
effectively without special background knowledge about data sets.

5. Conclusion

In this paper, we have proposed a novel measure of the difference between sets, called the coding
divergence, and integrated discretization of analog data and learning of models that explains given
data through computational learning of it, where the extracted model corresponds to the minimum
open set in the Cantor spa&¥. The key idea iseparationof intervals, which corresponds to
realization of an encoding process of analog data by a mathematical embedding of the Euclidean
space into the Cantor space. Furthermore, we have constructed a classifier, the lazy learner using
the coding divergence, and shown the robust performance of it by empirical experiments.

Our mathematical framework is general and has possibility to develop further in the field of
machine learning and data mining, since any type of data sets can be handled through an appropriate
embedding from such objects to the Cantor space. This approach is new and, intuitively, opposite
to the one using kernel functions.

Furthermore, since our proposed measure is quite simple, it can be applied to various tasks in
machine learning and data mining. For example, we can measure the difference between clusters
by the coding divergence. This means that we can perform hierarchical clustering using the coding
divergence directly. Thus applying our measure to such tasks is a future work.
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Another future work is application for other actual data sets. For example, image matching is
an important topic in computer vision, where each image is assumed to be aRstt @ne of
well-known distances is the Hausdorff metric, which is a distance between compact sets, and some
metrics based on the Hausdorff metric have been propdsettiehlocher et a/l1993 Zhao et al,

2005. Trivially our method can be applied to such topics. In preliminary experiments, we have
checked that the accuracy of classification using the coding divergence is better than that using the
Hausdorff metric. Thus our method might be a better classifier than that with the Hausdorff metric.
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