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Abstract

In this paper we integrate two essential processes,discretizationof continuous data and learning of
a model that explains them, towards fullycomputationalmachine learning from continuous data.
Discretization is fundamental for machine learning and data mining, since every continuous da-
tum; e.g., a real-valued datum obtained by observation in the real world, must be discretized and
converted from analog (continuous) to digital (discrete) form to store in databases. However, most
machine learning methods do not pay attention to the situation;i.e., they use digital data in actual
applications on a computer whereas assume analog data (usually vectors of real numbers) theoret-
ically. To bridge the gap, we propose a novel measure of the difference between two sets of data,
called thecoding divergence, and unify two processes discretization and learning computationally.
Discretization of continuous data is realized by a topological mapping (in the sense of mathemat-
ics) from thed-dimensional Euclidean spaceRd into the Cantor spaceΣω, and the simplest model
is learned in the Cantor space, which corresponds to the minimumopen setseparating the given
two sets of data. Furthermore, we construct a classifier using the divergence, and experimentally
demonstrate robust performance of it. Our contribution is not only introducing a new measure from
the computational point of view, but also triggering more interaction between experimental science
and machine learning.

Keywords: Coding divergence, Discretization, Cantor space, Binary encoding, Computable Anal-
ysis, Computational Learning Theory

1. Introduction

The aim of this paper is giving a computational basis for machine learning and data mining from
continuous data. We integrate two fundamental processes;discretizationof continuous data and
learning of a model that explains them, using theories of encoding of real numbers in Computable
Analysis (Weihrauch, 2000) and those of learning from examples in Computational Learning Theory
(Jain et al., 1999). We treat the problem of measuring the difference between two sets of continuous
data by assuming that one contains positive data and the other contains negative data, since such
a problem is basic for a lot of tasks in machine learning such as classification and clustering. We
propose a novel measure, called thecoding divergence, to measure similarity between such sets, and
construct a classifier using it. The key concept of the divergence is the simple procedureseparation:
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The coding divergence measures the complexity of separating a positive data set from a negative
data set, which corresponds to the height of a decision tree separating them intuitively.

1.1 Background and Problems in Machine Learning

With the recent rapid development of machine learning techniques, more and more data sets are
stored in databases and distributed through computer networks, where every continuous datum such
as a real-valued datum obtained by scientific activity;e.g., observations or experiments in the real
world, is discretizedfrom analog to digital form. Thereby there is an unavoidable gap between
raw continuous data and converted discrete data used for learning and mining on a computer. This
means that whereas lots of machine learning methods assume continuous data (usually vectors of
real numbers) ideally, actual applications on computers use discretized binary data.

However, to the best of our knowledge, existing theoretical bases for machine learning do not
try to bridge the gap. For example, methods originated from the perceptron are based on the idea
of regulating analog wiring (Rosenblatt, 1958), hence they take no notice of discretization. Fur-
thermore, despite now there are several discretization techniques (Elomaa and Rousu, 2003; Fayyad
and Irani, 1993; Friedman et al., 1998; Gama and Pinto, 2006; Kontkanen et al., 1997; Lin et al.,
2003; Liu et al., 2002; Skubacz and Hollḿen, 2009), they treat discretization as just the data prepro-
cessing for improving accuracy or efficiency of the machine learning/data mining procedure, and
the process discretization itself is not considered from computational point of view. Thus, roughly
speaking, we have to build an “analog-to-digital (A/D) converter” into a machine learning method
computationally to treat discretization appropriately.

1.2 Background and Problems in Experimental Science

In experimental science, a lot of experiments are designed including anegative controland apositive
control. Positive controls confirm that the procedure is competent for observing the effect, and
negative controls confirm that the procedure is not observing an unrelated effect. Testing the effect
of a treatment group is the objective of such an experiment. A typical situation is testing the effect
of a new drug, where the result of applying the new drug (treatment group) is compared against
placebo (negative control).

The standard method for the above task is astatistical hypothesis test, which has developed from
the works by Neyman and Pearson (Neyman and Pearson, 1928, 1933), and Fisher (Fisher, 1925,
1956). However, it is well known that there exist many fundamental problems in statistical hy-
pothesis testing such as non-verifiable assumptions for populations and arbitraryp values (Johnson,
1999) when we apply such methods to actual data sets. As a result, even in the top journals such as
Nature, Science, andCell, we can easily find inappropriate usage of statistical hypothesis testing1.
Thus an alternative method to give theoretical justification to experimental results is required.

All the scientists have to do is to judge which controls a treatment group belongs to and, obvi-
ously, this typical task in experimental science can be viewed asclassificationin machine learning,
that is, a pair of negative and positive controls is given as a training data set, and a classifier labels
a treatment group (corresponds to a test set) “negative” or “positive” using the training set. Note
that labels of all elements in the test set are same. Therefore, comparing the similarity between the

1. Nature says “please help us” to deal with various statistical methods appropriately (http://www.nature.com/

nature/authors/gta/).

128

http://www.nature.com/nature/authors/gta/�
http://www.nature.com/nature/authors/gta/�


THE CODING DIVERGENCE FORMEASURING THECOMPLEXITY OF SEPARATING TWO SETS

negative control and the test set to the one between the positive control and the test set is a direct
way, and the coding divergence, which will be introduced in this paper, can achieve such task.

Note that lots of existing classification methods based on statistics could not work well, since
most of them have been proposed forlargedata sets, while typical data sets aresmallin experimental
science such as physiology.

1.3 Solutions and Examples of Our Method

In this paper we focus on machine learning from real-valued data, and measure the difference be-
tween two sets of real-valued data by the complexity of separating the two sets. We call this novel
measure thecoding divergence. This divergence uses no statistics and no probabilistic models, and
purely depends on the topological structure (in the sense of mathematics) of theCantor spaceΣω,
which is known as the standard topological space of the set of infinite sequences (Weihrauch, 2000).
Thus, for example, it has no assumptions for the probability distributions of data sets. This property
enables us to develop a robust machine learning algorithm for various data sets.

We identify each real-valued datum with a vector of real numbers in thed-dimensional Eu-
clidean spaceRd, and realize discretization of a real-valued datum through an topological mapping
from Rd into the Cantor spaceΣω. A topology usesopen setsto axiomatize the notion of approx-
imation, and it enables us to treat each discretized datum as a base element of an open set of the
Cantor space.

The simplest model that is consistent with the given two sets is learned in the Cantor space with
assuming that one set is a set of positive examples and the other set is a set of negative examples;
i.e., the learned model explains all positive examples and does not explain any negative examples.
This model corresponds to theminimum open setin the Cantor spaceΣω. The coding divergence is
obtained from the length of the code that encodes the learned model in the Cantor space.

Figure1 shows two examples of computing thebinary-coding divergence(the coding diver-
gence with the binary encoding) where each datum is a vector inR2. The unit cubeI = [0, 1] ×
[0, 1] is partitioned recursively, and each partitioned cube is encoded by the binary encoding (see
Section3.2 and Figure3). In the left panel (Figure1(a)), to separate one set from the other set,
we need only one partition in each dimension, and need2/10 symbols par datum. In contrast in
the right panel (Figure1(b)), three recursive partitions are needed in each dimension, and we need
26/10 symbols par datum. The binary-coding divergence is determined directly from these numbers
of symbols, that is,2/10 + 2/10 = 0.4 in Figure1(a)and26/10 + 26/10 = 5.2 in Figure1(b).

1.4 Related Works

Liu et al. (Liu et al., 2008) used the similar idea of our divergence to anomaly detection. They
constructed decision trees by partitioning intervals randomly and recursively, and used the height
of them to measure the complexity of separating each datum. Comparing to the method, our con-
tribution is as follows: We treat the way of partition as the process of discretization and formulate
it as a mapping (encoding) ofRd into the Cantor spaceΣω, and show that the height of a decision
tree corresponds to the size of an open set in the topological spaceΣω. This gives the theoretical
justification for the process “partition”. Furthermore, this is the first time to perform classification
using such idea.

Discretization is also used to construct decision trees from continuous data. For example, C4.5
(Quinlan, 1996) is one of famous algorithms to develop decision trees together with discretization.
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Figure 1: Two examples of computing the binary-coding divergence. Each◦ and× denotes a real-
valued datum, and each cube is encoded by the binary encoding (same as the base-2
embedding in Definition5). In the left panel (a), we need a pair of codes(0, 0) (encod-
ing [0, 1/2] × [0, 1/2]) to separate◦ from ×, and(1, 1) (encoding[1/2, 1] × [1/2, 1])
to separate× from ◦, hence we can separate them with2/10 symbols par datum, and
the binary-coding divergence is2/10 + 2/10 = 0.4 (For each pair of codes, we ignore
symbols “(”, “ ,”, and “)”, and actually wrap into one code. See the equation (1)). In
contrast in the right panel (b), we need codes(00, 00), (00, 01), (010, 010), (011, 011),
and(110, 100) to separate◦ from×, and(10, 10), (11, 11), (111, 101), (010, 011), and
(011, 010) to separate× from ◦. Thus they are separated by(4 + 4 + 6 + 6 + 6)/10
symbols par datum, and the divergence is26/10 + 26/10 = 5.2.

Our approach is different from them since we realize discretization process by methods of encoding
real numbers, give theoretical support by modern mathematical theories in Computable Analysis,
and integrate the process into computational learning.

Kernel methods including Support Vector Machines (SVMs) are known to be one of the most
famous and powerful classification methods (Bishop, 2007), where any form of data sets, for ex-
ample sequences, images, and graphs, are mapped into a high dimensional feature space, which is
the d-dimensional Euclidean spaceRd, or more generally the infinite-dimensional Hilbert space,
to measure the similarity between each pair of data. In contrast, our strategy is inverted: Every
real-valued datum inRd is mapped into the Cantor spaceΣω. The “discrete” spaceΣω might seem
to be strange as a feature space, but is natural for machine learning from real-valued data with
discretization.

Some studies use the Kolmogorov complexity for machine learning such as clustering (Cilibrasi
and Vit́anyi, 2005; Li et al., 2003) by measuring the similarity between a pair of data. Comparing
to the methods, our approach has mainly two advantages as follows: First, the coding divergence is
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computable (Section2.3) whereas the Kolmogorov complexity is not, hence they use actual com-
pression algorithms such asgzip to obtain an approximate value of the Kolmogorov complexity,
which result in a gap between theory and practice; second, our approach is more general than their
ones, because we can treat any continuous objects through encoding of them, however they cannot
since they do not consider encoding process of objects.

1.5 Organization of This Paper

This paper is organized as follows: Section2 is the main part in this paper, where we introduce
the coding divergence and a classifier using the divergence. We give mathematical background in
Section3, and analyze performance of our classifier experimentally in Section4. Section5 gives
conclusion.

1.6 Notation

We assume that the reader is familiar with the basic concepts of analysis and the ordinary com-
putability theory (Dieudonńe, 1960; Hopcroft and Ullman, 1979). In the followingR denotes
the set of real numbers, andRd denotes thed-dimensional Euclidean space. The unit interval
[0, 1] × · · · × [0, 1] in Rd is denoted byI. The set of all finite sequences and infinite sequences
over an alphabetΣ is denoted byΣ∗ andΣω, respectively. Thelengthof a finite sequencew is
the number of positions for symbols inw, denoted by|w|, and theempty stringis the string whose
length is0, denoted byλ. For a set of sequencesW , thesizeof W is defined by|W | := ∑

w∈W |w|.
For example, ifW = {11, 0, 100}, then|W | = 2 + 1 + 3 = 6.

Forv ∈ Σ∗ andp ∈ Σ∗ ∪ Σω, if p = vq for someq ∈ Σ∗ ∪ Σω, thenv is aprefixof p, denoted
by v v p. The ith symbol of a sequencep is denoted byp(i), and the prefixp(0) . . . p(n) of the
lengthn + 1 of p is denoted byp[n]. The set{p ∈ Σω | w v p} is denoted bywΣω, and the set
{p ∈ Σω | w v p for somew ∈ W} by WΣω.

2. The Coding Divergence

In this section we give a novel measure of the difference between sets in thed-dimensional Eu-
clidean spaceRd, called thecoding divergence, with assuming that an element inRd corresponds to
a real-valued datum. This divergence is the main contribution in this paper. We design a classifier
using it in2.2, and construct a learner that learns the divergence in2.3.

2.1 Definition and Properties

Let X andY be a pair of nonempty finite sets in the unit intervalI ⊂ Rd. We encode them by a
mappingγ fromI to the Cantor spaceΣω, whereγ is called anembedding, and its formal definition
will be given in Section3.2. Thusγ(X) andγ(Y ) are sets of infinite sequences.

We set amodelof given data as anopen setin the Cantor space, since this property “open” is
desirable for machine learning as follows: For a setP , if P is open, then there exists a set of finite
sequencesW such thatWΣω = P (remember thatWΣω = {p ∈ Σω | w v p for somew ∈ W}).
This means thatP is finitely observable(Smyth, 1992), that is, for any infinite sequencep, we can
decide whether or notp ∈ P by observing just some prefix ofp. Thus from sets of infinite sequences
γ(X) andγ(Y ), we can obtain an open set as a model of themin finite time(see Section3.1 for its
formal definition).
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We say that a set of infinite sequencesP ⊆ Σω is consistentwith an ordered pair(γ(X), γ(Y ))
if P ⊇ γ(X) andP ∩γ(Y ) = ∅, hence if we seeγ(X) andγ(Y ) as positive and negative examples,
respectively, then the setP “explains” all elements inγ(X) and does not explain any elements in
γ(Y ).

Definition 1 Given an embeddingγ : I → Σω. For a pair of nonempty finite setsX,Y ⊂ I, define
thecoding divergence1 with respect toγ by

Cγ(X, Y ) :=

{
∞ if X ∩ Y 6= ∅,
Dγ(X; Y ) + Dγ(Y ; X) otherwise,

whereDγ is thedirected coding divergence with respect toγ defined by

Dγ(X; Y ) :=
1

‖X‖ min
{ |O| | O is open, and consistent with(γ(X), γ(Y ))

}

(‖X‖ is the cardinality ofX).

The standard embedding for the coding divergence is the base-β embeddingγβ that will be given
in Definition 5 and, especially, the coding divergence with respect toγβ is written byCβ(X, Y ).
If β = 2, then we callC2(X, Y ) thebinary-coding divergence. Informally, the base-β embedding
encodes each real number by dividing each interval intoβ same width intervals recursively (see
Figure3).

Intuitively, the procedure to obtain the directed coding divergence is as follows: We encode
given setsX, Y into the Cantor spaceΣω by an embeddingγ, find the simplest model (minimum
open set)O that is consistent with an ordered pair of sets of infinite sequences(γ(X), γ(Y )), and
measure the size|O|. Thus the directed coding divergenceDγ(X; Y ) can be viewed as the result
of consistent learningfrom positive examplesγ(X) and negative examplesγ(Y ) in Computational
Learning Theory context (Jain et al., 1999).

Example 1 Suppose thatX = {√0.2, 0.8} andY = {π/10}. Then in the binary embeddingγ2

(Definition5), these sets are encoded into infinite sequences as follows:γ2(X) = {011 . . . , 111 . . . }
andγ2(Y ) = {010 . . . }. Thus for an open setV Σω with V = {011, 1}, V Σω is minimum and
consistent with(γ2(X), γ2(Y )). Therefore we haveD2(X; Y ) = (3 + 1)/2 = 2. Similarly,WΣω

with W = {010} is minimum and consistent with(γ2(Y ), γ2(X)), henceD2(Y ; X) = 3/1 = 3.
Consequently,C2(X, Y ) = D2(X; Y ) + D2(Y ; X) = 5.

It is trivial that the coding divergence is not a metric sinceCγ(X,Y ) 6= 0 for all nonempty finite
setsX, Y ⊂ I.

Lemma 2 The coding divergence satisfies the following conditions:

1. Cγ(X, Y ) > 0.

2. Cγ(X, Y ) = Cγ(Y, X).

Furthermore, it does not satisfy the triangle inequality.

1. The usage of the word “divergence” follows the original definition of the Kullback-Leibler divergence (Kullback and
Leibler, 1951).
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Proof The conditionsCγ(X,Y ) > 0 andCγ(X, Y ) = Cγ(Y, X) are proved directly from the
definition. We can easily find an example, where the triangle inequality does not hold. For example,
let X = {0.1}, Y = {0.8}, andZ = {0.2}, and assume that we use the binary embedding. We
haveC2(X, Y ) = 2, C2(Y, Z) = 2, andC2(Z, X) = 6, thusC2(X,Y ) + C2(Y,Z) < C2(Z,X).

2.2 Classification Using the Coding Divergence

We construct a lazy learner that classifies a given data set using the coding divergence. It classifies
a test set by measuring its similarity (coding divergence) to a training data set. It is quite simple
and has no parameters, hence we can apply it to any type of real-valued data sets without any
consideration. We will show its robustness in Section4.

Assume that there are two classesA andB, and a pair(X, Y ) is given as a training data set
(X, Y are nonempty finite sets inRd), whereX (resp. Y ) belongs toA (resp. B). Moreover,
suppose that we have a data setZ ⊂ Rd in which every datum is unlabeled, and we just know that
all labels of elements inZ are same.

The classifier performs as follows: First, it computesCγ(X,Z) andCγ(Y,Z), and next, judges

Z belongs to the class

{
A if Cγ(X,Z) > Cγ(Y, Z),
B otherwise.

Generally, the computability ofCγ(X, Z) andCγ(Y, Z) is not guaranteed. However, if we use the
base-β embeddingγβ such as the binary embedding (Definition5), then it is effectively computable.
We give the learnerψ that learns the coding divergence with respect toγβ in the next subsection.

2.3 Learning of the Coding Divergence w.r.t.γβ

Here we integrate discretization of encoded real-valued data (i.e., infinite sequences) and learn-
ing of the coding divergence with respect toγβ, and construct a learner that learns the divergence
Cβ(X, Y ) from γβ(X) andγβ(Y ).

Procedure 1 shows the learnerψ that learns the coding divergenceCβ(X,Y ) from a pair of given
sets of encoded infinite sequencesγβ(X) andγβ(Y ). It continues to discretize each sequence, ob-
tain longer and longer prefixes, and generate an approximate value of theCβ(X, Y ). For inputs
γβ(X) andγβ(Y ), the output ofψ (finite or infinite sequence) is denoted byψ(γβ(X), γβ(Y )),
hence for example,ψ(γβ(X), γβ(Y ))(0) is the first output,ψ(γβ(X), γβ(Y ))(1) is the second out-
put, and so on.

To learn the coding divergence, a learner has to judge whether or not an open setO is consistent
with given sets(γβ(X), γβ(Y )), and we show that it is decidable in finite time.

Lemma 3 For every open setO and everyP, Q ⊆ Σω, it is decidable that whether or notO is
consistent with(P,Q) in finite time.

Proof Let O = WΣω andk = maxw∈W |w|, and defineP [k] := {p[k] | p ∈ P} andQ[k] :=
{q[k] | q ∈ Q}. We show that we can check the consistency only usingW , P [k], andQ[k] (thus it
is decidable). The conditionO ⊇ P holds if and only if for allx ∈ P [k], there existsw ∈ W such
thatw v x. Moreover,O ∩Q = ∅ if and only if y 6v w andw 6v y for all w ∈ O andy ∈ Q[k].
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Procedure 1The learnerψ that learnsCβ(X,Y )

Input: a pair(γβ(X), γβ(Y )) (bothX andY are nonempty finite sets inI)

Output: a finite or infinite sequence converging toCβ(X, Y )

function MAIN(γβ(X), γβ(Y ))
1: LEARNING(γβ(X), γβ(Y ), ∅, ∅, ‖X‖, ‖Y ‖, 0)

function LEARNING(P , Q, H1, H2, m, n, k)

1: V ← DISCRETIZE(P , k)
2: W ← DISCRETIZE(Q, k)
3: H1 ← H1 ∪ {v ∈ V | v /∈ W}
4: H2 ← H2 ∪ {w ∈ W | w /∈ V }
5: P ← {p ∈ P | p /∈ H1Σω}
6: Q ← {q ∈ Q | q /∈ H2Σω}
7: outputm−1

∑
v∈H1

|v|+ n−1
∑

w∈H2
|w|

8: if P = ∅ andQ = ∅ then halt
9: else returnLEARNING(P , Q, H1, H2, m, n, k + 1)

function DISCRETIZE(P , k)

1: return {p[n] | p ∈ P}, wheren = (k + 1)d− 1

If X ∩ Y = ∅, thenψ halts in finite time, and the last output is exactly the same asCβ(X, Y ).
Otherwise ifX ∩ Y 6= ∅, thenψ continues to output approximate values of theCβ(X, Y ) = ∞
forever. Here, we can easily prove that for alli, j ∈ N with i < j,

ψ(γβ(X), γβ(Y ))(i) 6 ψ(γβ(X), γβ(Y ))(j), and lim
i→∞

ψ(γβ(X), γβ(Y ))(i) = ∞.

This means that we can obtain more and more accurate values of the coding divergence, even though
we cannot obtain the exact value in finite time. This property corresponds to theeffectivecom-
putability realized by theType-2 machine, where while a computer reads more and more precise
information (longer and longer prefixes) of the input, it produces more and more accurate approx-
imations of the result. This machine is a natural extension of the usual Turing machine, and used
to introduce computability of continuous objects (Weihrauch, 2000). Furthermore, this property of
computation is an effective version of theconsistencyin statistical context.

Example 2 Let us consider the case in Figure1, and assume thatX andY consist of all◦ and×,
respectively. LetP = γ2(X) andQ = γ2(Y ). Every pair of codes is wrapped into one code by
the wrapping functionϕ that will be defined in (1). In Figure1(a), DISCRETIZE(P, 0) returns{00}
(corresponds to(0, 0)) and DISCRETIZE(Q, 0) returns{11} (corresponds to(1, 1)). Thusψ outputs
2/10 + 2/10 = 0.4 and halts. In Figure1(b), both DISCRETIZE(P, 0) and DISCRETIZE(Q, 0) return
{00, 11}, and DISCRETIZE(P, 1) returns{0000, 0001, 0011, 1110}, and DISCRETIZE(Q, 1) returns
{1100, 1111, 0011, 1110}. ThusH1 = {0000, 0001} andH2 = {1100, 1111}. Furthermore, for
the rest of data, DISCRETIZEperforms similarly, and finite sequences001100, 001111, 111000 and
111011, 001110, 001101 are added toH1 andH2, respectively. Thusψ outputs26/10 + 26/10 =
5.2 and halts.
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010Σω 1010Σω

Figure 2: The tree representation of the Cantor space overΣ = {0, 1}. The subtrees010Σω and
1010Σω are base elements, and010Σω ∪ 1010Σω is an open set.

3. Mathematical Background

In this section we introduce our mathematical background using the framework of Type-2 Theory
of Effectivity (TTE) studied in the area of Computable Analysis (Weihrauch, 2000).

3.1 The Cantor Space

First, we introduce theCantor topologyinto the set of infinite sequencesΣω, which is known as
the standard topology on it (Weihrauch, 2000). Remember thatwΣω = {p ∈ Σω | w v p} and
WΣω = {p ∈ Σω | w v p for somew ∈ W}.

Definition 4 DefineτΣω := {WΣω | W ⊆ Σ∗}. We say thatτΣω is theCantor topologyoverΣ,
and the topological space(Σω, τΣω) is theCantor space.

We abbreviate(Σω, τΣω) asΣω if τΣω is understood from context. The set{wΣω | w ∈ Σ∗}
becomes a base of the topologyτΣω .

Example 3 Let an alphabetΣ = {0, 1}. For example, the set00Σω = {p ∈ Σω | 00 v p} is
a base element of the Cantor spaceΣω, and10Σω is also a base element. Of course, both sets
00Σω and10Σω are open sets in the spaceΣω; i.e., 00Σω ∈ τΣω and10Σω ∈ τΣω . Assume
W = {00, 10}. Then the setWΣω = {p ∈ Σω | 00 v p or 10 v p} is an open set. Note that
WΣω = 00Σω ∪ 10Σω.

The Cantor spaceΣω can be visualized by a tree, where each infinite sequencep ∈ Σω corresponds
to an infinite descending path from the root (Figure2). Then a base elementwΣω is a full subtree
and an open set is a union of full subtrees, and the length|w| corresponds to the depth of the root of
the subtree.
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3.2 Embeddings of the Euclidean Space into the Cantor Space

Let us approach thed-dimensional Euclidean spaceRd through the Cantor spaceΣω using topolog-
ical mappings betweenRd andΣω.

We say that a surjective functionρ :⊆ Σω → Rd is a representationof Rd, and an injective
functionγ :⊆ Rd → Σω is anembeddingof Rd, meaning that representations and embeddings are
dual concepts. In the field of Computable Analysis, computability ofRd or other continuous objects
(i.e., uncountable sets) are treated through representations withΣω (Schr̈oder, 2002; Weihrauch,
2000), and in this study we apply this theoretical framework to machine learning. For simplicity,
we turn an embeddingγ into a bijective function by replacing the codomainΣω by its actual image
γ(Rd), and assume that a representationρ = γ−1.

When we identify an element inRd with an object with analog quantity, an embeddingγ can
be viewed as a mathematical realization of an encoding method or an actual A/D converter, where
a continuous signal (analog quantity) is converted to a sequence of bits (digital quantity). The true
valuex of the analog quantity is encoded as an infinite sequenceγ(x) by the embeddingγ, and any
prefix w of γ(x) is a discretized digital value. The prefixw tells usx is in the intervalγ−1(wΣω),
and the width of the interval∣∣ γ−1(wΣω)

∣∣ = sup
{

d(x, y) x, y ∈ γ−1(wΣω)
}

(d is the Euclidean metric) corresponds to an error ofw. This modeling reflects the fundamental
property of observation together with discretization: Every (discretized) real-valued datum must
have some error intrinsically (Baird, 1994).

We now define the standard embedding, the base-β embedding.

Definition 5 Assumed = 1. Thebase-β embeddingof the unit intervalI = [0, 1] is a mapping
γβ : I → Σω that mapsx to an infinite sequencep composed as follows: For alli ∈ N, x = 0
impliesp(i) = 0, andx 6= 0 implies

p(i) =





0 if z < x 6 z + β−(i+1),

1 if z + β−(i+1) < x 6 z + β−(i+1)+1,

...

β − 1 if z + β−(i+1)+(β−2) < x 6 z + β−(i+1)+(β−1),

where

z =
i−1∑

j=0

p(j)β−(j+1)

if i 6= 0, andz = 0 otherwise.

Especially, we call the base-2 embedding thebinary embedding. Figure3 denotes the binary em-
beddingγ2, where each horizontal line means that the corresponding position is1 on the line and0
otherwise. For example, letp = γ2(0.3). Thenp(0) = 0 since the position0 is not on the line, and
p(1) = 1 since the position1 is on the line, and so on.

For infinite sequencesp1, . . . , pd, define thewrapping function

ϕ(p1, . . . , pd) := p1(0) . . . pd(0)p1(1) . . . pd(1)p1(2) . . . pd(2) . . . . (1)

With this function, define thed-dimensional base-β embeddingγd
β from I ⊂ Rd to Σω by

γd
β(x1, . . . , xd) := ϕ(γβ(x1), . . . , γβ(xd)). (2)
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0 1γ2(0.3) = 01001...
γ2((0.625, 0.75]) = 101Σω

Po
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n

0
1
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3
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Figure 3: The (1-dimensional) binary embeddingγ2. The positioni is 1 if it is on the line, and0
otherwise.

Example 4 For the binary embeddingγ2, we haveγ2(0.3) = 010 . . . andγ2(0.5) = 011 . . . . Thus
γ2

2(0.3, 0.5) = 001101 . . . .

We abbreviated of γd
β if it is understood from the context.

4. Empirical Experiments

We evaluate the performance of the classifier given in Section2.2 by experiments to analyze the
coding divergence empirically. We compared accuracy of classification performed by the classifier
obtained from sensitivity and specificity to those of other classification methods.

Theoretically, our classifier can be applied to actual analog data such as (raw) real-valued data
and continuous signals. However, it is difficult to collect such type of data sets and apply our
classifier to them directly. Thereby in the following we use just discretized real-valued data stored
in databases.

4.1 Materials and Methods

First, for empirical experiments we construct the learning algorithmM that computes an approxi-
mate value of the coding divergence with respect to the base-β embedding and always halts in finite
time (Algorithm 1). The algorithmM does not receive infinite sequences, but receives just finite
sequences.

Define γβ(X)[i] := {w | |w| = i and p ∈ wΣω for somep ∈ γβ(X)}. The algorithm
M is slightly different from the learnerψ, since it receives only finite sequencesγβ(X)[i] and
γβ(Y )[j]. We can get the exact coding divergence (i.e., M(γβ(X)[i], γβ(Y )[j]) = Cβ(X, Y )) in
the usual situation whereγβ(X)[i] ∩ γβ(Y )[j] = ∅ holds. Moreover, the output ofM (denoted by
M(γβ(X)[i], γβ(Y )[j])) has themonotonicitywith respect toi andj: For all pairs ofi, j andi′, j′
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Algorithm 1 The learning algorithmM that learnsCβ(X, Y )

Input: a pair(γβ(X)[i], γβ(Y )[j]) (X,Y ⊂ I andi, j ∈ N)

Output: an approximate value ofCβ(X,Y )

function MAIN(V , W )

1: (D1, D2) ← LEARNING(V , W , 0, 0, 0, min{i, j})
2: return D1 / ‖V ‖+ D2 / ‖W‖

function LEARNING(V , W , D1, D2, k, kmax)

1: Vdis ← DISCRETIZE(V , k)
2: Wdis ← DISCRETIZE(W , k)
3: Vsep← {v ∈ Vdis | v /∈ Wdis}
4: Wsep← {w ∈ Wdis | w /∈ Vdis}
5: D1 ← D1 +

∑
v∈Vsep

|v|
6: D2 ← D2 +

∑
w∈Wsep

|w|
7: V ← {v ∈ V | v /∈ VsepΣω}
8: W ← {w ∈ W | w /∈ WsepΣω}
9: if V = ∅ andW = ∅ then return (D1, D2)

10: else ifk = kmax then return (D1 + n‖V ‖, D2 + n‖W‖) (n = (k + 1)d− 1)
11: else returnLEARNING(P , Q, D1, D2, k + 1, kmax)

function DISCRETIZE(V , k) /* V ⊂ Σ∗ */

1: return {v[n] | v ∈ V } (n = (k + 1)d− 1)

with i 6 i′ andj 6 j′, we have

|Cβ(X, Y )−M(γβ(X)[i], γβ(Y )[j]) | > ∣∣ Cβ(X, Y )−M(γβ(X)[i′], γβ(Y )[j′])
∣∣ ,

andlimi,j→∞ |Cβ(X,Y )−M(γβ(X)[i], γβ(Y )[j]) | = 0. Thus, intuitively, if we obtain more and
more accurate data (longer and longer sequences), then approximation of the coding divergence
becomes better and better, meaning thatM is aneffectivealgorithm.

The computational complexity ofM is O(mn), wherem andn are the cardinality ofX andY ,
respectively, since in each levelk, updatingV andW (lines 7 and 8 in Algorithm 1) takesO(mn).

To treat data that are not in the unit intervalI, we use the so-called min-max normalization that
maps a valuex to x′, where

x′ =
x−min{X ∪ Y ∪ Z}

max{X ∪ Y ∪ Z} −min{X ∪ Y ∪ Z} .

The classifier with the above algorithmM was implemented by theR language version 2.10.1
(R Development Core Team, 2009). We tested the performance of it by evaluating accuracy, which
is the standard error measure of classification (Han and Kamber, 2006).

We chose ten data sets from UCI Machine Learning Repository (Frank and Asuncion, 2010):
abalon, transfusion, sonar, glass, segmentation, ionosphere, madelon, magic, waveform,
andyeast. Every datum in each data set is real-valued type and belongs to one of two classes (if
there are more than two classes, we picked up just two classes). We used the size of each data set10
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Figure 4: Experimental results of accuracy using real-valued data sets collected from UCI reposi-
tory. We applied our classifier (using the binary-coding divergence) and other four classi-
fication methods: SVM with the RBF kernel, SVM with the polynomial kernel,k-nearest-
neighbor classifiers (k = 1, 5), to ten real-valued data sets:abalon, transfusion,
sonar, glass, segmentation, ionosphere, madelon, magic, waveform, andyeast.
We examined six cases: The number of used attributes are 1, 2, and 3, and the size of
each sampled training/test data sets are 10 and 30.

and30, since one of main applications is controlled experiments in life science, where these small
sizes are typical.
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We repeated the following procedure 10,000 times: 1) Sampled attributes (d is 1, 2, or 3), 2)
collect n data for a training setX and for a test setT+ from one class by independent random
sampling without replacement, andY andT− from the other class, wheren = 10 or 30, and 3)
usingX andY , classify test setsT+ andT− by our method and other classification methods. The
binary-coding divergence was used through experiments.

Let tpos be the number of true positives, that is, the number of the case in whichT+ is clas-
sified correctly, andtneg be the number of true negatives. We calculated the accuracy by(tpos +
tneg)/20000, since the sensitivity istpos/10000 and the specificity istneg/10000. For reference, we
used SVM with the RBF kernel, SVM with the polynomial kernel, andk-nearest neighbor classifiers
(k = 1 and5). We used the functionksvm in the “kernlab” package for SVM (Karatzoglou et al.,
2004), and the functionknn in the “class” package for thek-nearest neighbor classifiers, which have
been implemented inR. Note that these methods classifies each element in a test set, thereby we
classifiedT+ (or T−) to the class in which greater number of elements are classified.

4.2 Results and Discussions

The experimental result of accuracy is shown in Figure4. Let us compare the result using the
binary-coding divergence to those of other methods. In most cases, the accuracy of our classifier is
the highest value, and only in some cases other methods are more accurate than our method (e.g.,
low dimensional data sets inyeast). This result shows the robustness of our classifier for various
data sets. The simple process “separation by encoding” of our theoretical background might cause
this robustness.

Moreover, results of other methods highly depend on kinds of data sets. For example, 1- and
5-nearest neighbor methods are better than SVMs inionosphere, but are worse inabalon. This
means that these methods require adjustment of parameters depending on data sets. However, our
method has no parameters and does not need any adjustment. Thus we can apply our method
effectively without special background knowledge about data sets.

5. Conclusion

In this paper, we have proposed a novel measure of the difference between sets, called the coding
divergence, and integrated discretization of analog data and learning of models that explains given
data through computational learning of it, where the extracted model corresponds to the minimum
open set in the Cantor spaceΣω. The key idea isseparationof intervals, which corresponds to
realization of an encoding process of analog data by a mathematical embedding of the Euclidean
space into the Cantor space. Furthermore, we have constructed a classifier, the lazy learner using
the coding divergence, and shown the robust performance of it by empirical experiments.

Our mathematical framework is general and has possibility to develop further in the field of
machine learning and data mining, since any type of data sets can be handled through an appropriate
embedding from such objects to the Cantor space. This approach is new and, intuitively, opposite
to the one using kernel functions.

Furthermore, since our proposed measure is quite simple, it can be applied to various tasks in
machine learning and data mining. For example, we can measure the difference between clusters
by the coding divergence. This means that we can perform hierarchical clustering using the coding
divergence directly. Thus applying our measure to such tasks is a future work.
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Another future work is application for other actual data sets. For example, image matching is
an important topic in computer vision, where each image is assumed to be a set inR3. One of
well-known distances is the Hausdorff metric, which is a distance between compact sets, and some
metrics based on the Hausdorff metric have been proposed (Huttenlocher et al., 1993; Zhao et al.,
2005). Trivially our method can be applied to such topics. In preliminary experiments, we have
checked that the accuracy of classification using the coding divergence is better than that using the
Hausdorff metric. Thus our method might be a better classifier than that with the Hausdorff metric.
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